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Abstract

The semi-classical limit ¢ — 0 of the scattering matrix S associated with the
equation ie%ﬂ = A(t)p(t) is considered. If A(z) is an analytic n X n matrix
whose eigenvalues are real and non degenerate for all z € R, the matrix S is
computed asymptotically up to errors O(e“"‘_l), k > 0. Moreover, for the
case n = 2 and under further assumptions on the behaviour of the analytic
continuations of the eigenvalues of A(z), the exponentially small off-diagonal
elements of S are given by an asymptotic expression accurate up to relative
errors O(e_"‘-l). The adiabatic transition probability for the time dependent
Schrédinger equation, the semi-classical above barrier reflection coefficient for
the stationary Schrodinger equation and the total variation of the adiabatic
invariant of a time dependent classical oscillator are computed asymptotically

to illustrate our results.
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1. INTRODUCTION

Let us consider the following well-known equations.

The first one, is the time-dependent Schrdinger equation for a two-level system,
d t
O _ g (L1)

t € R, ¥(t) € H = C? and H(et) is a 2x 2 self-adjoint linear operator with two distinct real
eigenvalues. The parameter e is positive and small. The second equation is the stationary

one-dimensional Schrédinger equation

Y L viayie) = Bute) (1.2)

z € R, ¢(z) € C and V(z) is a bounded real-valued function. The real parameter E is

chosen in such a way that
E > sup V(z) (1.3)
zeR

The third equation is the equation of motion of a classical oscillator whose frequency varies
with time
t;(t) =— z(et)v(t)’ v(0) = uo, v(O) =ug (14)

This equation is of the same type as (1.2) since we assume that the real valued function
w(t) is bounded and such that

spo 2

32{1” >0 (1.5)

For the first two equations we are interested in the behaviour of the solution for ¢ —» 400
or  — 400, when the behaviour for t = —0o or z — —o0 is fixed. Moreover we want to
analyze this scattering situation when ¢ tends to zero and A = 1 for equation (1.1), the
so-called adiabatic limit, or % tends to zero for equation (1.2), the so-called semi-classical
limit. For the initial value problem (1.4), we consider the adiabatic invariant J defined as
twice the ratio of the energy to the frequency

[P + w?(et)|v()]?

J(t, €)= (@)

(1.6)

in the limit ¢ — 0. More precisely, we are interested in its total variation during the whole
evolution
AJ(e) = J(4o0,€) — J(—o0,€)

With this respect, we consider (1.4) more as a scattering problem again than as an initial
value problem. All three problems are very clogely related. Let z = et be a rescaled time
for equations (1.1) and (1.4). Then equation (1.1) becomes with ¢(z) = ¢(t(z)) and =1

iei%iz—) = H(z)p(z) 1.7

On the other hand, defining u(z) = v(t(z)) and

o) = (;}L) 19
equation (1.4) is equivalent to
w5 — (e o) e@=(2) (19)

¥(z)
z) = 1.10
ola) = ( et 2) (110)

and setting ki = ¢, equation (1.2) becomes

) (E—-OV(x) é)“’(‘) (t.11)

Thus the three equations (1.7), (1.9) and (1.11) are particular cases of

Similarly, with

€ 222) _ Ae)o(a) (112)

where A(z) is a linear operator on H = C? with two distinct real eigenvalues. Qur purpose
is to study a scattering problem for (1.12) in the ”semi-classical” limit € tends to zero under
the hypothesis that A(z) is analytic, has two distinct real eigenvalues for all z € R and
well-defined limits when z — +oo. It is natural to express the solutions of (1.12) as linear

combinations of eigenvectors of A(z):

2 N e P
o(z) =Y ci(z)e eI 4y () (1.13)
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where A(z)yp;(z) = ej(z)@;(z). Our conditions on the behaviour of A(z) for large |z| will
imply that
zli'xgw ci(z) = ¢j(£o0) (1.14)
exist, so that the following scattering problem is well-defined:
Given ¢j(~00),j = 1,2 find ¢j(400),j = 1,2, i.e. find the matrix S defined by
<61(+OO)) = (Sn 5'12) (Cl("OO)) (1.15)
Cz(+00) Sa1 So2 Cz(+00) ’
There is a “canonical” choice of eigenvectors of A(z) specified (up to a global factor) by
the condition
doji(z
P,(z)-—c-:xg—) =0 (1.16)
where P;(z) is the eigenprojection corresponding to ej(z). In particular, it is immediate to
verify that for A(z) given by (1.9) or by (1.11) with the identification w?(z) = E — V(z),

the eigenvectors associated with ej(z) = (—1)w(z)

1 1
pi(z)=| V) | gy(z)=| V¥ (1.17)
—yw(z) +v/w(z)

satisfy (1.16), so that (1.13) gives the solutions of (1.9) and (1.11) as superpositions of the
two well-known WKB functions

e—i/efo' ei(z’)dtlgpj(z) (1.18)

When this choice of eigenvectors is made, a solution o(z) of (1.12) characterized by c;(~o0)
=1 and cz(—00) = 0,k # j, satisfies

aup fo(@) — e/l S g @) = o) (119)
Consequently,
S=1+0( (1.20)

The approximations (1.19) and (1.20) are true without assuming analyticity of A(z). On
the other hand, if analyticity holds, we can approximate the solutions of (1.12) and thus
determine the matrix S up to error terms O(exp(—#e™1)),x > 0 (see corollary 2.5)

Sij = aj(e)ﬂk,' + O(exp(—ms“')) (1.21)
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where |s;(€)| = O(1). These results are corollaries of the iterative scheme presented in
section 2, which will be used in section 3. Actually they are derived for A(z) a n x n

matrix whose eigenvalues are assumed to be real and non degenerate for any z € R.

The asymptotic formulae (1.21) imply in particular that the non-diagonal terms of §
are O(exp(—~xe~!)). These terms are important in applications because they are related,
for equation (1.1), to the probability of a quantum transition between the two levels of
the system or, in the case of equation (1.2), to the above barrier reflection coefficient
and, in the case of equation (1.4) to the quantity AJ(e). Under further hypotheses on
the analytic behaviour of the eigenvalues of A(z) we show that it is possible to find an
asymptotic expression for Sy, or Sy2 accurate up to exponentially small relative corrections.
The asymptotic formula is expressed by means of the complex degeneracy points of the
analytic continuations of eigenvalues e;(z). If there are p contributing degeneracy points,
the asymptotic expression reads (see theorem 3.7 and (2.43), (2.45))

?
Sy = "2:tz_‘w("")e"ﬁ’*("")'”1 +e ™0 (e""-’) , K,7>0 (1.22)
=0
where 8*(k,€) is O(1) and Imy*(k,€) = —7 + O(€?), k = 1,--+,p. It should be noted that
the error term is smaller by an exponentially decreasing factor than the least significant
term in the sum (1.22). This asymptotic formula is proven in section 3, which is the main
part of the paper. It is obtained by combination of our iterative scheme with a method
due to Froman, Frdman [1]. We give in section 4 explicit formulae in terms of A(z) for the
expressions 8*(k, ) and y*(k, ¢) appearing in (1.22). The consequences of our asymptotic
analysis of the matrix § for the applications mentioned above are formulated in section 4

as well.

Before ending this introduction let us make some very brief comments on the vast
literature devoted to the exponential decay of non diagonal elements of the matrix S. We
do not attempt at all to give an exhaustive account of it but we want to set in context
our work relative to the main results. We quote these results according to their content
and not chronologically. The reader may find further references in the books [2] and
[3]. The intermediate result (1.21) is not new, see [2], [3] and references therein, but we

nevertheless obtain a new derivation of it in section 2. For recent related results see also
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[4]. The asymptotic expression (1.22) generalizes however several rigorous results which
were obtained either in the case of equations (1.7) and (1.11) or in the study of AJ(e).
When one complex eigenvalue degeneracy only contributes, it is known since the works [1],
[5], [6] that

Sa1 = "0~ 1 O ()™, Imy<0 (1.23)

with @ = /2 for equation (1.11) and, provided A(z) is a real symmetric matrix, for
equation (1.7) as well. It was shown recently that when A(z) is a hermitian matrix in (1.7),
@ can take any complex value [7], see also [8]. A corresponding asymptotic expression for
AJ(€) in this situation can be found in [9], [10], [11]. See also [12] for more recent related
results. The expression (1.23) was then generalized in two ways for equations (1.7) and
(1.11). First, when several eigenvalue degeneracy points contribute to the asymptotics of
Sa21, it was proven using standard stretching and matching techniques that [5], [13]

Sn = X’: e BRI 4 O () elmre™ (1.24)

k=0

where 0 < a < 1 and Imy(k) = Imy < 0, Vk. The leading term of (1.24) gives rise
to the so called ”Stickelberg oscillations” as ¢ — 0, a phenomenon which is illustrated
numerically in [13]. Note also that the error term is O (e*) instead of O(e) which is a
common drawback of the method employed to get (1.24). Then, higher order corrections
to formula (1.23) were studied systematically in [14], [15] for equation (1.11) and in [16]
for equation (1.7):

Say = e7 @=L O (8H) ! YgeN, 7>0 (1.25)

where Imy?(e) = —1 + O(€?) and #9(e) = O(1). The iterative scheme of section 2 was
introduced in [16] to derive this expression in the adiabatic context. Thus the asymptotic
expression (1.22) captures all the features of these previous results and it holds for more
general situations than those described by the particular matrices in (1.7) and (1.11).
Moreover, it yields an expression accurate up to exponentially small corrections for the

logarithm of S, since we can write for p=1

InSz = _iltéﬁ +8%(e)+0 (8"“—‘) (1.26)

2. APPROXIMATE SOLUTION

We consider a slightly more general problem than in the introduction. Let H = C",
with the usual scalar product, and A(z),z € R, be a linear operator on H. We study the
equation (' = £)

tel'(z,20) = A(z)U(z, 29)
U(-’to, :1:0) =1 (21)
under the condition that A(z) is analytic in z and for each z the spectrum of A(z) consists

of n distinct real eigenvalues ei(z) < ... < en(z), with corresponding eigenprojections

Py(z),..., Pa(z). Note that the evolution U is not unitary in general.

In order to find approximate solution of (2.1) we first consider another problem. Let %(z)

be a solution of
ief/(z) = A(z)y(=) (2.2)

¥ Q(z0) is a projection such that Q(zo)¥(zo) = ¥(ze), then for any z we have a projection
Q(z) such that Q(z)¥(z) = ¢(z). Indeed, if U(z,zo) is the matrix solution of (2.2) such
that U(zg,%¢) = 1, we take

Q(z) = U(z, 20)Q(zo)U (29, z) (2.3)
The projection Q(z) is a solution of

i€Q'(z) = [A(z), Q(z)] (24)

with the notation [4, B] = AB — BA. Let us suppose that at 7 we have a complete set
of projections Q;(z0), i.e. Q;(20)Qx(z0) = Q(20)jx, 3-; @j(z0) = 1. Then the Q;()
form a complete set of projections as well and using the fact that for any projection P(z)

we have P(z)P'(z)P(z) = 0, it follows that

Q(z) = [Z Qn(2)Qum(2), Q4(2) (2.5)
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http:e1m"(e-(1.24

Therefore we have for all j
[A(z) —ieY_ Qn(z)Qn(2),Qj(z)| =0 (2:6)

We look for approximate solutions of this equation. Since [A(z), Pj(z)] = 0, the eigenpro-

jections Pj(z) are approximate solutions of (2.6) up to an error term O(¢). Let
Ay (z) == A(z) — ieKo(z) 2.7)

with
Ko(2) =) Pr()Pm(2) (2:8)

By perturbation theory, if ¢ is small enough, 4;(z) has n distinct eigenvalues e; ;(z) with
corresponding eigenprojections Py j(z),7 = 1,...,n, such that e; j(z) = ej(z) + O(¢*),
and Py j(z) = Pj(z) + O(¢). Indeed, e, ;(z) = e;(z) — ietr (Pj(z)Ko(z)) + O(¢?) and
Pj(z)Ko(z)Pj(z) = 0. The projections P;,j(z) are approximate solutions of (2.6) up to an

error term O(€?) since [41(z), Py,j(z)] = 0.

Let
Ki(z) =Y P| n(2)Pm(2) (2.9)

and
Ap(z) 1= A(z) — ieK (z) (2.10)

Again, for € small enough, Az(z) has n distinct eigenvalues ez j(z) with corresponding
eigenprojections P j(z). Since Az(z) = A;(z) + ie(Ko(z) — K;(z)) and Ky(z) — Ky(z) =
O(e), P, ;(z) is an approximate solution of (2.6) up to an error term O(e®). We can iterate
this procedure. At the ¢** iteration we have approximate solutions P, j(z), up to order

term O(e71)), which are eigenprojections of

Ay(z) = A(z) — ieK 41 () (2.11)
with
Kgy(2) = E qu—l,m("c)Pq—l,m(x) (2.12)
8

We now construct approximate solutions for (2.1). Let Qm(z) be a complete smooth family
of projections of H,Qm(x)Q,.(a:) = 6mn@m(z) and ¥, Qm(z) = 1. We say that an evo-
lution V(z,2'), (V(z',2') = 1, V(z2,2,)V(z1,20) = V(z2, 29)), follows the decomposition
of H,

H =0 Qm(x)H
if for all z,2'
Qu(z)V(z,2') = V(z,2")Qm(z") (2.13)

1t is known (see [17] or [18]) that a smooth evolution with property (2.13) is solution of
an equation of the type

V'(2,20) = (B(z) + ) Qm(2)@m(2))V (2, 20), V(zo0,z0)=1 (2.14)

where B(z) is such that
[B(z),@m(2)] =0 VYm (2.18)

The idea is to construct approximate solutions of (2.1) by choosing evolutions which follow

the decomposition of H into
H =P Pom(z)H (2.16)

Therefore we define U,(z,z¢) as the solution of
iely(z,20) = (A4(2) + 1Ky (2))Uy(2,20), Ug(zo,T0) =1 (2.17)

The next lemma which is taken from [19] gives the main estimate which we need in order
to control the error term for the approximate solution Uy(z, 7). This lemma is also used

in section 3.

Forany z € Cand r > 0 let D(z;7) = {2 € C: |z’ — 2| < r} and 8D(z;r) = {z' € C:
Je' = z| =r}. Given 2z € C and ry > 0 let A(2) be analytic in D(20;r0) with a spectrum
consisting of n distinct eigenvalues e;(z) with corresponding eigenprojection P;(2) for all
z € D(z0;70). We define A,(z), Ky(2), Py,;(z) and e,,j(2) as above by the iteration method
based on (2.11) and (2.12). We set R(z,)) = (4(z) — A1)~L.
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Lemma 2.1

Let z5 € C,ro > 0 and A(2) be defined on D(zp;ro) with the above properties. Let
71 > 0 and D; := D(ej(20); 2r1) be n disjoint discs in C, j = 1,...,n, such that for all
z € D(z0370)

ej(2) € D(ej(z0);m1)
Let
a=a(z):=sup sup sup [|R(z,}A)|[<oo
§ A€8D; 2€D(zo;r0)
and

b=dz):= sup )“Ko(z)" <o

2€D( 20570
Then there exist € = €*(a,b) > 0 and ¢ = ¢(ro,71,6,b) < 00 such that

1K4(2) - Kg1(2)] < betet!

and
[IKo(2)| < 2B

for all z € D(zg;mp), all0 < e < €*, and all ¢ < ¢*(e) = [2], where [y] is the integer part

ece

of y and e is the basis of the neperian logarithm.

Remark: The proof of this lemma is given in [19] for the case P, + P, = 1. However, it
is not difficult to extend it for the case 3.7, Pj=1, n > 2.

Corollary 2.2

Let the hypothesis of lemma 2.1 be satisfied. Then for all ¢ < ¢*

e4,i(2) = ej(2) + O(be?)

Proof : Since Pj(2)Ko(z)P;j(z) = 0 the statement is true for ¢ = 1. For ¢ > 2 we have

g-1 q*
[4g(2) = () S € Y [ Km(2) — Kmr(2)| S€b Y e™c™m! = O(e?h)  (2.18)
m=1 m==1
10

and therefore the statement follows from perturbation theory. D

We now apply lemma 2.1 and its corollary 2.2 in order to control the norm of Uy(z, o).
It is crucial that U, follows the decomposition of H into €,,5, Pa,m(2)H.

Corollary 2.3

Let rg > 0 be such that for each = € R the hypotheses of lemma 2.1 are satisfied on
D(z; 7o) with constants ry and a independent of z and with constants b(x) < b < co. Then

)}

fore<e andg<g¢*

U@ 2]l < exp {o (

l Ka')ds'

Proof : We introduce the evolution Wy(z, zo),
W;(-"'Jo) = Kq(l')wq(fyxo); Wq(l‘o,-’fo) =1 (219)
From lemma 2.1 we have

Wy(z, 20l < exp (z

L Ka')dz' ) (2.20)

Let us choose n eigenvectors g, j(0) of A,(0) at z = 0. The vectors
4,i(2) = Wy(2,0)p,j(0), j=1,...,n (2.21)

are eigenvectors of A,(z) since Wy(z,0) interpolates between @,(0) and Q,(z) (see (2.13)
and (2.14)) and by definition

P i(z)pyi(z) =0, j=1,...,n (2.22)

Let us write Uy(z,20) := W,(z,20)®,(z,20). The unknown operator ®,(z,zo) is the

solution of
ie®(z, z0) = Wy(20, 2)Ag(2)Wy(2, 20)®y(2, 20)
®4(z0,20) =1 (2.23)

11



The operator Wy(zo,2)A4(z)W,(z,z0) has eigenvalues eg ;(z) with eigenvectors pg, (o).
Therefore

z
‘b'l(z'r To )591,!(3'0) = €Xp (—ie-l / eq,i(xl)dz') ‘qu(wo)v i=1l...,n (2'24)

From corollary 2.2 and the reality of ¢;(2),

!Im ( /, o e,,,,(z')dz') <O(é) /: : b(:v')dz'! (2.25)

hence
104Gz, < exp {2+ 000 | [ biarez} (2:26)
=]

Note that in the above proof we have factorized the evolution Uy(z, zo) as the product
Ug(z,30) = Wy(z, 20)®4(2, o) (2.27)

where &, only is singular in the limit ¢ — 0 and [|®,]| = O(1). Since in our simple case &,

is known explicitly, the solution ¥(z) of

ief!(z) = (Ag(z) +ieKy(2))p(2)
(o) = %o (2.28)

can be written as

P(z) = Uy(z, 20)1(0)
= Ecq’j(zo)exp (-—i/e/: e,',-(z')dz') ¥q,5(%) (2.29)

j21

where the ¢; j(zo) are defined by the identity

Yo =) cq,i(0)p,s(%0) (2.30)

§21
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Theorem 2.4

Let r > 0 and g > 0 and let A(z) be analytic in Q, = {z=z +iy:z,y €R,|y| <r}.
Let the specirum of A(zx) consist of n real distinct eigenvalues ej(z),j = 1,...,n, such that
forallzeR

lex(z) - ej(z)| 29, k#j
Let
IKo(2)ll = |} P}(=)P;(=)|

izt
be an integrable function of x which tends to zero as || — 0. Then there ezist constants

€ > 0,0 <00,k > 0 and an approzimate solution V(z,zo) of the equation
iel'(z,z¢) = A(z)U(z, z0)
U(zo, 20) =1

such that
sup |[U(z,20) — V(z,20)]| € C' exp(—re™)
€R

z,xo

Remarks :
i) Neither U nor V are unitary in general, however both their norms are O(1) as ¢ — 0.

it) Note that lim, 4o, A(z) need not exist, since we only require that lim; .40 P;(Z) =
Pj(+o00) exists.

Proof : By standard arguments of perturbation theory we can verify the hypothesis of
Corollary 2.3 with 5(z) integrable on R (see e.g. section 2 of [20]). We set

V(2,20) = Ugs (2, 20) (2:31)
with ¢g*(e) given in lemma 2.1. The operator R(z) := V(z¢,z)U(z,2,) is solution of

ieR'(z) = V (2o, 2)(—Ag+(2) — ieK(z) + A(z))V (2, %0) R(z)
= ieV (2o, 2)(Kge-1(z) — Ko+ (2))V (2, 20)R(z) (2.32)

13



From the integrability of 5(z) and lemma 2.1 we have
IR(z) - 1]| < C"(ce)*" g"
< C”(ceqt)q"
< eC" exp(—re™?) (2.33)
where x = . Hence
IU(z,20) — V(z,20)ll < [V(z,zo)ll| R(z) — 1|
< C' exp(—xe™!) (2.34)
[}

We assume that the hypotheses of theorem 2.4 are satisfied and we determine the
matrix S up to an error term O(e~*¢""). Since ||Ko(z)|| and thus 1 Kq-1(z)|| tend to zero

at infinity in an integrable way (see lemma 2.1 and corollary 2.3),

lim_[[Ay(e) - A =0, for all ¢ < g (2.35)
and
zli.?m Wz, z0) = Wy(z00,20), for all ¢ < ¢* (2.36)

Let us choose a point z¢ and a set of eigenvectors p;(zo) of A(zo),j = 1,...,n. Using
Wo(z,z0) we define a set of eigenvectors of A(z) for all z,

vi(z) = Wo(z, z0)pj(20) (2.37)
Let v be a solution of
ie'(z) = Ale)W(z) (2.38)
and let us write ¢ as
¥z)= Y ci@)e Lot (2.39)
Y

Since || Ko(z)|| is integrable, lim,_, 1o c;(z) exists (see e.g. lemma 3.2 below).
Let us now define a set of eigenvectors of Ag«(z) by choosing

#5(—00) = pgr,j(—00) = pj(—00) (2.40)
14

and by setting
i(z) = Wys(z,—00)pj(—00) (2.41)

We can also write ¥(z) as (e} = egv ;)

-—‘/ef' ef(z')dz'
¥(@) =3 eja)e ™S
i1
N —ife f‘ ej(z')dzr’ —ife f' (ef(z')—e;(z'))ds’
= ch(z)e o € 0 wi(z) (2.42)
i>1

w3(z)

From (2.39), (2.42) and lim_,_, || Py» j(2) — Pj(2)|| = 0 we have
. +ije [* ej(z')ds’
Jim ¢t SO b2y 0) = ¢ (—oo)ps(~o0)
L I GCpRTCh T &4 (—oo)ip;(~00) (243)
On the other hand
;(00) = Wes (00, —00)p;(—00)
= W (00, —00)Wo(—00, 2o )p (o)
= Wq" (°°1 ”OO)WO(“OO’ m)ﬂ’}("'oo)
= e~ p;(+0) (2.44)

the last equality defining the factor ¢=*# where B} is in general complex. Thus, similarly,
i oo Yy (2'))dz’ g%
c-'/‘ Lo (& (=) —es (=) e C;(OO) = ¢;(c0) (245)

Let ¢ be a solution of (2.38) characterized by c;(—co) = 1 and cx(—o0) = 0 for k # j
which we decompose as in (2.42). From theorem 2.4 and (2.29) an approximate solution

of $(z) is obtained by replacing cj(z) by c}(zo) in (2.42), and we have
sup le}(z) = j(zo)| = O(e™7), j=1,...,n (2.46)
z€

Therefore
ci(+o0) = 0(e"""), k#j (2.47)
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and
. +00 . wp ¢ ¢ -
c,(oo)=e-":’e""f-~ @Er-a N o -net (2.48)

The matrix S defined in the introduction is then given by
Corollary 2.5
—igp e [T G N ety

Skj=¢e

Remark: It should be recalled that we did not write explicitly the e-dependence of €} or
Py j, but in corollary 2.5 we have 8} = S} (e) and ej(z') = el(z',€).
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3. ASYMPTOTICS OF THE NON DIAGONAL PART OF THE MATRIX §

3.1 Stokes lines

From now on, we deal with the case H = C?, and we compute in this section an

asymptotic expression for Sz;, which, in the simplest case, reads
Sp = e—i0"(6) g—ir* ()™ (1 +0 (e“"‘“l)) (3.1)

The idea is to combine our iterative scheme (2.11), (2.12) with an analysis in the complex
plane by a method due to Fréman, Frdman [1]. In order to perform the analysis we need
some precise information about the analytic extension of A(z) into the complex plane. In
particular, we must control the Stokes lines of the problem (condition II below). Thus, in
this subsection we introduce the notion of Stokes lines and give the conditions which are

needed in order to make use of the method of [1] in the next subsection.

Without restricting the generality we impose trA(z) = 0. Thus we have A(z)? =
p(2)1, this identity defining the function p(z). The eigenvalues of A(z) are then e;(z) =
—ez(z) and ez(z) = 1/p(z), with vI=1.

The corresponding eigenprojections are given by

Pj(z) = % (1 + A(z)) (3.2)

ej(z)

On R the eigenvalues are real and distinct and we suppose that there exists g > 0 with
p(z) > g, forall z € R.

Let  be a domain of C, symmetric with respect the real axis, containing R, on which
A has an analytic extension. Since p is real on R we have for any z € 2, p(%) = o(2).
The analysis of S3; is done by working in the upper half-plane only, whereas the analysis
of $12 is performed in the lower half-plane, as we shall see below. The eigenvalues and
eigenprojections also have analytic extensions in ©, but it is clear that the zeros of p in &
are singular points for these objects. Some of these singularities play a dominant role in
the determination of Sji, j # k.
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As in section 2 we introduce new operators A4(z) for all z € Q\{z' : p(z') = 0} by the

iteration scheme (2.11) and (2.12). In our case we can write

Ko(z) = Pi(z)Pi(2) + Py(2)P(2)

= (Pl(a), Pi(2)] = Z;%“) (4'(2), A(2)] (33)

where ' = £ and we compute for all ¢

Ay(z) = Az) — i€ [Py 1(2), Py-1,(2)]

= ()~ o Wiea(5) A ()] (3.4)

Indeed, we have irAg(z) = 0, because the trace of a commutator is zero. Thus pg(2) is
defined by A%(z) = pg(2)L. Hence the eigenvalues eq,;(z) = (1Y /py(z) and Py 4(z)
is given by an expression similar to (3.2). Equation (3.4) clearly shows that although
the eigenvectors and eigenprojections are multivalued in  when we perform the analytic
continuation, this is not the case for Ay(z). In the above construction we must avoid the
zeros of py(z) for¢' <q—1.

Condition I:

The set X = {z € Q: p(z) = 0} is a finite set.

Let v > 0 such that D(zj;r2) N D(2k5r2) =0 for all zj 3 2, € X and let

a=0a\ | D(zira) (3.5)
5 €X

There ezist constants g' > 0 and C' < co such that uniformly on )

lo(2) 2 ¢', |IPi(2)ll < €' (3.6)

Remark: As we shall see in condition II and III below, we need satisfy (3.6) on a subset
of & only.
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Condition I allows to verify the hypotheses of lemma 2.1 uniformly on €. Moreover
the operators A,(z) are holomorphic on §2, provided ¢ is small enough. Indeed for any
e<e and ¢ < ¢*

pu(2) = #z) + O(b€%) (3.7)
(The proof is the same as that of corollary 2.2) We define eigenvectors of Ap(z),2 € Q,
by the method of section 2: Let ¢}(0) be an eigenvector of A4«(0) for the eigenvalue €;(0),

j = 1,2. Let W,(z|a) be the analytic continuation of W,(z,0) along a path « in {1, starting
at 0 and ending at 2, where

Wi(z,0) = Kp«(z)W.(2,0), z€R
WQ(0,0) = 1 (3.8)

The operator W, (z|a) is a (local) solution of
W(zla) = Kg(2)Wa(2]a) (3.9)

The main property of W, (z|a), which follows from (3.9) (see (2.13) and (2.14)), is that

the vectors
¢j(zla) = Wi(z|2)pj(0), j=1,2 (3.10)

are two eigenvectors of Ag«(z), which are obtained by analytical continuation of ¢}(0)
along a. The vector pj(z]a) is an eigenvector for the eigenvalue ej(z|a), which is the

analytic continuation of }(0) along a.

Lemma 3.1

Let z; be a simple zero of p in Q and let n be a simple closed path around D(zj;72),
counterclockwise oriented and encircling no other disc D(zx;r2) with p(zx) = 0. Then for

€ small enough,
1) the total variation of the argument of py along 7 is 2.

2) if n starts at z = 0, then there ezist two complez numbers 65, j #k k=12
such that

W.(0ln)ps(0) := enp}(0), j#k

19



and
eiﬂfi eia}'. =-1, j ,7_£ k

Proof :

1) We can write

pgr(2) = p(2)9(2) (3.11)
with |g(z) — 1] < 1 for all z € . Thus

1 (i@ 1 [, 1 @y,
0=3m w 9(2) dz) 2m'/»ﬁq*(z)dz 21ri/,,p(2)d

_ _1_-__ p',,t(z)
T 2mi J, pp(2)

dz — 1 (3.12)

2) <,a;-’(0) is an eigenvector of Ay+(0) for the eigenvalue €j(0). After analytical continuation
e3(0n) is an eigenvalue of Ag«(0) and by 1) it is equal to —ej(0) = €;(0),k # j.
Thus ¢%(0ln) = Wa(0n)p;(0) is an eigenvector for the eigenvalue e}(0) and therefore
proportional to ¢3(0). Finally the last identity is a consequence of detW,(zla) =1
since trKg(2) = 0. o

Let ¥ be a simply connected domain in ﬁ, which contains the real axis. In T the

analytical continuations of €j(z) and j(z) are path-independent so that we write e}(2) -

instead of €}(z|a) and so on. Let 1(z) be a solution of
ieY'(z) = A(2)¢(2), z€ L (3.13)

We decompose $(z) along the eigenfunctions of Apx(2),

2 5 . ,
$(@) =3 () S T (3.14)

i=1

and we derive a differential equation for the unknown ccefficients c}(z) using the identities

Alz) = Aqt (2)+ iean._l (z) (3.15)
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and

@} (2) = Ko (2)}(2) (3.16)
We obtain 2
' (z) = kgl exp (i€ Afu(2)) aju(2)ei(2) (3.17)
where
Al(z) = /0 " (e3(") — eb()) de” (3.18)
e ont = - SHOPOEA) Y02 1

We have a good control of a;(z) using lemma 2.1 but the factor exp (ée‘lA;k(z)) may

cause troubles when we consider the limit ¢ — 0 because ImA},(z) # 0. Since
e;(z) = ej(z) + O(%b) (3.20)
we must actually control the factor exp (i€~ Aji(z)) where
Aju(z) = fo (ei(2") — ex(s)) d2' (3.21)
The function Ajg is‘equal, up to a factor £2, to the function

z
3(2) = / Nrers (3.22)
3
which is naturally associated with the quadratic differential p(2)d®z.

Definition : A Stokes line a is a curve in Q\{z : p(z) = 0} such that
1) Im®(z) is a constant along

2) o is mezimal with property 1)

3) one of the boundary points of a at least is a zero of p(z).

There are different terminologies in the literature. Sometimes our Stokes lines are called

anti-Stokes lines and vice-versa (see below). A Stokes line is always a simple curve and in
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our case it is contained either in the upper half-plane or in the lower half-plane. Near a

simple zero zg of p(z) the level-lines of Im®(z) are homeomorphic to the level-lines
Imz*/* = constant (3.23)

around z = 0. For any simple zero zg of p(z) there are exactly three Stokes lines which

have zg as boundary point. We call them the Stokes lines of 2. (See figure 1)

Figure 1: The level lines of ®(2) near z,.

Condition IT

A) There ezists in the upper half-plane a nonemptly finite set of simple zeros of p(z),
{21,...,2p} with the properties (see figure 2):

1) there ezists a Stokes line l;, parametrized by (t;,;4,), such that
limeg () = 2i, lmy g, i(t)=2ziqa, i=1,...,p~1

2) there ezists a Stokes line ly, parametrized by (—o00,t,), such that
limy g, lo(t) = 21, limyes—oo Relg(t) = —0c0, limg—._oo Imly(t) = a~

3) there ezists a Stokes line l,, parametrized by (t,,00), such that
lime_g, [,(t) = 25, lim¢—oo Rely(t) = 00, lLimy_.oo Imly(t) = a*.

B) Along any vertical line Rez = z going from the real azis to ly or I,, Im®(2) is strictly

monotone, provided |z| is large enough.

Remark: Condition II simply describes the situation illustrated in figure 2.
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Figure 2: The Stokes lines of condition II.

In our case, if condition II is satisfied then an analogous condition holds in the lower
half-plane. It follows from theorem 2.1 in [7] that the region A in the upper half-plane
between the real axis and the closure of the Stokes lines I, ..., I, is a simply connected
region in § which does not contain zeros of p in its interior. In [7], the part B of condition
II follows from the existence of limiting matrices when ¢ tends to infinity. As already
noticed, such limiting matrices are not supposed to exist here. Let r > 0 and let

Lr={z€C | dist(z,A)<r and |z—-z{2r, i=1,...,p} (3.24)

Condition III

There ezists r > ry, sufficiently small so that T, is a simply connected region in Q con-

taining the real azis and such that:

For any zero z;,s = 1,...,p, the Stokes lines of z; in the disc D(z;;r) intersect the boundary

of the disc at a single point, D(z;,r) N D(z;,r) = @ (See figure $)

The function
Me)= mup |[Ko(e +iy)l (3.25)

#+ig€Tr

tends io zero at infinity and is integrable on R.

23



: E Z] 22 gt ene m
X Z3 Zp
r
—
O = D(zy,r) O =D(zy,r)

Figure 3: The set I, of condition IIL

R

Remark : As we already mentioned, we need to verify condition I on £, only and not on
§2 since we shall integrate the differential equation (3.17) along a path in T,.

3.2 Froman-Fréman’s method

We suppose that conditions I to III are satisfied and we study equation (3.17) on
Z,. The hypotheses of lemma 2.1 are thus verified uniformly on ¥, so that there exists
a ¢* = ¢*(¢) independent of z € I, provided € is small enough. Let us rewrite equation
(3.17) as a Volterra equation

x z
ci(z) = ci(z0) + / an(z')ej(2)dz" + / a12(2)e’ Al ea () dz! (3.26)
%0 zo
and
x z . N
() = i)+ [ an(geN + [ (@ SO @
29 o
Lemma 3.2

If condition I to III hold then lim; 4o cj(2) = cj(100) ezist and

Jim  mup [6)(e+ i) - ¢j(oo)| =0
.+‘I~Enr
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Proof : By conditions I to III we get from (3.19) and lemma 2.1, as in section 2,

sup lax;(z +iy)| = b0 (™) (3.28)
o+ig€T,
andforz =z +iye X,
Ai(2) = Ajx(2) + H2)O(?) (3.29)

Hence the limits lim;..400 c;(:t:) exist on the real axis since A is real there. Then for
all z = z 4 iy on a vertical segment joining R and Iy or I, we can control [ImA;i(2)l,
provided |z| is large enough, by using part B of condition II. Indeed, for such z, |ImA;x(2)|
is bounded by twice the value of |[Im®(z)| on the Stokes lines. From these estimates and
(3.28) we can deduce easily lemma 3.2 using (3.26) and (3.27). o

Instead of integrating (3.17) along the real axis we integrate the equation along the
Stokes lines ly,...,l,, as long as we are at a distance larger than r from a zero of p.
Otherwise we integrate the equation along the boundaries of the discs D(zi;7), staying
always in I, (see figure 4).

Figure 4: The path of integration close to zi.

Let z and zo be two points of T, and let T(z, zo) be the matrix-solution of (3.17) with
T(20,20) = 1. We can find Tz, zo) by integrating the equation along any path in Z, going
from zg to z. However because of the factors exp (i~ A;x(z)) we have a good control of
the equation only on particular paths. For instance, the Stokes lines are “good” paths.
The main work consists in controlling the equation along the parts of the boundaries of

the discs D(z;;r) when we pass from one Stokes line to the next one.
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Lemma 3.3

Let z and zp € I; and let o be a path, parametrized by [so,31], going from z o 2,

and such that s — ImAg3(a(s)) is non decreasing on [sq,5,]. Then

T(z,20) =
01 +0 (e—“—l) e—¢ HImAL ()0 (e"’“"l)

i3

* i 1+40(e™ ) +
et~ Hmah ()0 (e_'“ l) 0 (c—zue") ec'x((imA;z()’)‘l"'At’(“))

Proof : We consider (3.26) and (3.27) along a with ¢j(2) = 1 and ¢}(z0) = 0 and we

introduce new variables
Xy(s) = ch(al(s)), Xa(s) = €™ AhlaNci(a(s)) (3.30)
Writing bjx(s) = ajk(a(s))%ﬂ we get

X =1+ [ (! + [ b Xa(s')de! (3.31)

Xz(s) = /‘ bza(sl)eie'l(A{,(.)-A:’(.p))xz(3')d8’
0
* / o (¢)e¢ (BB () (3.32)
20

In (3.32) s' < s and Aj;(s") = —A},(s'). Using (3.29) and the hypothesis on the path we

have

I e (B1:(0-81,(0))

exp (—¢™ (ImAiy(s) — Im(A1(s")) + O(¢)) = O (exp(O(e))) (3.33)
Let || X;l| = sup,, <,<,, [ Xi(s)]. We get from (3.31), (3.32) and (3.33), using (3.28),

15l £ 140 (77) (1) + Xl
1%zl < 0 (=) (1Xall + 1 Xall) (3.34)
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go that for e small enough ||X;[f + [|X2]| < 2. Using this a priori estimate in (3.31) and
(3.32) we have

sup |Xi(s)—1|=0 (e-nf") (3.35)
80K
and
—re!
sup | Xz(s) =0 (e ) (3.36)
805258
Equations (3.35) and (3.36) allow to determine the first column of T(z, zo),
140 (e~ Ty2(z, z0)
Toz)= | oy, =) (3.37)
et mAu(l)O (e-xe ) ng(z, 30)

Since lay;(2) + ax(z)| =0 (e"‘"l), we get from the Liouville formula

detT(z,z) = exp (O (e"‘"l))

=140 (e—m“) (3.38)

Moreover T-(z,2) = T(z, z), hence
_ 1 Tzz(z,zl)) —Tn(z, 20)) 3.39
T(z0,2) = detT(z, ) (—Tzl(zﬂo) Tu(2, 20) (8.39)

The reverse path a~! from z to z, is such that s — ImAgz(e~!(s)) is non increasing from
8y to s9. If ¢j(2) = 0 and ¢}(z) = 1 then we can estimate c}(zg) and ¢3(zo) as above, in-
troducing new variables Y;(s) = cj(a~!(s)) and Yj(s) = e’ 851 (a7 ) ci(a7(s)). Thus
we can estimate the second column of (3.39). The coefficient T3(2, z0) is estimated using

detT(z,20) =1+ 0 (e""‘_l). o
A Stokes line is a good path because ImA jx(z) remains constant along this line. We

have thus the immediate

Corollary 3.4

If there is a Stokes line going from zy to z, then

1+0(e~" 0 (=) =< ImAL()
T(z,29) = (O (e"‘f“)(ee"fm?ltz(:) ( 1+0)(e_“_‘) )
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We now come to the difficult part of the method. We must control the matrix solution
T(z, zy) along a portion of dD(z;,r) which is not a good path in the sense that ImA3(2) is
not monotone. We must establish two lemmas. The first lemma gives a monodromy matrix
around the singularity z; and easily proven. The second and main lemma is more difficult
to establish. Its proof is based on lemmas 3.3 and 3.5 and on a clever use of elementary
identities between the coefficients of products of 2 x 2 matrices and their inverses [1].
This method has a definite advantage on the use of stretching and matching techniques
to compute asymptotics in the sense that it allows to obtain better estimates on the
remainders (see (1.19) in the introduction). However it can only be used for simple zeros
of the function p(z) whereas the stretching and matching method works in more general
situations [21)].

‘We consider now the neighborhood of a zero of p(z), say z1. Let § be the boundary
of the disc D(z;r) counterclockwise oriented, going from (; to (s as in figure 5. On this
figure the solid lines are the Stokes lines of z; and the dashed lines are the anti-Stokes
lines of 21, i.e. the lines along which ReA;3(z) = ReAjz(z;). The arrows indicate the
directions in which ImA;4(2) is non decreasing along the boundary of D(z,;r).

Figure 5: The points {j, j = 0,...,6 on the Stokes and anti-Stokes lines.

We compute the matrix 7({s, (o) along 6.
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Lemma 3.5

i/ef e _ior
T, )= ..+ e TneTtn
(Go:6o) (e‘/cfv €3 p—i8], 0

Proof : Let us consider ¢(z) at z = (g, the solution which we have obtained by integration
along the Stokes line ; up to (,. We have
3 —ife <o x
W) =3 (o)™ 50360 (3.40)
j=1
where in (3.40) the integration from 0 to (o is along « as in figure 6 and, similarly, ¢}({o)
is the analytical continuation of ¥;(0) along c.

Figure 6: The paths a, § and 7.

We make the analytical continuation of (3.40) along § up to {s. Since y(z) is holo-
morphic at 21 we have ¥((s) = ¥({y) and we can write
2 : Co & . *
P(o) = Z c;(ca)e—t/ej; 0 e} e—-n/tf‘ ¢} ‘P;(Cu) (3.41)
=1
where now ¢}({s) is the analytical continuation of #3(0) along o and then along 6. But
this is the same as the analytical continuation of ¢}(0) along 5 and then along a as on
figure 6. By lemma 3.1 we have therefore

0} (Ge) = it (Go) (3.42)
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Similarly we have

[+ [e=[a+[a (3.43)
a § n a

Hence, by comparing (3.40) and (3.41),

Soe T = ), K (3.44)
a
Lemmasa 3.6
For € small enough
1+ 0 (e~*/¢ O (e="€) e=¢ " ImAKo)
T ) = (e“""f-’?:w:a((ucz(e—~/=)) ( 1+)0(e""/‘) )

Proof : The following computations will involve expressions like e~! ImA},((,) for v =

0,2,4,6. These expressions are almost equal. Indeed
Aji(2) = Aja(2) + O(¢) (3.45)
and for this choice of {, we have
Imlga() = Imbia(z1), v=0,2,4,6 (3.46)

since these points are on the Stokes lines of z;. Hence, in particular,

et mALG) o (ett“ImAu(n)) , v=0,2,4,6 (3.47)
Finally note that
[i=[a+0@) = duta) +o(e) (3.48)
n vr
Let us denote the cceflicient jk of the matrix T'((a, () by t;1(a, 8) and consider the identity
T(Co+1560) = T(Cot1, ot 2) T (G2, Co) (3.49)
Using
detT(Gs (o) = tua (¥ )tm(p ) — o, ¥ )ma(mw) =140 (') (3.50)
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we obtain for v = 0,2 and 4

tu(ll +1, V) tlZ(V +1,v+ 2)t21(u +2 l/) (3.51)

t U+2, = —
u( V) tu(v+1L,v+2) thuw+1,v+2)

taa(v+2,v) = W (1 +0 (e_,“-x))

tiz(v+1,v)

(T l’u)in(u+2, v) (3.52)

tia(v + 2,0) = tio(v +1,v) _t12(v+1,v+2)(1 O(e"“‘q))

(LD G+ 1)
tia(v+ L)t (v + 1,04+ 2),

i i 3.53

tll(v+1,u)t,1(u+1,v+2) a(v+2,v) ( )

These identities express, in particular, the elements of the matrix T'({z, (o) as functions of
the element #3,(2, 0) and other matrix elements which we can control by means of lemma
3.3: ,
t(2,00=1+0 (e“"“l) +0 (e"“_l) =< Imbua(aly,, (2,0) (3.54)

(0 =140 () 40 (7T ) Inanly 2,0 (3.59)
412(2,0) =0 (e"""l) e=¢ Imau(a) 4 (O (e"“'t) e:"""l‘r"m“’("))2 £21(2,0) (3.56)

We are thus lead to the determination of #;,(2,0). Note that these estimates are true for
the elements of T'((s,(y) if we replace the arguments (2,0) by (6,4). Consider now the
identity

T(Ca, ()T (Car Co)T(Cor o) = T(Co, GV T (G Go) (3.57)

Using lemma 3.1 and e} = —e} to compute T((o,{s) = T((s,{0)™", we obtain for the
ceefficient 22 of (3.57)

e ge—t *
t21(3, 2)&1(2, O)C‘G“Cu f" “ +
t22(3, 2)t21(2, O)Cw:’ e“—l 'r! C: =
g1 (31 4)tl2(41 6) + t22(31 4)t22 (47 6) (358)

and for the ccefficient 21 of (3.57)
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e ie=t [ oo
tzl (3, 2)t12(2, 0)6'0‘;l 6" j:’ “ +
tg2 (3, 2)t22(2, 0)6“:1 eg,-l "; 4 =
t21(3,4)t11(4,6) + t22(3,4)t21(4,6) (8.59)

Lemma 3.3, (3.39) and (3.47) yield

tn(3,2) = - (2,3) (140 (™)) =0 (=) e Imant)  (3.60)
(3,49 = -tm(43) (1+0(c 7)) =0 (e""“) e HmAnG)  (361)
t22(3,4) = t11(4,3) (140 (e-“")) =1+0 (e'““) (3.62)

t22(3,2) = tu(2,8) (1+0 (™)) =1+ 0 (e-““) (3.63)
whereas from (3.39) and the remark following (3.56) we have
t12(4,6) = 0O (c""‘_‘) e—¢ " HmBa(a) + (o (e-—se") c~c"ImAu(n))2t21(6,4) (3.64)

and
t22(4,6) =140 (e77) 40 (7" ) &= ImButeny 6,4) (3.65)

Now we use (3.58) and the above results to get

ca%  det * -
t21(2,0)e’oﬂcu L =140 (c“"‘ 1)

+0 (c-':!u“) e—-e"ImAu(n)tn(z, 0)+ 0 (e-—ne") e_'-llmA"(“)tn(ﬁ, 4) (366)

Hence we see that we have to estimate £3)(6,4) as well to determine ¢5;(2,0). This is done
by performing a similar computation: We estimate ¢,;(4,6) as a function of ¢3:(6,4) as
above and we consider equation (3.59). After multiplication by e=ithe J. +* and using

Im / et = —Im f ot (3.67)
n n
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we obtain another equation for t5,(6,4) and ¢5:(2,0)
i tzl(ﬁ, 4)!2—“;16_“_1 j; e‘; =1 + 0 (C-“‘l)
+0 (6—2:«") e——e"!mA;g(:;)t21(6,4) +0 (e-—sc") e—e"‘ImAu(n)tn(z, 0) (3.68)

Therefore, from (3.66) and (3.68) we deduce the a priori estimates

c-e-i[mAﬂ(xl)!tn(z, 0) = 0(1) (3.69)
e~ ImAn(n), (6, 4)] = O(1) (3.70)
which finally yield
£1(2,0) = =0t 7" oot (1 +0 (e“"“')) (3.1)
u]

This lemma and corollary 3.4 allow to obtain an asymptotic expression for In S
beyond all orders by integrating (3.17) from —oo to +oo along the paths described above:
Let us recall that we have

Im&Ay(z1) = ImAga(z), i=1,...,p (3.72)
Thus, along the Stokes lines we use the matrices given by corollary 3.4 and which we can
write
140 (e O (e—ret) ¢ Imb1a(a1)
T:=T(z,29) = » ( - ) ( ) - (38.73)
0] (e““ )e' Im&Aya(n) 1+0 (e""‘ )

On the other hand when we go from one Stokes line [;_; to the next one I; we use the

matrix given by lemma 3.6

140 e-—n" 0 (e—nc") e—-e"ImAufn)
Sj = —ifef e ( ) . » (3.74)
e uj e—t‘{',(,)) (1 +0 (e—ne )) 1+0 (e-ne )

where f,, s e} and 63, (j) are the quantities which are associated with the simple zero z; of
p(z). Therefore if we start at —oo with the values cj(—oo) = 1 and ¢3(0) = 0, then the
coeflicients cj(+00) and cj(+o0) are obtained by computing

¢j(o0) 1

. =TS T8 1...5T (3.75)

c3(o0) 0

which proves the final theorem of this section, (restoring the e dependence):
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Theorem 3.7 4. APPLICATIONS

Under conditiona I to III, the solution of ($.17) such that cj(—o0) =1 and c}(0) =0

4.1 Explicit Formulae
is given at = = +00 by

*(o0) =140 ( ~m") Let us start by deriving explicit formulae for the eigenvectors ¢}(z) of Ag«(z) defined
cj(o0) = e
1 by (3.10). They will then allow us to give the precise relation between the coeficients c;(z)
and defined by the expansion:
c3(o0) = z’: 15‘4/e fu g;'(M)d‘t:"'v:’("") +0 (ﬂsﬂq) Bg-ummz(“) 2
k=1 _ . —ife fs (s 4 1)
p(z) =) ci(2)e v vj(z) (4

where Im fm ei(z,€)dz = ImByy(z1) + O(€?) and 35(k, €) = O(1). Z

J=1

and the ceefficients c}(2) defined by

LJ * kot ;
plz) = Y j(a)e™ /Sy S prie) (42
i=1

Note that here we have chosen zo = 0. Consider the operator A+(2), z € T, where Zis a

simply connected domain of {I. We can write
_(fic*(z) a*(2) 3
a0 = (5 55) “3
with

Pe+(2) = pul2) = au(2)ba(2) — (ea(2))? (4.4)

Lemma 4.1
The eigenvectors of Ay, (z) defined by (3.10) are given by

" X;(z) —i(=1)oe(2)  ; _
(z2) = ———t——m e * 1= 1,2
95 = oo I

where
i(2) o
Xj\z)=
PN AL O z
Y Ve @ax(®
and
1 ca(u)el(n) — dh(wauly)
0*(2) = 2 ‘/;00 \/p.(u)a,,(u) au
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for any z € T\Y, with Y, = {z € £ : a.(2) = 0}.
Remarks:

i) Any traceless matrix can be written under the form given above and the lemma actually
requires the existence of distinct eigenvalues only. It is true in particular for the operator
A(z) written as in (4.3) without indices *.

i) The vectors ¢}(z) are actually analytic in the whole set X since the operator W,(2) is
analytic in X.

Proof: A direct verification shows that the vectors xj(z) are eigenvectors of Ag«(z) for

the eigenvalues e}(z) = (—1)’/p+(2). We set the notation
pu(2) = Vpul2) (4.5)

and we introduce the eigenprojectors (see (3.2))

X 1[1+(-1)y s —1)7 &l
&wkﬁﬂﬂﬁ=§((4y5§%1£04§§%) (46)

The vectors p}(z) must satisfy P}(2)p}'(2) = 0 (see (2.22)). We compute, dropping the
1 / a. !

7 - a. . cl i a,)

G o (B) -igim + $else

Pyt = W e, —da Xt
PRas 2 D4y J

arguments,
4.7

and

(4.8)
Consequently, the vectors

Py

e_'.(_lli f:m c.l' - .y dz
! x5 (=ea)l ’

(4.9)

normalized to 1 at z = —oo, satisfy condition (2.22). o
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Corollary 4.2

Let zx € X and let ni be o counterclockwise oriented loop based at the origin which
encircles the disc D(zy,r) only and passes through no point of Y,. Then the quantity
128 defined in lemma (8.1) is given by

O 8) = innd llxi(—oo)ll o H L, EHEEE i)
Ixz(—o0)ll

where n} € Z depends on a, and n;.
Proof: It is always possible to choose a loop 13, as described. By lemma (3.1) we have

Ve (0mE) = €%+/7.(0) (4.10)

and
au(Oni) = ™0, (0) (411)

with n} € Z since a,(z) is single valued in §. As a consequence

X3(Olne) = —ie™™ x}(0) , (412)

Finally,
1 c«a, — cla,
O = - * * .

o+(Olne) = 3 /u v dz + 04(0) (4.13)

so that
- *f i cxn’=chay A
3 (0lm) = p3(0) (i)t Ao ~§ [, =74 —iou 0 (4.14)

lIxz(—oo)l
w]
Consider now the two decompositions (4.1) and (4.2). The relation between the co-
efficients associated with the choice of eigenvectors made in lemma 4.1 is given by the
following

Corollary 4.3

The coefficients c}(+oo) and c;(+oo) defined by (4.1), (4.2) and lemma 4.1 are such
that

¢j(~00) = cj(~o0)e ™/ I3 €5 ter-eitadae
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(o) = ¢} (hoo)emiI (ulbo=atroife [17 f s eli
forj=1,2.
Proof: We write the operator A under the form

w0= (5 50) (9

where we assume, without loss of generality, that
i, a(z) = a(Zoo) £0 (4.16)

The corresponding eigenvectors ;(z) are given by the expressions of lemma 4.1, where

the indices * are dropped. As the operators A(z) and Ag(z) coincide at |z] = oo, we have

X;(Fo0) = xj(Fo00) (4.17)
and
j(~00) = pj(—00) (4.18)
Hence
#;(+00) = zpj(+oo)e"‘(“‘y(’*(+°°)""(+°°» = e""ﬁ?tp,'(+oo) (4.19)
8o that formulae (2.43) and (2.45) apply. (]

4.2 Invariants

Let us consider now the following three classes of operators A(z):

1)
Az)=A@e)l, zeR (4.20)
where { denotes the adjoint.
2)
A= (B a2 Y i) o) oz)eR, seR - @21)
bz) —ic(z) )’ TR ’ ’
3)
Az) =i ("(”) a(z) ) a(z),f(z),dz) €R, z€R (4.22)
B(z) —c(z))’ TR ’
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Note in particular that the operator H(z) in equation (1.7) belongs to the first class
whereas the operators in equations (1.9) and (1.11) belong to the second class. For these
classes of operators there exist expressions involving the coefficients ¢;(z) and ¢j(z) which

are constant for all z € R.
Lemma 4.4

If A(z) belongs the class 1,8 or 8, then the operators A () constructed by means of
the iterative scheme (£.11), (2.18) belong to the same class, for any q < ¢*.

The proof of this lemma is obtained by a straightforward induction and will therefore
be omitted.

Lemma 4.5
i) If A(z) belongs to the class 1, then

les ()2 + lea(@)? = i@} + (e3P =T z€R
where I is constant.

i) If A(z) belongs to the class £ or S, then
le1(@)* - lez(2) = [ei(@)* ~ |ez(z)P =1 z€R

where I is constant,

Proof: The first assertion is a direct consequence of the fact that U(z,zo), W(z, zo) and
Ws(z,20) are unitary if A(z) and Ag«(z) are self-adjoint. Assume now that A(z) belongs

G= ((1) -?1) (4.23)

to the second class and let

If (=) is solution of equation (1.12)
iep(z) = A(z)p(z) (424)

then G(z) is another solution of this equation. Indeed, G* = 1 so that we can write

ieGy(z) = —Giep(z) = —GA(z)GGy(z) (4.25)
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and we compute
~GA(z)G = A(z), z€R (4.26)

Therefore, as trA(z) = 0, the following determinant is constant for any real z
det (<p(x),‘e“;(}‘)) = constant (4.27)
Observe that the eigenvectors constructed in lemma 4.1 satisfy the identity
Goi(@) = pale), i#k (4.28)
since o(z) is real and ||x;j(z)|| is independent of j = 1,2 for real a(z), b(z) and ¢(z). Then
we obtain from the reality of e;(z) and e;(z) = —ez(z)

Go(z) = a1(z)e” ife fy exte'rae! p2(z) + ca(@)e” ife f; ertzras’ ei(z) (4.29)

It remains to use the the multilinearity of the determinant to get

det (9(2),G9(2)) = (|e1(2)F" = lea()P?) det (¢1(), ¢2(2)) (4.30)

and we compute

det (p1(z), p2(x)) = 2?(:&?‘;'%__;—00)
using p(z) = a(z)b(z) - (c(z))?. The identities (4.28) and (4.29) are also true for the

eigenvectors ¢}(z) due to lemma 4.4. Hence the same argument and (4.17) show that

(4.31)

Y2y * 2 2
det ((2), () = (Ief(e)l* ~ 16§=)) 25— s ;’w( 5)_comm (4.32)

If A(z) belongs to the third class, we proceed in a similar way. In this case, if ¢(z) is

a solution of (1.12), ¢(z) is another solution and we obtain from the explicit formulae of
lemma 4.1 (with the choice Vi = ¢'*/4)

pi(z) = ~ipw(z) (4.33)

Finally we compute

—\ 2 v/ p(—0)
det (p(2),902) = (s (@I - la(o)P) 2572

= (P - ) 25 < comsant (430
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Remark: 1t follows from (4.29) in the proof that if (¢;(z), c2(z)) are solutions of (3.17),
then (¢z(z), c1()) provide another solution of (3.17) when A(z) belongs to the class 2 or 3.
The corresponding symmetry property when A(z) belongs to class 1 is that if (e1(=), e2(2))
satisfy (3.17), then (c;(z), —c; (z)) satisfy (3.17) as well. This property can be derived from
(3.17) directly by using the anti self-adjointness of K,(z), ¢ < ¢* in this case [13].

4.1 Main applications

a) Let A(z) be a 2 x 2 hermitian matrix, z € R, as in equation (1.7). The equation
.'e-—--d‘;(:) = A(z)p(z), €—0 (4.35)

describes the adiabatic Yimit of the dynamics of a two level quantum mechanical system.
The squared modulus of the element Sz, gives the probability P(e) of a quantum transition
over infinite time between the two eigenstates of the system.

Corollary 4.6

If A(z) is hermitian and satisfies conditions I to III,

2

) 4 . * -
P(t) = ISZIP P Ze"/tf" cl("()dze—idf,(k,e) +0 (e—xe"’) et l2ImBiya(z)

k=1

b) Let A(z) be the matrix (1.11)

A(z) = ( A ” (1)) (4.36)
associated with the semiclassical regime of Schrédinger equation:
eI 4 v(ai(a) = Ba), =0 (437)

where inf,en E — V(z) > 0. A solution ¢(z) of (1.11) characterized by the asymptotic
conditions ¢;(—00) = 0,¢2(—00) = 1 describes a particle coming from the right whose

energy is strictly above the potential barrier V(z). The reflection coefficient R(e) for this
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2
%}%l . As it stands here, it cannot be
computed from the knowledge of S;;. However, as a consequence of lemma 4.5 and the

scattering process is then defined by R(e) =

remark following it, we can write

R(e) = _lG(+oo)? (4.38)

1+ |&G(+o0)f?

where &1(—o0) =1 and &;(—oc) = 0. Hence the

Corollary 4.7

If A(z) given by (4.46) satisfies conditions I to I1I,

[Saal®  _ 5: oS, 10 gt (a0

O™ T ISP -

2
+0 (e—se‘”l) ec"2ImAu(zl)

k=1

c) Let A(z) be the matrix
A(z)= (w’(zz) 3) (4.39)

associated with the equation of motion (1.9) of a classical oscillator whose frequency varies

slowly with time

du(0

ezd"“(x) -
dz

dz?

~w?(z)u(z), u(0)=1uo, € )=u,, €0 (4.40)

We assume that the initial values ug and u; are independent of ¢. In terms of the variable
u(z), the adiabatic invariant (1.6) reads (keeping the same notation J)

Elw'(@)]? + Wi (z)lu(z)?
w(z)

Note that we do not require the initial values uy and u; to be real. Let us express AJ(e)

J(z,€) =

(4.41)

in terms of the elements of the matrix S. We set

- w(z) O
Q(z) ( 0 _‘;’_(1;7 ) (4.42)
so that we have with y(z) defined by (1.8)
J(z,€) =< o(z)[Uz)p(z) > (4.43)
42

Writing
2 " C e,
olz) = Y dyfa)e Il N () (444)
i=1
where 1
(2)=| V@) 1/_°"<_—°_°.l._ .
vi(z) (_1);’ ’; o )V T+ o) (4.45)
we compute
- w(—o0) 2 2
I(z,€) = 25———— Fi(—o0) (Id1(2)P? + |d2(2)I?) (4.46)

Let us introduce the coefficients dj(z) by

2 it T ’
p(z) = Y di()e VLo G ) (4.47)

=1

satisfying the initial condition
w0) = (12} = a1 0)61(0) + O30 (448)

This last equation and lemma 4.1 allow to express the d}(0) as functions of ue and u;
and we have in particular d}(0) = O(1). As a consequence of corollary 4.3 we have
ldJ(ﬂ:OO)l = Id;(ﬂ:oo)h.’ =1,2, so that

839 = 277G (o) + g5 (ool — i (-co)f ~ d5(-o0))  (449)

Then it results from the linearity of equation (3.17) and from the remark following the

proof of lemma 4.5 that we can write

A=) _ o (@Y 4 pe (3@ ,
(60) == (&) +4¢ )(Ci‘(z)) a0
where the ¢}(z) satisfy (3.17) as well with boundary conditions ¢}(—o0) = 1, ¢3(—o0) = 0.

These boundary conditions together with equation (2.46) allow to express the constants
a(e) and f(¢) as functions of the d}(0) which are defined by the initial condition (4.48):

(8- 2 (29) - (di(")*ro(e*“"’)) (51)

dj(—o0)/ ~ \ B(e) d3(0) + O (e==")
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We can now express the total variation of the adiabatic invariant as a function of the
matrix S and the initial conditions using (4.49) and lemma 4.5:

83() = 2= [uRe {a( i (+eo)ei(Ho0) | + 2es+eo)l (@) +189P)]
(4.52)

Hence, by (4.51) and corollary 4.3

Corollary 4.8

If A(z) given by (4.39) satisfies conditions I to II],

830 = 22520 [ahe { r(ooTamge /e aeing, 5, )
+2/521* (Idi(=00)[” + [da(~00)[")]
If dy(—00)dy(—o0) =

w(_oo) L4 —i/gf e{(z,e)dz —i0%, (k,€)
AJ(€) = 4t e % e~ 012 (k,
() 1 + w?(—o0) ;

+0 (e—ne") cc"!ImAu(u)
If dy(—o0)dz(—0) # 0
AN =822 g, {d*(o)d*(o)z a "“"""e-*”h(*»e)}

2
(Id1(~00)[? + |dz(—c0)[*)

14+ w?(—o0)
+ 0( ~re” ) e UmAg(a)
where the quantities dj(0) = O(1) are determined by the initial condition ({.48)
Remarks:
i) The coefficients d; are O(1) since the initial conditions ug and u; are independent of e.

ii) The condition dy(—o00)dy(—00) # 0 is equivalent to d;(0)d;(0) # 0. From (4.45) and
(4.48) we compute

dl(O) 3 %‘ / l—t,-}%i-(o;o.;—o—) (uo w(O) — ﬁul)
0= 322G (i + )

80 that dy(—00)d;(—00) # 0 is equivalent to u; # +iw(0)uo. This condition is always true
for real initial values ug and u;.

(4.53)
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