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Abstract 

The semi-classical limit f -+ 0 of the scattering matrix S associated with the 

equation ifd~~t) = A(t)<p(t) is considered. If A(x) is an analytic n x n matrix 

whose eigenvalues are real and non degenerate for all x E R, the matrix S is 

KEcomputed asymptotically up to errors O( e-
-1 

), K, > O. Moreover, for the 

case n = 2 and under further assumptions on the behaviour of the analytic 

continuations of the eigenvalues of A(x), the exponentially small off-diagonal 

elements of S are given by an asymptotic expression accurate up to relative 

errors O( e-KE
-

1
). The adiabatic transition probability for the time dependent 

Schrodinger equation, the semi-classical above barrier reflection coefficient for 

the stationary Schrodinger equation and the total variation of the adiabatic 

invariant of a time dependent classical oscillator are computed asymptotically 

to illustrate our results. 
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1. INTRODUCTION 

Let us consider the following well-known equations. 

The Drst one, is the time-dependent ScbrOdinger equation for a two-level system, 

iii d.,p(t) = H(d)t/J(t) (1.1)
dt 

t E R, .,p(t) E 1t C2 and H (d) is a 2 x 2 self-adjoint linear operator with two distinct real 

eigenvalues. The parameter E is positive and small. The second equation is the stationary 

one-dimensional SchrOdinger equation 

_li2Jl1x~x) +V(x).,p(x) = Et/J(x) (1.2) 

x E R, .,p(x) E C and Vex) is a bounded real-valued function. The real parameter E is 

chosen in such a way that 

E > sup Vex) (1.3) 
~fR 

The third equation is the equation of motion of a classical oscillator whose frequency varies 

with time 

vet) = -w2(d)'O(t), '0(0) Uo, v(O) = Ul (1.4) 

This equation is of the same type as (1.2) since we assume that the real valued function 

w(t) is bounded and such that 

in! w2(t) > 0 (1.5)
tER 

For the Drst two equations we are interested in the behaviour of the solution for t -t +00 

or x -t +00, when the behaviour for t -t -00 or x -t -00 is fixed. Moreover we want to 

analyze this scattering situation when E tends to zero and Ii = 1 for equation (1.1), the 

so-called adiabatic limit, or Ii tends to zero for equation (1.2), the so-called semi-classical 

limit. For the initial value problem (1.4), we consider the adiabatic invariant J defined as 

twice the ratio of the energy to the frequency 

J(t, e) = Iv(t)12 +w 2(d)I'O(t)12 
(1.6)wed) 
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in the limit E -t O. More precisely, we are interested in its total variation during the whole 

evolution 

~J(E) J(+00, e) - J(-00, f) 

With this respect, we consider (1.4) more as a scattering problem again than as an initial 

value problem. All three problems are very closely related. Let x = d be a rescaled time 

for equations (1.1) and (1.4). Then equation (1.1) becomes with <p(x) = .,p(t(x» and Ii = 1 

ifd~~x) = H(x)<p(x) (1.7) 

On the other hand, defining u( x) = 'o(t(x» and 

u(x) ) (1.8)<pC x) = ( if cld~~) 

equation (1.4) is equivalent to 

. d<p(x) (0 1 ) (Uo ) (1.9)l.f~ = w2(x) 0 <p(x), <p(0) = iUl 

Similarly, with 

tJ1(x) ) (1.10)<pc x) = ( iEcl"fAa:) 

and setting Ii = E, equation (1.2) becomes 

. d<p( x) ( 0 1 ) (1.11)'E~ = E _ Vex) 0 <p(x) 

Thus the three equations (1.7), (1.9) and (1.11) are particular cases of 

iEd<p(x) =A(x)<p(x) (1.12)
dx 

where A( x) is a linear operator on 1t = C2 with two distinct real eigenvalues. Our purpose 

is to study a scattering problem for (1.12) in the "semi-classical" limit E tends to zero under 

the hypothesis that A(x) is analytic, has two distinct real eigenvalues for all x E R and 

well-defined limits when x -t ±oo. It is natural to express the solutions of (1.12) as linear 

combinations of eigenvectors of A(x): 

2 

<p(x) =L cj(x)e-ilf 10'" ei(a:')cla:'<pj(x) (1.13) 
i=l 
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where A(x)",;(x) = e;(x)"'j(x). Our conditions on the behaviour of A(x) for large Ixl will 

imply that 

lim Cj{x) = Cj{±oo) (1.14) 
s .......;:I:oo 

exist, so that the following scattering problem is well-defined: 

Given Cj(-(0), j = 1,2 find Cj{+00), j =1,2, i.e. find the matrix 5 defined by 

( 
Cl(+oo») = (511 5 12 ) (Cl(-oo») (1.15)
C2(+00) 521 522 C2(+00) 

There is a "canonical" choice of eigenvectors of A(x) specified (up to a global factor) by 

the condition 

Pj{x)d"'t
x

) 0 (1.16) 

where Pj(x) is the eigenprojection corresponding to ej{x). In particular, it is immediate to 

verify that for A(x) given by (1.9) or by (1.11) with the identification w2(x) == E - Vex), 

the eigenvectors associated with e;{x) = (-l)jw(x) 

"'l{X) = ( 	 v'~(X) ) , "'2(X) = ( v'~{X) ) (1.17) 
-v'w(x) +v'w{x) 

satisfy (1.16), so that (1.13) gives the solutions of (1.9) and (1.11) as superpositions of the 

two well-known WKB functions 

e ...... i/f fa- fj(s')dt:'",j{x) (1.18) 

When this choice ofeigenvectors is made, a solution ",(x) of (1.12) characterized by Cj ( - 00 ) 

= 1 and CI:(-(0) = 0, Ie:j:. j, satisfies 

sup ,,,,(x) - e-i/fJ: fj(t:')dt:'"'j(x)1 = O(e) (1.19) 
sER. 

Consequently, 

5=1+0{e) (1.20) 

The approximations (1.19) and (1.20) are true without assuming analyticity of A(x). On 

the other hand, if analyticity holds, we can approximate the solutions of (1.12) and thus 

determine the matrix 5 up to error terms O(exp(-ltf-1», It> 0 (see corollary 2.5) 

5kj = 8;(e)01:; +O(exp{-lte- 1
)) 	 (1.21) 
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where 18j(e) I = O{1). These results are corollaries of the iterative scheme presented in 

section 2, which will be used in section 3. Actually they are derived for A(x) a n x n 

matrix whose eigenvalues are assumed to be real and non degenerate for any x E R. 

The asymptotic formulae (1.21) imply in particular that the non-diagonal terms of 5 

are O{exp(-lte...... 1». These terms are important in applications because they are related, 

for equation (1.1), to the probability of a quantum transition between the two levels of 

the system or, in the case of equation (1.2), to the above barrier reBection ccefficient 

and, in the case of equation (1.4) to the quantity .6.J(e). Under further hypotheses on 

the analytic behaviour of the eigenvalues of A(x) we show that it is possible to find an 

asymptotic expression for 521 or 512 accurate up to exponentially small relative corrections. 

The asymptotic formula is expressed by means of the complex degeneracy points of the 

analytic continuations of eigenvalues e;(x). H there are p contributing degeneracy points, 

the asymptotic expression reads (see theorem 3.7 and (2.43), (2.45» 

p 
1rt

k=O 

where 9*(1e, e) is 0(1) and Im1*(k, e) = -T +O(e2 ), k = 1,," ,po It should be noted that 

the error term is smaller by an exponentially decreasing factor than the least significant 

term in the sum (1.22). This asymptotic formula is proven in section 3, which is the main 

part of the paper. It is obtained by combination of our iterative scheme with a method 

due to FrOman, FrOman [1]. We give in section 4 explicit formulae in terms of A(x) for the 

expressions 9*(1e, e) and 1*(k, e) appearing in (1.22). The consequences of our asymptotic 

analysis of the matrix 5 for the applications mentioned above are formulated in section 4 

as well. 

521 = L e-i '*(k,4!)e- i 'Y*(k,t)f-
1 + e ...... -

1 0 (e ...... lI:t- ), It, T > 0 (1.22) 

Before ending this introduction let us make some very brief comments on the vast 

literature devoted to the exponential decay of non diagonal elements of the matrix 5. We 

do not attempt at all to give an exhaustive account of it but we want to set in context 

our work relative to the main results. We quote these results according to their content 

and not chronologically. The reader may find further references in the books [2] and 

[3]. The intermediate result (1.21) is not new, see [2], [3] and references therein, but we 

nevertheless obtain a new derivation of it in section 2. For recent related results see also 
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[4]. The asymptotic expression (1.22) generalizes however several rigorous results which 

were obtained either in the case of equations (1.7) and (1.11) or in the study of .6.J(f). 

When one complex eigenvalue degeneracy only contributes, it is known since the works [1], 

[5], [6] that 
1821 =e-i 'e- i "(e-

1 + 0(f)e1m , Im-y < 0 (1.23)"(E­

with 8 = 1l'/2 for equation (1.11) and, provided A(x) is a real symmetric matrix, for 

equation (1.7) as well. It was shown recently that when A(x) is a hermitian matrix in (1.7), 

8 can take any complex value [7], see also [8]. A corresponding asymptotic expression for 

.6.J(f) in this situation can be found in [9], [10], [11]. See also [12] for more recent related 

results. The expression (1.23) was then generalized in two ways for equations (1.7) and 

(1.11). First, when several eigenvalue degeneracy points contribute to the asymptotics of 

821, it was proven using standard stretching and matching techniques that [5], [13] 

P 
1821 =~ e-i'(k)e-i"(k)C

1 + 0 (EO) e1m"(e- (1.24) 
k=O 

where 0 < a < 1 and Im-y(k) = Im-y < 0, Vk. The leading term of (1.24) gives rise 

to the so called "Stiickelberg oscillations" as f -+ 0, a phenomenon which is illustrated 

numerically in [13]. Note also that the error term is O(fa) instead of O(f) which is a 

common drawback of the method employed to get (1.24). Then, higher order corrections 

to formula (1.23) were studied systematically in [14], [15] for equation (1.11) and in [16] 

for equation (1.7): 

=e- i l'(E)e- i"('(E)E-
1 +0(fq+l)e-'I'e- 1

, VqEN, T>O (1.25)821 

where Im-yq(f) = -T + 0(f2) and Sq(E) = 0(1). The iterative scheme of section 2 was 

introduced in [16] to derive this expression in the adiabatic context. Thus the asymptotic 

expression (1.22) captures all the features of these previous results and it holds for more 

general situations than those described by the particular matrices in (1.7) and (1.11). 

Moreover, it yields an expression accurate up to exponentially small corrections for the 

logarithm of 821 since we can write for p =1 

1ln82l = _i-Y*!f) + 8*(E) +0 (e-"E- ) (1.26) 
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2. APPROXIMATE SOLUTION 

We consider a slightly more general problem than in the introduction. Let 1-l = en, 
with the usual scalar product, and A(x), x E R, be a linear operator on 1-l. We study the 

equation (' = 1;) 

ifU'(X,XO) = A(x)U(x,xo) 

U(xo,xo) =1 (2.1) 

under the condition that A( x) is analytic in x and for each x the spectrum of A( x) consists 

of n distinct real eigenvalues el(x) < ... < en(x), with corresponding eigenprojections 

Pl(x), ... ,Pn(x). Note that the evolution U is not unitary in general. 

In order to find approximate solution of (2.1) we first consider another problem. Let t/J(x) 

be a solution of 

ift/J'(X) = A(x)t/J(x) (2.2) 

If Q(xo) is a projection such that Q(xo)t/J(xo) = t/J(xo), then for any x we have a projection 

Q(x) such that Q(x)t/J(x) = t/J(x). Indeed, if U(x,xo) is the matrix solution of (2.2) such 

that U(xo,xo) = 1, we take 

Q(x) = U(x, xo)Q(xo)U(xo, x) (2.3) 

The projection Q(x) is a solution of 

ifQ'(X) = [A(x),Q(x)] (2.4) 

with the notation [A, B] == AB - BA. Let us suppose that at Xo we have a complete set 

of projections Qj(xo), i.e. Qj(XO)Qk(XO) = Qk(XO)Ojk, Ej Qj(xo) = 1. Then the Qj(x) 

form a complete set of projections as well and using the fact that for any projection P(x) 

we have P( x )P' (x )P( x) = 0, it follows that 

Qj(z) = [~Q'm(Z)Qm(z),Qj(Z)] (2.5) 
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Therefore we have for all j 

[A(Z) - i. ~Q:'(Z)Qm(Z),Q;(Z)] = 0 (2.6) 

We look for approximate solutions ofthis equation. Since [A(x),Pj(x)] == 0, the eigenpro­

jections Pj(x) are approximate solutions of (2.6) up to an error term O(e). Let 

AI(X) := A(x) - ieKo(x) (2.7) 

with 

Ko(x):= 2:P~(X)Pm(X) (2.8) 
m 

By perturbation theory, if e is small enough, AI(X) has n distinct eigenvalues el,j(x) with 

corresponding eigenprojections PI,j(x),j = 1, ... , n, such that el,j(x) = ej(x) +O(e2), 

and P1,j(x) = Pj(x) + O(e). Indeed, el,j(x) e;(x) - ietr(Pj(x)Ko(x» + O(e2) and 

Pj(x)Ko(x)Pj(x) = O. The projections PI,j(x) are approximate solutions of (2.6) up to an 

error term O(e2) since [AI(x),PI,j(X)] = o. 

Let 

KI(X):= 2:P:,m(x)PI,m(X) (2.9) 
m 

and 

A2(X) := A(x) - ieKI(X) (2.10) 

Again, for e small enough, A2(X) has n distinct eigenvalues e2,j(x) with corresponding 

eigenprojections P2,j(x). Since A2(X) =AI(X) +ie(Ko(x) - K 1(x» and Ko(x) - Kl(X) = 

O(e),P2,j(x) is an approximate solution of (2.6) up to an error term O(e3 ). We can iterate 

this procedure. At the q.h iteration we have approximate solutions Pq,j(x), up to order 

term O(eq+!», which are eigenprojections of 

Aq(x):= A(x) - ieKq- 1(x) (2.11) 

with 

Kq-l(x) = 2: P;-l,m(X)Pq- l ,m(X) (2.12) 
m 
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We now construct approximate solutions for (2.1). Let Qm(X) be a complete smooth family 

of projections of 1£,Qm(x)Qn(x) = OmnQm(x) and Em Qm(X) = 1. We say that an evo­

lution V(X, X'), (V(X', X') = 1, V(X2,Xl)V(Xt,Xo) =V(X2,XO», follows the decomposition 

of 1£, 

1£ =Ea Qm(x)1£ 
m 

if for all x, x' 

Qm(X)V(X,X') =V(x,X')Qm(x') (2.13) 

It is known (see [17] or [18]) that a smooth evolution with property (2.13) is solution of 

an equation of the type 

V'(X,xo) = (B(x) +2: Q:"(X)Qm(X»V(x,xo), V(xo,xo) = 1 (2.14) 
m 

where B(x) is such that 

[B(x),Qm(x)] = 0 Vm (2.15) 

The idea is to construct approximate solutions of (2.1) by choosing evolutions which follow 

the decomposition of 1£ into 

1£ =Ea Pq,m(x)1£ (2.16) 
m 

Therefore we define Uq(x, xo) as the solution of 

ieU;(x,xo) =(Aq{x) + ieKq(x»Uq(x,xo), Uq(xo,xo) =1 (2.17) 

The next lemma which is taken from [19] gives the main estimate which we need in order 

to control the error term for the approximate solution Uq(x,xo). This lemma is also used 

in section 3. 

For any z E C and r > 0 let D(zir) = {z' E C: /z' - zl < r} and 8D(z;r) = {z' E C : 

/z' - z/ = r}. Given Zo E C and ro > 0 let A(z) be analytic in D(zo; ro) with a spectrum 

consisting of n distinct eigenvalues e;(z) with corresponding eigenprojection Pj(z) for all 

z E D(zo; ro). We define Aq(z), Kq{z), Pq,j(z) and eq,j(z) as above by the iteration method 

based on (2.11) and (2.12). We set R(z,..\) =(A(z) - ..\1)-1. 
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Lemma 2.1 

Let Zo E C, ro > °and A( z) be defined on D(Zo; ro) with the above propertie6. Let 

rl > °and Dj := D(ei(zo)i 2rl) be n di6joint di6c6 in C, j = 1, ... , n, 6uch that for all 

Z E D(ZOiro) 

ei(z) E D(ei(zo)irl) 

Let 

a = a(zo) := sup sup sup IIR(z, >')11 < 00 
i >'E8Dj zED(zo;ro) 

and 

b = b(zo) := sup IIKo(z)1I < 00 
zED(zo;ro) 

Then there e:mt e* = E*(a,b) > °and c =c(ro,rJ,a, b) < 00 6uch that 

IIKq(z) - Kq- 1(z)1I ~ beqcqq! 

and 

IIKq(z)1I ~ 2b 

for all z E D(ZOi ro), all °< e ~ E*, and all q ~ q*(e) = [fc;], 'Where [11] i6 the integer part 

of 11 and e ia the buia of the neperian logarithm. 

Remark: The proof of this lemma is given in [19] for the case PI +P2 = 1. However, it 

is not difficult to extend it for the case 1:i=1 Pi = 1, n ~ 2. 

Corollary 2.2 

Let the hypothe6i6 of lemma !.1 be 3ati6fied. Then for all q ~ q* 

eq.i(z) =ei(z) +O(be2 
) 

Proof: Since Pi(z)Ko(z)Pi(z) = °the statement is true for q = 1. For q ~ 2 we have 

9-1 ~ 

IIAq(z) - A1(z)1I ~ e L IIKm(z) - Km- 1(z)1\ ~ eb L emcmm! = O(e2b) (2.18) 
m=l m=1 

and therefore the statement follows from perturbation theory. o 

We now apply lemma 2.1 and its corollary 2.2 in order to control the norm of Uq(x, xo). 

It is crucial that Uq follows the decomposition of 11 into EDm~l Pq•m (z)11. 

Corollary 2.3 

Let ro > °be auch that for each x E R the hypotheaea of lemma ~.1 are 6ati6fied on 

D(x; ro) with conatanu rl and a independent of x and 'With conatanu b(x) ~ b < 00. Then 

for e ~ e* and q ~ q* 

I\Uq(Xi xo)1I ~exp{O (11: b(xl)dxll)} 

Proof: We introduce the evolution Wq(x,xo), 

W;(x,xo) = Kq(x)Wg{x,xo), Wq(xo,xo) = 1 (2.19) 

From lemma 2.1 we have 

(2.20)IIWq(x, xo)1I ~ exp (211: b(xl)dX'\) 

Let us choose n eigenvectors 'Pq.;(O) of Aq(O) at x =0. The vectors 

'Pq.i(x) := Wq(x,O)'Pq.i(O), j = 1, ... , n (2.21) 

are eigenvectors of Aq(x) since Wq(x, 0) interpolates between Qq(O) and Qq(x) (see (2.13) 

and (2.14» and by definition 

P,.i(X)'P~.i(x) =0, j = 1, ... ,n (2.22) 

Let us write U,(x,xo) := W9(x,xO)~q(x,xo). The unknown operator 4!q(x,xo) is the 

solution of 

iE~~(X,XO) =Wq(xo,x)Aq(x)W,(x,xo)4!q(x,xo) 

~,(xo,xo) 1 (2.23) 

10 11 



The operator W,(xo,x)A,(x)W,(x,xo) has eigenvalues e"j(x) with eigenvectors <p"j(xo). 

Therefore 

~,(x,xo)<p,,j(xo) =exp ( -iE-Ii: e,,;(x')dX') <p"j(xo), j = 1, ... ,n (2.24) 

From corollary 2.2 and the reality of ej(z), 

11m (1: e"j(x')dx') 1$ 0(E2) 11: b(x')dx'/ (2.25) 

hence 

IIUq(x,xo)1I $ exp {(2+ O(E» 11: b(x')dx'l} (2.26) 

o 

Note that in the above proof we have factorized the evolution U,(x, xo) 88 the product 


U,(x,xo) = Wf(x,xO)~,(x,xo) (2.27) 


where ~q only is singular in the limit E -+ 0 and lI~fll =0(1). Since in our simple case ~, 


is known explicitly, the solution 1/J(x) of 

iE,,'(x) = (Af(x) + iEK,(x»,,(x) 

,,(xo) =.po (2.28) 

can be written 88 

,,(x) = U,(x, xo),,(O) 

= L:cf,j(xo)exp (-i/Elz ef,j(x')dX') <p,,;(x) (2.29) 
j~l Zo 

where the cq,;(xo) are defined by the identity 

.po =L: Cq,;(xo)<p"j(xo) (2.30) 
j~l 
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Theorem 2.4 

Let r > 0 and g > 0 and let A(x) be analytic in fir = {z = X+iy: x, 11 E R, 1111 < r}. 

Let the .spectrum of A( x) comid of n real distinct eigenvalue.s ej(x), j = 1, ... ,n, .such that 

for all x E R 

let(x) - ej(x)1 ~ g, Ie "I j 

Let 

IIKo(x)1I = II L:Pj(x)P;(x)1I 
j~l 

be an integrable function of x which ten;'" to zero a.s Ixl-+ O. Then there exist comtanu 

E* > 0, C' < 00, ~ > 0 and an approximate .solution V(x,xo) of the equation 

iEU'(X,XO) = A(x)U(x,xo) 

U(xo,xo) = 1 

.such that 

sup IIU(x,xo) - V(x,xo)/1 $ C' exp(-~E-l) 
z,zoER. 

Remarks: 


i) Neither U nor V are unitary in general, however both their norms are 0(1) 88 E -+ O. 


ii) Note that limz_±ooA(x) need not exist, since we only require that limz-+±ooPj(x) 


Pj ( ±oo) exists. 


Proof: By standard arguments of perturbation theory we can verify the hypothesis of 


Corollary 2.3 with b(x) integrable on R (see e.g. section 2 of [20]). We set 


V(x,xo):= Uf*(x,xo) (2.31) 

with q*(E) given in lemma 2.1. The operator R(x):= V(xo,x)U(x,xo) is solution of 

iER'(x) = V(xo, x)( -A,*(x) - iEKf*(x) +A(x»V(x,xo)R(x) 

=iEV(XO,x)(K,*_l(X) - K,*(x»V(x,xo)R(x) (2.32) 
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From the integrability of b{x) and lemma 2.1 we have 

IIR(x) -111 S C"(ce)'*q*! 

:5 C"(ceq*)'* 

:5 eC" exp(-lee-I) (2.33) 

where Ie = fc. Hence 

IIU(x,xo) - V(x,xo)1I :5I1V(x,xo)III1R(x) -111 
:5 C' exp(-lee-I) (2.34) 

o 

We a.ssume that the hypotheses of theorem 2.4 are satisfied and we determine the 

matrix S up to an error term O(e-IeE-I). Since IIKo(x)1I and thus IIK,-I(X)1I tend to zero 

at infinity in an integrable way (see lemma 2.1 and corollary 2.3), 

lim UA,(x) - A(x)1I = 0, for all q:5 q* (2.35) 
%-::1::00 

and 

lim W,(x,xo) = W,(±oo,xo), for all q:5 q* (2.36)z-::I::oo 

Let us choose a point Xo and a set of eigenvectors 'Pj(xo) of A(xo),j = 1, ... , n. Using 

Wo(x,xo) we define a set of eigenvectors of A(x) for all x, 

'Pj(x) =Wo(x, xO)'Pj(xo) (2.37) 

Let 1/1 be a solution of 

ie¢'(x) =A(x)1/1(x) (2.38) 

and let us write 1/1 as 
.I,() ~ () -i/"l- ej(%')lIz' ()
If' X =L.... Cj x e·o 'Pj x (2.39) 

j~l 

Since IIKo(x)" is integrable, lim%_::I::oo Cj(x) exists (see e.g. lemma 3.2 below). 

Let us now define a set of eigenvectors of A,* (x) by choosing 

'Pj( -00) == 'P,*,;( -00) := 'Pj( -00) (2.40) 

14 

and by setting 

'Pj(x) = W,*(x, -oo)'Pj(-00) (2.41 ) 

We can also write 1/1(x) as (ej == e,*,j) 

1/1(x) = L cj(x)e-ilt J:o ei(%')II%' 'Pj(x) 
j~l 

_ ~ c*( ) -ilt J.- ej (%')11%' -i/" J.. (et(%')-ej (%'»lIz' *( ) 
- L.... j x e·o e·o 'P j X (2.42) 

j~l 

From (2.39), (2.42) and lim%_-OO IIP,*,j(x) ..,... Pj(x)1I = 0 we have 

lim e+i/" J:o ej(z')dz' Pj (x)1/1(x) = Cj(-oo)'Pj(-oo) 
%--00 

=e-i/" L~oo (ei(z') -ej (z'»II%' cj( -00)'Pj (..... 00) (2.43) 

On the other hand 

'Pj(OO) =W,*(oo,-oo)'Pj(-oo) 

=W,*(oo, -oo)Wo( -oo,xo)'Pj(xo) 

=W,*(oo, -oo)Wo(-00, 00)'P;(+00) 

== e-illi'Pj(+oo) (2.44) 

the last equality defining the factor e-ifl1 where Pj is in general complex. Thus, similarly, 

-i/E 1+00 
(el(%')-ej (%'»lIz' e-illi c,*.(00) =Cj(00) (2.45)e ·0 

Let 1/1 be a solution of (2.38) characterized by Cj( -00) = 1 and Ck( -00) 0 for It =F j 

which we decompose as in (2.42). From theorem 2.4 and (2.29) an approximate solution 

of 1/1(x) is obtained by replacing cj(x) by cj(xo) in (2.42), and we have 

sup Icj(x) - cj(xo)1 = O(e-'U -
I
), j = 1, ... ,n (2.46) 

%ER 

Therefore 

Ck( +00) = O(e-IeE-I), It =F j (2.47) 
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and 
Cj(OO) = e-all; e-alE J~=(et(z')-eJ(r:'»h' + O(e-ICE-

1
) (2.48) 

The matrix 5 defined in the introduction is then given by 

Corollary 2.5 

_ill,!, -i/E J+oo (et(z')-eJ(z'»dz' £ . + O( -ICE-I)
5lej = e "1 e -00 fJle, e 

Remark: It should be recalled that we did not write explicitly the e-dependence of ej or 

Pq*.j, but in corollary 2.5 we have Pi =pi(e) and ej(x') = ej(x', e). 
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3. ASYMPTOTICS OF THE NON DIAGONAL PART OF THE MATRIX 5 

3.1 Stokes lines 

From now on, we deal with the case 11. = C2, and we compute in this section an 

asymptotic expression for 521 , which, in the simplest case, reads 

1521 = e-i8*(E)e-i .,*(E)E-
1 (1 +0 (e-ICE - )) (3.1) 

The idea is to combine our iterative scheme (2.11), (2.12) with an analysis in the complex 

plane by a method due to FrOman, FrOman [1]. In order to perform the analysis we need 

some precise information about the analytic extension of A( x) into the complex plane. In 

particular, we must control the Stokes lines of the problem (condition II below). Thus, in 

this subsection we introduce the notion of Stokes lines and give the conditions which are 

needed in order to make use of the method of [1] in the next subsection. 

Without restricting the generality we impose trA(x) == O. Thus we have A(x)2 = 

p(x)1, this identity defining the function p(x). The eigenvalues of A(x) are then leI (x) 

-e2(x) and e2(x) = Jp(x), with v'1 = 1. 

The corresponding eigenprojections are given by 

1 ( A(X») (3.2)Pj(x) = 2 1 + ej(x) 

On R the eigenvalues are real and distinct and we suppose tha.t there exists 9 > 0 with 

p(x) > g, for all x E R. 

Let 0 be a domain of C, symmetric with respect the real axis, containing R, on which 

A has an analytic extension. Since p is real on R we have for any z E 0, p(z) = p(z). 

The analysis of 521 is done by working in the upper half-plane only, whereas the analysis 

of 512 is performed in the lower half-plane, as we shall see below. The eigenvalues and 

eigenprojections also have analytic extensions in 0, but it is clear that the zeros of p in 0 

are singu.la.r points for these objects. Some of these singularities playa dominant role in 

the determination of 5jl" j =1= k. 

17 



As in section 2 we introduce new operators Ag(z) for all Z E n\{z' : p(z') =o} by the 

iteration scheme (2.11) and (2.12). In our case we can write 

Ko(z) = PHz)P1(z) +P~(Z)P2(Z) 

= [P;(z),P1(z)] = 4P~Z) [A'(z),A(z)] (3.3) 

where' = I; and we compute for all q 

Aq(z) = A(z) - if [P;_l,l(Z),P,-l,l(Z)] 

=A(z) - if ( \ [A~_l(Z),Ag-l(Z)] (3.4)A. 

Pg-l Z 

Indeed, we have trAg,(z) == 0, because the trace of a commutator is zero. Thus p,,(z) is 

defined by A~,(z) = pg,(z)l. Hence the eigenvalues eg',j(z) = (-I)j'V'p,,(z) and P",l(Z) 

is given by an expression similar to (3.2). Equation (3.4) clearly shows that although 

the eigenvectors and eigenprojections are multivalued in n when we perform the analytic 

continuation, this is not the case for Aq(z). In the above construction we must avoid the 

zeros of pq'(z) for q' S q-1. 

Condition I: 

The .set X = {z EO: p(z) =O} u a finite .set. 

Let r2 > °.such that D(zj; r2) n D(Zl:i r2) = olor all Zj :f= Z1c E X and let 

0=0\ U D(zj; r2) (3.5) 
ZjEX 

There exi.st comtanu g' > °and 0' < 00 .such that uni/ormly on 0 

Ip(z)1 ~ g', IIPj(z)1I SO' (3.6) 

Remark: As we shall see in condition II and III below, we need satisfy (3.6) on a subset 

of 0 only. 

Condition I allows to verify the hypotheses of lemma 2.1 uniformly on 0. Moreover 

the operators Ag(z) ace holomorphic on 0, provided f is small enough. Indeed for any 

f S f· and q S q. 

p,(z) p(z) +O(bf2) (3.7) 

(The proof is the same as that of corollary 2.2) We define eigenvectors of Aq*(z), z E 0, 
by the method of section 2: Let IPj(O) be an eigenvector of Ag*(O) for the eigenvalue ej(O), 

j = 1,2. Let W.(zla) be the analytic continuation of W.( x, 0) along a path a in 0, starting 

at °and ending at z, where 

W!(x,O) = K,*(x)W.(x,O), x E R 


W.(O,O) = 1 (3.8) 


The operator W.( zla) is a (local) solution of 

W!(zla) = Kg*(z)W*(zla) (3.9) 

The main property of W.(zla), which follows from (3.9) (see (2.13) and (2.14», is that 

the vectors 

IPj(zlar) == W.(zla)'Pj(O), j = 1,2 (3.10) 

are two eigenvectors of Ag*(z), which are obtained by analytical continuation of 'P1(0) 

along a. The vector IPj(zla) is an eigenvector for the eigenvalue ej(zla), which is the 

analytic continuation of e1(0) along a. 

Lemma 3.1 

Let Zj be a "imple zero 0/ p in n and let '1 be a "imp Ie clo.sed path around D(zjj r2), 

counterclocJ:uri.,e oriented and encircling no other duc D(Zl:i r2) with p(ZI:) = 0. Then lor 

f .small enough, 

1) the total variation 0/ the a'11ument 01 Pg* along '11 U 271'. 

B) il'l .start" at z = 0, then there exi.st two complex number.s 9;1:' j:f= k j, k = 1,2, 

.such that 

W.(OI'l)'P%(O) := ei8;''Pj(0), j:f= k 
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and 	 and 

eil:J ei1j .. = -1, j -::j:. k 

Proof: 

1) We can write 

p,*(z) = p(z)g(z) (3.11) 

with /g(z) - 11 < 1 for all z E '1. Thus 

0=_1 I g'(z) d(z) = _1 1P,*(z) dz __1 I p'(z) dz 
27ri 1" g(z) 27ri 1" Pf*(Z) 27ri 1" p(z) 

1 1p~(z)=- --dz-1 	 (3.12)
27ri "p,*(z) 

2) 	 cp;(O) is an eigenvector of A,*(O) for the eigenvalue e;(O). After analytical continuation 

e;(OI'1) is an eigenvalue of A,*(O) and by 1) it is equal to -ej(O) = eZ(O), k -::j:. j. 

Thus cpj(OI'1) == W.(OI'1)cpj(O) is an eigenvector for the eigenvalue eHO) and therefore 

proportional to cpZ(O). Finally the last identity is a consequence of detW.(zla) = 1 

since trKg*(z) == O. 0 

Let E be a simply connected domain in 0, which contains the real axis. In E the 

analytical continuations of ej(z) and cpj(x) are path-independent so that we write ej(z) . 

instead of ej(zla) and so on. Let t/J(z) be a solution of 

iEt/J'(z) = A(z)t/J(z), z E E 	 (3.13) 

We decompose t/J(z) along the eigenfunctions of Af*(z), 

2 

t/J(z) =L cj(z)e-iff J: e;(./)4.'cpj(z) (3.14) 
j=1 

and we derive a differential equation for the unknown crefBcients cj( z) using the identities 

A(z) = A,*(z) +i(;K,*_l(Z) 	 (3.15) 

20 

cp1' (z) =K,*(z)cpj(z) 	 (3.16) 

We obtain 
2

Cr (Z) = L exp (ie- 18jk(Z») ajk(z)cZ(Z) (3.17) 
k=1 

where 

8jk(Z) = l' (ej(z') e%(z'» dz' (3.18) 

and 
. ( ) = < cp;(O)IW,;l(z)(K,*(z) - K,*_l(Z» W.(z)cp%(O) > (3.19) 

aJk z IIcp1(0)112 

We have a good control of ajk(z) using lemma 2.1 but the factor exp (ie-1A1k(Z») may 

cause troubles when we consider the limit e -+ 0 because ImA1k(z) -::j:. O. Since 

ej(z) = ej(z) +0«(;26) 	 (3.20) 

we must actually control the factor exp (iC18jk(z») where 

(3.21)8jk(z) = l' (ej(z') - ek(z'»dz' 

The function 8jk is equal, up to a factor ±2, to the function 

~(z):= l' Jp(z')dz' (3.22) 

which is naturally associated with the quadratic differential p(z)d2z. 

Definition: A Stoke, line a U a curve in n\{z : p(z) =O} ,uch that 

1) Im~(z) u a cOnltant along a 

!) a is maximal with property 1) 

9) one of the boundary points of a at least u a zero of p(z). 

There are different terminologies in the literature. Sometimes our Stokes lines are called 

anti-Stokes lines and vice-versa (see below). A Stokes line is always a simple curve and in 
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••• 

our case it is contained either in the upper half-plane or in the lower half-plane. Near a 

simple zero Zo of p(z) the level-lines of Imfl(z) are homeomorphic to the level-lines 

Imz3
/ 
2 =constant (3.23) 

around z = O. For any simple zero Zo of p(z) there are exactly three Stokes lines which 

have Zo as boundary point. We call them the Stokes lines of zoo (See figure 1) 

Figure 1: The level lines of fI(z) near Zo. 

Condition II 

A) 	 There ezilu in the upper hal/-plane a nonempty finite let of limple zen", of p(z), 

{ZI , .•. , zp} 'With the ,ropertiel (lee figure 1,): 

1) there ezilu a Stoku line Ii, parametrized by (ti' ti+I), luch that 

limt_t. I.(t) = Zi, limt - ti+1 li(t) =Zi+1! i =1, ... ,p - 1 

1,) there ezilu a Stokel line 10, parametrized by (-oo,tl), luch that 

limt_1t 'o(t) = Zt, lim,_-oo Relo(t) = -00, limt_-oo Imlo(t) = a-

S) there ezilu a Stoke, line Ip, parametrized by (t" (0), luch that 

lim,_,,,I,(t) =zp, limt_ oo Rel,(t) =00, limt_oo Imlp(t) = a+. 

B) Along any 'Oerticalline Rez z going from the real azia to 10 or Ip, Imfl(z) u ,trictly 

monotone, provided Iz1u large enough. 

Remark: Condition II simply describes the situation illustrated in figure 2. 

~ 
110 13 P-l 1P 

IR 

Figure 2: The Stokes lines of condition II. 

In our case, if condition II is satisfied then an analogous condition holds in the lower 

half-plane. It follows from theorem 2.1 in [7] that the region A in the upper half-plane 

between the real axis and the closure of the Stokes lines 10 ,"" lp is a simply connected 

region in n which does not contain zeros of p in its interior. In [7], the part B of condition 

II follows from the existence of limiting matrices when t tends to infinity. As already 

noticed, such limiting matrices are not supposed to exist here. Let r > 0 and let 

Er = {z E C 1 dist(z,A) ~ r and Iz - zil ~ r, i = 1, ... ,p} (3.24) 

Condition III 

There ezuu r > r2, lufficiently Imall 10 that Er il a limply connected region in n con­

taining the real o.zi" and luch that: 

For any zero Zi, i = 1, ... ,p, the Stokel linea of Zi in the due D(Zi; r) interlect the boundary 

of the duc at a lingle ,oint, D(Zi, r) n D(Zj, r) =" (See figure S) 

The function 

b(z):= sup IIKo(z + iy)1I 	 (3.25),:
_+i,Ell. 

tendl to zero at infinity and u integrable on R. 

22 23 



••• 
:@::: 

Z3 Zpl:r 

IR 

o = D(Zj,r) o = D(ZjJr2) 

Figure 3: The set Er of condition III 

Remark : As we already mentioned, we need to verify condition I on Er only and not on 

nsince we sha.ll integrate the differential equation (3.17) along a path in Er . 

3.2 FrOman-FrOman's method 

We suppose that conditions I to III are satisfied and we study equation (3.17) on 

Er . The hypotheses of lemma 2.1 are thus verified uniformly on E r , so that there exists 

a q* = q*(t) independent of z E Er provided tis sma.ll enough. Let us rewrite equation 

(3.17) as a Volterra equation 

ct(z) = ct(zo) + rall (z')cr(z')dz' + ra12(z')eif-1At2(Z')C;(z')dz' (3.26)Jzo J%O 
and 

4(z) =4(zo) +1* a22(z')4(z')dz' +J,or a21(z')eif- 1A;1(Z')ct(z')dz' (3.27) 
.10 

Lemma 3.2 

1/ condit.ion 1 to 111 hold then limz_:l:oo cj(x) = cj(±oo) ezist and 

lim sup /cj(x + ill) - cj(±oo)1 =0z-:l:oo ,:
-+•• eZlr 
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Proof: By conditions I to III we get from (3.19) and lemma 2.1, as in section 2, 

(3.28) 

-+i,e:Cr 

and for Z = x + iy E Er 

.6jl;(Z) = A;I;(Z) +6(X)0(t2) (3.29) 

Hence the limits limz_±oo cj (x) exist on the real axis since .6 jl; is real there. Then for 

a.ll Z = x +;'11 on a vertical segment joining R and 10 or I, we can control IIm.6jk(z)l, 

provided Ixl is large enough, by using part B of condition II. Indeed, for such z, IImAjk(z)1 

is bounded by twice the value of IIm~(z)1 on the Stokes lines. From these estimates and 

s~p lakj(x + iy)1 = b(x)O (e-II:E-1) 

(3.28) we can deduce easily lemma 3.2 using (3.26) and (3.27). 

Instead of integrating (3.17) along the real axis we integrate the equation along the 

Stokes lines 10 , ••• , I" as long as we are at a distance larger than r from a zero of p. 

Otherwise we integrate the equation along the boundaries of the discs D(Zi; r), staying 

always in Er (see figure 4). 

Figure 4: The path of integration close to Zi· 

Let z and Zo be two points of Er and let T(z,zo) be the matrix-solution of (3.17) with 

T(zo, zo) =1. We can find T(z, zo) by integrating the equation along any path in Er going 

from Zo to z. However because of the factors exp (;',;-I.6;I;(Z») we have a good control of 

the equation only on particular paths. For instance, the Stokes lines are "good" paths. 

The main work consists in controlling the equation along the parts of the boundaries of 

the discs D(Zi; r) when we pass from one Stokes line to the next one. 
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Lemma 3.3 

Let z and Zo E Er and let a be 0. path, parametrized by [so, Sl], going /rom Zo to z, 

and $uch that 8 1---+ Im.612(a(s» is non decrea$ing on [SO,81]' Then 

T(z,zo) = 

1+0 (e-IC€-l) e-f-llmat,(zo)O (e-lCf- 1 
) ) 

1 +0 (e-ICf­1 

1 +
eE-llmat,(.I')O (e-ICE- ) 

) 

( o (e-2ICE - t 
) ef-l(Imat,(.I')-Imat,(zo» 

Proof: We consider (3.26) and (3.27) along a with c~(zo) = 1 and q(zo) = 0 and we 

introduce new variables 

XI(s) = ct(a(s», X2(S) = eif-lat,(a(t»C;(a(s» (3.30) 

Writing bjk(s) = ajk(a(S)r'~~-) we get 

XI(s) = 1 + l' bll (s')X1(s')ds' + l' b12(s')X2(s')ds' (3.31) 
'0 '0 

X2( s) =it b:z2(s')eif- 1
( at,(t)-at,(·'» X2(s')ds' 

-0 
1+l' b:zl(s')eie- (at,<.)+a;t(_'»X1(s')ds' (3.32) 

'0 

In (3.32) 8' :5 8 and .6;1(8') = -.6t2(8'). Using (3.29) and the hypothesis on the path we 

have 

leif- 1( at,(t)-at,(·'» I= 

exp (_e-1 (Im.6 12(s) - Im(.612(s'») + O(e») = 0 (exp(O(e») (3.33) 

Let IIX.II = suP_09:S_1 IX.(8)1· We get from (3.31), (3.32) and (3.33), using (3.28), 

1IIXIII :51 + 0 (e-lCf- ) (IIXIII + IIX21D 
1IIX211 :5 0 (e-ICE- ) (IIXIII + IIX2 1D (3.34) 
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so that for e small enough IIXI II + IIX211 :5 2. Using this a priori estimate in (3.31) and 

(3.32) we have 

sup IXI(8) -11 = 0 (e-IC€-l) (3.35) 
'O:S':S'l 

and 

sup IX2(s)1
'O:St:Stl 

0 (e-lCf-
1 

) (3.36) 

Equations (3.35) and (3.36) allow to determine the first column of T(z, zo), 

1 +0 (e-IC€-l) T12(Z,ZO») 
(3.37)

T(z,zo) = ( ef-llmaM.I')O (e-lCf- 1 ) T22(Z,ZO) 

Since lall(z) + a22(z)1 = 0 (e-IC€-l), we get from the Liouville formula 

detT(z, zo) = exp (0 (e-IC€-l)) 

= 1+ 0 (e-IC€-l) (3.38) 

Moreover T-I(Z,ZO) =T(zo,z), hence 

T( ) _ 1 (T22(Z,ZO) -T12(Z,ZO») (3.39)
Zo,z - detT(z,zo) -T21 (z,zo) Tn(z,zo) 

The reverse path a-I from z to Zo is such that 8 1---+ Im.621 (a- l (s» is non increasing from 

Sl to So. If c~(z) = 0 and q(z) = 1 then we can estimate c~(zo) and c;(zo) as above, in­

troducing new variables Y2(s) = q(a-I(s» and YI(s) = eif-1a;1(ar-l(·»ct(a-l(s». Thus 

we can estimate the second column of (3.39). The crefticient T22 (Z, zo) is estimated using 
1

detT(z, zo) =1 + 0 (e-ICf- ). 

A Stokes line is a good path because Im.6jk(z) remains constant along this line. We 

have thus the immediate 

Corollary 3.4 

If there is 0. Stoi:e$ line going from Zo to zJ then 

1
1 + 0 (e- lCf- ) o (e-lCf-1) e-f-llmat,(,f») 

T(z,zo) = 0 (e-lCf-1) ef-1lmat,(,f) ( 1 +0 (e-ICE-1 ) 
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We now come to the difficult part of the method. We must control the matrix solution 

T(z, zo) along a portion of aD(Zj, r) which is not a good path in the sense that I mil.12(z) is 

not monotone. We must establish two lemmas. The first lemma gives a monodromy matrix 

around the singularity Zl and easily proven. The second and main lemma is more difficult 

to establish. Its proof is based on lemmas 3.3 and 3.5 and on a clever use of elementary 

identities between the coefficients of products of 2 x 2 matrices and their inverses [1]. 

This method has a definite advantage on the use of stretching and matching techniques 

to compute asymptotics in the sense that it allows to obtain better estimates on the 

remainders (see (1.19) in the introduction). However it can only be used for simple zeros 

of the function p(z) whereas the stretching and matching method works in more general 

situations [21]. 

We consider now the neighborhood of a zero of p( z), say Zl. Let b be the boundary 

of the disc D(Zl ; r) countercloekwise oriented, going from (0 to (6 as in figure 5. On this 

figure the solid lines are the Stokes lines of Zl and the dashed lines are the anti-Stokes 

lines of Zl, i.e. the lines along which ReIl.12(Z) == ReIl.12(Zl). The arrows indicate the 

directions in which Imll.12(z) is non decreasing along the boundary of D(Zl; r). 

C4 

I C, 
Figure 5: The points (j, i = 0, ... , 6 on the Stokes and anti-Stokes lines. 

We compute the matrix T«(6,(0) along b. 
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Lemma 3.5 

T«(6,(0) = ( , 1 ~ ei/EJ"e~e-i9;t)
_IE e, '(J*

e " e-- 12 0 

Proof: Let us consider "'( z) at Z = (0, the solution which we have obtained by integration 

along the Stokes line 10 up to (0, We have 

2 1.'"'«(0) = Lcj«(o)e-i/E 
0 °e1",j«(0) (3.40) 

i=l 

where in (3.40) the integration from 0 to (0 is along a as in figure 6 and, similarly, "';«(0) 

is the analytical continuation of ",;(0) along a. 

11 

IR 

Figure 6: The paths a, b and,.,. 

We make the analytical continuation of (3.40) along b up to (6. Since ",(z) is holo­

morphic at Zl we have ..p«(6) = ..p«(o) and we can write 

.1,(1" ) _ "" 
2 

*(1") -i/E 1.'0 ej -i/E r el *(1")
'I' \0 - L- Cj \6 e 0 e J, "'i \6 (3.41) 

j=l 

where now "';«(6) is the analytical continuation of ",;(0) along a and then along b. But 

this is the same as the analytical continuation of ",;(0) along,., and then along a as on 

figure 6. By lemma 3.1 we have therefore 

*(1" ) i(J*. *(1") (3.42)"'i \6 = e "1"'1: \0 
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Similarly we have 

(3.43)1ej +1ej = i ej +1ei 

Hence, by comparing (3.40) and (3.41), 

cj«(s)e-i/fI., ej ei'%J = cl«(o), Ie 1: j (3.44) 

o 

Lemma 3.6 

For f ,mall enough 

1 +0 (e-Il/ f 
) 0 (e-Il/ f 

) e- f -
11m.:1(t;O») 

T( (2, (0) = ( e-iff I., e~ e-i'~2 (1 +0 (e- IC / f » 1 +0 (e-Il/f) 

Proof: The following computations will involve expressions like f-1[mAt2«(v) for v = 

0,2,4,6. These expressions are almost equal. Indeed 

Ajk(Z) = Ajk(Z) +0(f2) (3.45) 

and for this choice of (v we have 

[mAn«(v) =[mA12(ZI), v = 0,2,4,6 (3.46) 

since these points are on the Stokes lines of ZI' Hence, in particular, 

±f-1Im.:1~2(t;.. ) -- 0 (e±f-1Im.:112(.J1») v - ° (3.41)e , _",246 

Finally note that 

i er = 1el +0(f2) = AI2(Zt} +0(E2) (3.48) 

Let us denote the creHicient j Ie of the matrix T((0, (fJ) by t j k(Q, fj) and consider the identity 

T«(v+1,(v) = T«(v+h(v+2)T«(V+2,(v) (3.49) 

Using 

1
detT«(",(v) = tn(l', v)t22(I', v) - t12(I', V)t21 (I', v) = 1+0 (e- ICf

- ) (3.50) 
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we obtain for v = 0,2 and 4 

t11(V + 2,v) = tn(v + l,v) t12(V + 1, v + 2) (3.51)t11(V + l,v + 2) - t11(V + l,v + 2) t2l(v + 2, v) 

t22(V+2,v) = t ll (v+l,v+2) (1 +0 (e-Ilf- 1)) 
t11(V + l,v) 

t I2(V+l,v) 
(3.52)+ tu(v + 1, v) t21(V + 2, v) 

t12(V + 2, v) = t12(v + 1, v) _ t12(V + 1, v + 2) (1 + 0 (e-ICE-1)) 
t ll (v +1, v +2) tll(V +1, v) 

t I2 (V+l,v)t12(v+1,v+2)t ( 2) 
- 21 v+ ,v (3.53)

t11(V + 1, V)t11(V + 1, v + 2) 

These identities express, in particular, the elements of the matrix T( (2, (0) 88 functions of 

the element t21(2, 0) and other matrix elements which we can control by means of lemma 

3.3: 

t11(2,0) = 1+0 (e-ICf- 1) +0 (e-ICf -1) e-f-1Im.:112(.Jt}t21 (2, 0) (3.54) 

1 1t22(2,0) = 1+0 (e-Ilf
- ) +0 (e- Ilf - ) e-f-1Im.:112(.Jdt21 (2, 0) (3.55) 

1 1 1tI2(2,0) = 0 (e-ICf- ) e-f- 11m.:112(.Jl) + (0 (e- ICf- ) e-f- Im.:112(.J.) rt21 (2,0) (3.56) 

We are thus lead to the determination of t21(2,0). Note that these estimates are true for 

the elements of T«(s,(,,) if we replace the arguments (2,0) by (6,4). Consider now the 

identity 

T«(3, (2)T«(2, (o)T«(o, (6) = T«(3, (")T«(,,, (6) (3.51) 

Using lemma 3.1 and et == -e; to compute T«(0,(6) = T«(6,(0)-I, we obtain for the 

crefBcient 22 of (3.51) 

t21(3,2)t11(2,0)ei'~2eif-l J., e~+ 

t22(3,2)t2l(2,0)ei't2eif-l I., e~ = 

t21 (3, 4)t12(4,6) + t22(3,4)t22(4,6) (3.58) 

and for the crefBcient 21 of (3.51) 
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t21(3,2)tI2(2,0)eiS;leif-1 I., e;+ 


t22(3,2)t22(2,0)e";teif-
1 I., e; = 


t21 (3, 4)tn (4, 6) +t22(3, 4)t21 (4,6) (3.59) 


Lemma 3.3, (3.39) and (3.47) yield 

1
t21 (3,2) = -t21 (2,3) (1 +0 (e-ICC1)) = 0 (e-ICf- ) ef-llmA12(.rt} (3.60) 

t21(3,4) = -t21 (4, 3) (1 +0 (e-ICf-
t
)) =0 (e-ICf-1) ef-1ImA12(z1) (3.61) 

t22(3,4) = tll(4,3) (1 +0 (e-ICf-
1
)) = 1 +0 (e-ICf-

1
) (3.62) 

1 1
t22(3,2) =tu(2,3) (1 +0 (e- ICf- )) =1 +0 (e- ICf- ) (3.63) 

whereas from (3.39) and the remark following (3.56) we have 

1 1 1t12(4,6) = 0(e-ICf- ) e-e- lmA12(z1) + (0 (e-ICf- ) e-E-IlmA12(zt>f t21(6,4) (3.64) 

and 

t22(4,6) = 1 +0 (e-ICf-
1

) +0 (e- ICf-
1
) e-e-1ImA12(Z1)t21(6,4) (3.65) 

Now we use (3.58) and the above results to get 

1 
t21 (2,0)e":2eie- I., et =1 +0 (e-ICC1) 

+0 (e-2ICE-1) e-e- 1 ImA12(Zt}t21(2, 0) +0 (e- IC,,-1) e-f-llmA12(z1)t21(6,4) (3.66) 

Hence we see that we have to estimate t21(6,4) as well to determine t21(2,0). This is done 

by performing a similar computation: We estimate tu(4,6) as a function of t21(6,4) as 

above and we consider equation (3.59). After multiplication by e-il:1e-ie 
l I" e; and using 

1m1. e; =-1m 1. e~ (3.67) 

we obtain another equation for t21(6,4) and t21(2,0) 

.-11. * (1)- t21 (6,4)e- i';1e-If "e2 = 1+0 e-1U­

t t
+0 (e-2ICe- ) e-C1ImA12(zl)t21(6,4) + 0 (e- ICf- t) e-E- ImA12(Zt)t21 (2, 0) (3.68) 

Therefore, from (3.66) and (3.68) we deduce the a priori estimates 

e-f-1ImAn(.rl)lt21(2,0)1 =0(1) (3.69) 

e-f-llmAn(zt) It21 (6, 4)1 = 0(1) (3.70) 

which finally yield 

t21 (2,0) = e-":2e_if-
1I" e: (1 +0 (e-ICf- 1)) (3.71) 

o 

This lemma. and corolla.ry 3.4 allow to obtain an asymptotic expression for In S21 

beyond all orders by integrating (3.17) from -00 to +00 along the paths described above: 

Let us recall that we have 

Im612(Zt} == Im612(Zi), i =1, ... ,p (3.72) 

Thus, along the Stokes lines we use the matrices given by corollary 3.4 and which we can 

write 
1 tE1 +0 (e-ICf- ) 0 (e-ICf-

1
) e- - ImA12(Zt}) 

T := T(z,zo) = ( 1 ) (1) (3.73)( o e-ICE- ef-llmA12(z1) 1 +0 e-ICf-

On the other hand when we go from one Stokes line Ij-l to the next one Ij we use the 

matrix given by lemma. 3.6 

1 +0 (e-ICf- 1) 0 (e-ICf- 1
) e-f-1ImA12(Zt» 

Sj := . * (3.74)
1( e -lIE I"j e1 e-iS:2(j) (1 +0 (e-ICf- 1

) ) 1 +0 (e-ICf- ) 

where I"j et and 9~1 (j) are the quantities which are associated with the simple zero Zj of 

p(z). Therefore if we start at -00 with the values ei(-oo) = 1 and 4(0) = 0, then the 

coefficients et(+(0) and e;(+(0) are obtained by computing 

( 
(1)er(oo») (3.75)=TSpTSp _ 1 '" SIT 

C;(oo) ° 
which proves the final theorem of this section, (restoring the t: dependence): 
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Theorem 3.7 

Under conditio~ I to III, the ,olution of (9.17) luch that et(-(0) = 1 and e;(O) =0 

iI given at x = +00 by 

e~(oo) =1 +0 (e-IC~-l) 

and 
e;((0) = t e-ilE f•• et("E)tI,e-i9t,(k,E) + 0 (e-IC~-l) eE- 1Im.112(ztl 

k=1 

where 1m f". e!(z,E)dz =Im~12(zt} +0(E2) and ef2(k, E) = 0(1). 

34 

4. APPLICATIONS 

4.1 Explicit Formulae 

Let us start by deriving explicit formulae for the eigenvectors <P;(z) of A q * (z) defined 

by (3.10). They will then allow us to give the precise relation between the ccefBcients Cj(z) 

defined by the expansion: 

2 
1

<p(x) = L cj(z)e-ilf f: eJ(zl)tlz <pj(z) (4.1) 
j=1 

and the crefBcients ej(z) defined by 

2 
1

<p(x) =L cj(z)e-ilf fo· e1(zl)tlz <pj(z) (4.2) 
j=1 

Note that here we have chosen Xo =O. Consider the operator Aq*(z), z E ~,where ~ is a 

simply connected domain of n. We can write 

iC*(Z) a*(z») (4.3)Aq*(z) = ( b*(z) -ic*(z) 

with 

Pq*(z) == p*(z) =a*(z)b*(z) (e*(z»2 (4.4) 

Lemma 4.1 

The eigenvectorl of Aq*(z) defined by (9.10) are given by 

*( ) _ xj(z) -1(-I)i t7*(z) • - 1 2 
<Pi z - IIxj(-oo)l( , J - , 

where 

xj(z) = (H)j 
and 

1/' c*(u)a~(u) - c~(u)a*(u)du 
O'*(Z) = 2 -00 v'p*(u)a*(u) 
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for any Z e E\Y. with Y. = {z e E: a.(z) =OJ. 


Remarks: 


i) Any traceless matrix can be written under the form given above and the lemma actually 


requires the existence of distinct eigenvalues only. It is true in particular for the operator 

A(z) written as in (4.3) without indices *. 


ii) The vectors IPj(z) are actually analytic in the whole set E since the operator W.(z) is 


analytic in E. 


Proof: A direct verification shows that the vectors X;(z) are eigenvectors of Aq*(z) for 


the eigenvalues ej(z) = (-I)i JP.(z ). We set the notation 


P.(z) = Jp.(z) (4.5) 

and we introduce the eigenprojectors (see (3.2» 

. 1(1 +(-I)j~ (-l)j~)~ ~ (4.6)Pq"",j(z) == Pj(z) = 2 (-I)j;:~:~ 1- (-I)j;:I:/ 

The vectors IPj(z) must satisfy Pj(z)IPj'(z) == 0 (see (2.22». We compute, dropping the 

arguments, 

1 {t(b:. .!:.t.)' ).' "2 a... '* X· = 1_1U Itt (4.7)
1 ( ~.!:.t.b:. ·c +i II 

2 ~(II"..) -1#.T. "2~ 
and 

P!'x.' - .(-1)j c.a~ - d a 
1 j -1-- • ·X~ (4.8)2 p.a. 1 

Consequently, the vectors 

_ie-I); J. ""..&~-"~&,,.. dz 
e -- p"..&".. 

(4.9)IPj = IIxj( -(0)/1 xj 

normalized to 1 at z = -00, satisfy condition (2.22). o 

36 

Corollary 4.2 

Let Zle e X and let 'II: be a eounterelockwi.se oriented loop ba.sed at the origin which 

encircle, the dile D(zle,r) only and pa.s,e, through no point of Y.. Then the quantity 

e"t:a(Ie) defined in lemma (3.1) i, given by 

11 ·( )11 i'l "*~..~&,,.. dei't:a(I:) = _ieilfn; Xl -00 e- II. Pi&".. Z e-2i17"..(O)
IIx;( -(0)/1 

where n% e Z depend" on a. and 'lie. 

Proof: It is always possible to choose a loop 'lie as described. By lemma (3.1) we have 

Jp.(OI'lIe) = eilf JP.(O) (4.10) 

and 

a.(OI'lI:) =ei2Ifn:a.(0) (4.11) 

with n% e Z since a.(z) is single valued in n. As a consequence 

x;(OI'lI:) = -ieilfn:xt(O) (4.12) 

Finally, 11 c.a~ - c~a. dz +0'.(0) (4.13)0'.(°1'11:) = 2 Jp;a.
". 

so that 

IP;(OI'lI:) = IPt(O)( _i)e'lfn; IIxH-(0)11 e-i- III. """\h?::."" dz -2i 17".. (0) (4.14)IIx;( -(0)11 e 

o 

Consider now the two decompositions (4.1) and (4.2). The relation between the co­

efficients associated with the choice of eigenvectors made in lemma. 4.1 is given by the 

following 

Corollary 4.3 

The coeffieient& cj(±oo) and Cj(±oo) defined by (4.1), (4.!) and lemma 4.1 are ,uch 

that 
• ./ f-- "..Cj -00 = Cj(-oo)e-I E Jo e; (z)-e; (z)dz( ) 
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. r+-Cj(+00) = cj(+00)e-i(-l)' (IT1t(+oo)-IT(+OO»e-i/E Jo ej(z)-eJ (z)dz 

for j = 1,2. 

Proof: We write the operator A under the form 

A(z) = (iC(Z) a(z») (4.15)b(z) -ic(z) 

where we assume, without loss of generality, that 

lim a(z) =a(±oo) 1= 0 (4.16)
z-+±oo 

The corresponding eigenvectors "'j(z) are given by the expressions of lemma 4.1, where 

the indices * are dropped. As the operators A(z) and Aq1t(z) coincide at Izi = 00, we have 

xj(±oo) = Xj(±oo) (4.17) 

and 

",j(-oo) ="'j(-00) (4.18) 

Hence 

",;(+00) = ",j(+oo)e-i(-l)i( IT1t(+oo)-IT(+oo» == e-i/lf "'j(+oo) (4.19) 

so that formulae (2.43) and (2.45) apply. o 

4.2 Invariants 

Let us consider now the following three classes of operators A(z): 

1) 

A(z) =A(z)f, z E R (4.20) 

where f denotes the adjoint. 

2) 
ic{Z) a(z»)A(z) = ( b(z) -ic{z) , a(z), b(z), c(z) E R, z E R (4.21) 

3) 
. (c(z) a(z»)A(z) =. fJ(z) -c(z) , a(z), fJ(z), c{z) E R, z E R (4.22) 
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Note in particular that the operator H(z) in equation (1.7) belongs to the first class 

whereas the operators in equations (1.9) and (1.11) belong to the second class. For these 

classes of operators there exist expressions involving the coefficients Cj(z) and cj(z) which 

are constant for all z E R. 

Lemma 4.4 

If A(z) belong' the cla", 1,1 or 3, then the operator, Aq(z) comtructed by meam of 

the iterative ,cherne (1.11), (I.U) belong to the ,arne cla.s" for any q ~ q1t. 

The proof of this lemma is obtained by a straightforward induction and will therefore 

be omitted. 

Lemma 4.5 

i) If A(z) belong' to the cla", 1, then 

ICl(z)12 +1C2(z)12 = Ic~(z)12 + Ic;(z)12 == I z E R 

'Where I i.s comtant. 

ii) If A(z) belong' to the cla" I or 3, then 

ICl(Z)12 -1C2(Z)12 = Ic~(z)12 1C;(z)12 == I z E R 

'Where I i, comtant. 

Proof: The first assertion is a direct consequence of the fact that U(z, zo), W(z, zo) and 

Wq1t(z,zo) are unitary if A(z) and Aq1t(z) are self-adjoint. Assume now that A(z) belongs 

to the second class and let 

(4.23) 

If ",(z) is solution of equation (1.12) 

G = (1o -1
0) 

ie",(z)' = A(z )",( z) (4.24) 

then G",(z) is another solution of this equation. Indeed, G2 = 1 so that we can write 

ieG",(z)' = -Gsetp(z)' = -GA(z)GG",(z) (4.25) 
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and we compute 

-GA(x)G = A(x), x E R (4.26) 

Therefore, as trA(x) == 0, the following determinant is constant for any real x 

det (I,O(x ), GI,O(x») =constant (4.27) 

Observe that the eigenvectors constructed in lemma 4.1 satisfy the identity 

Gl,Oj(x) = I,OI:(x), j:/: k (4.28) 

since O'(x) is real and IIXj(x)1I is independent of j =1,2 for real a(x), b(x) and c(x). Then 

we obtain from the reality of ej(x) and e1(x) = -e2(x) 

GI,O(x) = C1 (x)e-iff 10· e2(z')dz' 1,02(x) +C2(X )e-iff I: el(z')dz' 1,01 (x) (4.29) 

It remains to use the the multilinearity of the determinant to get 

det (l,O(x),GI,O(x») = (lCl(XW -IC2(X)/2) det(1,01(x),1,02(X» (4.30) 

and we compute 

det(1,01(x),1,02(X» =2 ~ (4.31)
a(-00) +b( -00) 

using p(x) a(x)b(x) - (c(x»2. The identities (4.28) and (4.29) are also true for the 

eigenvectors cpj(x) due to lemma 4.4. Hence the same argument and (4.17) show that 

det (l,O(x),GI,O(x») = {Ict(x)j2 Ic;(x)j2)2 _( ~ __ \ = constant (4.32) 

If A{x) belongs to the third class, we proceed in a similar way. In this case, if 'PC x) is 

a solution of (1.12), l,O(x) is another solution and we obtain from the explicit formulae of 

iftf4lemma 4.1 (with the choice -Ii =e ) 

I,Oj(x) =-il,Ol:{x) (4.33) 

Finally we compute 

det (cp{x),cp(x») = (lcl{x)12 -IC2(X)12) 2 ~ 
P(-oo) a(­

= (lc~(xW -lc;(x)12) 2 ~ P( -00) _ a(-00) = constant (4.34) 
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o 

Remark: It follows from (4.29) in the proof that if (C1(X),C2(X» are solutions of (3.17), 

then (C2(X),C1(X» provide another solution of (3.17) when A(x) belongs to the class 2 or 3. 

The corresponding symmetry property when A(x) belongs to class 1 is that if (C1 (x), C2( x» 

satisfy (3.17), then (C2(X), -C1(X» satisfy (3.17) as well. This property can be derived from 

(3.17) directly by using the anti self-adjointness of KIJ(x), q ~ q* in this case [13}. 

4.1 Main applications 

a) Let A(x) be a 2 x 2 hermitian matrix, x E R, as in equation (1.7). The equation 

iedl,O(x) =A(x)l,O(x), f-O (4.35)
dx 

describes the adiabatic limit of the dynamics of a two level quantum mechanical system. 

The squared modulus of the element 821 gives the probability P(e) of a quantum transition 

over infinite time between the two eigenstates of the system. 

Corollary 4.6 

1/ A{ x) i, hennitian and ,ati'fie, condition, I to III, 

1pee) =1821 /2 =Ite-iff I"It e~(z.f)dze-i8t2(k.f)12 +0 (e- ICf- ) ef-121mau(zt) 
k=l 

b) Let A(x) be the matrix (1.11) 

(4.36)
A(x) = (E - ~(x) ~) 

associated with the semiclassical regime of SchrOdinger equation: 

_e2tP!~X) + V(x).p(x) = E.p(x), e _ 0 (4.37) 

where infzeaE - Vex) > O. A solution l,O(x) of (1.11) characterized by the asymptotic 

conditions C1 (-00) = 0, C2( -00) = 1 describes a particle coming from the right whose 

energy is strictly above the potential barrier Vex). The reflection coefficient 'R.(e) for this 
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scattering process is then defined by 'R.(E) I:!~t:H2
. As it stands here, it cannot be 

computed from the knowledge of 521 , However, as a consequence of lemma 4.5 and the 

remark following it, we can write 

'R.(E) = 1~~~(0)12 (4.38) 

where Ci(-00) = 1 and C'2( -00) = O. Hence the 

Corollary 4.7 

If A(x) given. by (4.46) ,atufie, con.ditio,,", I to III, 

2
'R.(E) = 1521 1 2 = Ite-i/e 1,," e~(.r.f)d.re-i't,(k,e) 12 + 0 (e-II>e-1) eE-l2Im~n(.rt> 

1+1521 \ k=1 

c) Let A(x) be the matrix 

A(x) = (w2~x) ~) (4.39) 

associated with the equation of motion (1.9) of a classical oscillator whose frequency varies 

slowly with time 

d2U(X) 2 du(O)
E2-a:;r = -w (x)u(x), u(O) =uo, E-;r;- = U., E-+ 0 (4.40) 

We assume that the initial values Uo and Ul are independent of E. In terms of the variable 

u(x), the adiabatic invariant (1.6) reads (keeping the same notation J) 

~lu'(x)12 +w2(x)\u(x)12
) 

_
J( (4.41)X,E - w(x) 

Note that we do not require the initial values Uo and Ul to be real. Let us express ~J(E) 

in terms of the elements of the matrix 5. We set 

w(x) ~)O(x) = ( 0 i:ifi') (4.42) 

so that we have with <p(x) defined by (1.8) 

J(X,E) =< <p(x)IO(x)<p(x) > (4.43) 
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Writing 
2 

<p(x) = L dj(x)e-i/E 10·( -IYw(:a:')d:a:' <pj(X) (4.44) 
j=1 

where 

w(-oo)
<pj(x) = ( (4.45)J~(X) ) 

1 +w2(-00)(-l)jJw(x) 

we compute 

w( -00) ( 2 )12)J(X,E) =21 2( ) Id1(x)1 + Id2(x (4.46)+w -00 

Let us introduce the coefficients dj(x) by 

2 

<p(x) = L dj(x)e -i/E1; ej(:a:')d:a:' <pj(x) (4.47) 
j=1 

satisfying the initial condition 

<p(0) = (~o )= ~(O)<pt(O) +4(0)<p;(0) (4.48) 
'Ul 

This last equation and lemma 4.1 allow to express the dj(O) as functions of Uo and Ul 

and we have in particular dj(O) = 0(1). As a consequence of corollary 4.3 we have 

Idj(±oo)1 = Idj(±oo)l, j = 1,2, so that 

~J(E) = 21 ~(:~) , O~(+00)12 + 14(+ooW _1~(_00)12 -14(-00)12) (4.49) 

Then it results from the linearity of equation (3.17) and from the remark following the 

proof of lemma 4.5 that we can write 

(~(x») = a(E) (C!(X») + {3(E) (c;(X») (4.50)
~(x) c;(x) c!(x) 

where the cj(x) satisfy (3.17) as well with boundary conditions c!( -00) = 1, c;(-00) = O. 

These boundary conditions together with equation (2.46) allow to express the constants 

a(E) and {3(E) as functions of the dj(O) which are defined by the initial condition (4.48): 

(dt(-oo») _(a(E») 
1
))_ (dt(O) +0 (e-II>E­ (4.51)

d;(-oo) - {3(E) - d;(O) + o (e-II>E-1) 
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We can now express the total variation of the adiabatic invariant as a function of the 

matrix 5 and the initial conditions using (4.49) and lemma 4.5: 

2D.J(e) =21 ~~~~~\ [4& {a(E)P(E)C~(+oo)c;(+oo)} +214(+00)12 (la(e)12 + IP(e)1 )] 

(4.52) 

Hence, by (4.51) and corollary 4.3 

Corollary 4.8 

If A( x) given by (4.39) "atufie" condition.5 I to III, 

D.J(e) =21 ;~(:~) [4& {dl ( -00)d2(-00)e-2i/E io-co(e~(:r:'E)-el(:r:»d:r:5 11 521 } 

+21521 12 (ldl ( _00)12 + Id2( _00)12)] 

If d l ( -00)d2(-00) =0 

D.J(e) =4 w(-00) Ite-'lEi.,. e~(z.E)dz e-i9~2(k'E)12 (ldl (-00)12 + Id2(-00)/2)
21 +w ( -00) k=1 


1
+0 (e-ICE- ) eE-l21m~n(zl) 

If d1( -00	)d2( -00) =F 0 

D.J(e) =8 w( -00) Be {tr.(O)d*(O) ~ e-ilE i". CI~(z,E)dze-il'Mk,E)}
1 +w2(-00) 1 2 L.J 

k=1 
1+0 (e-ICE - ) eE-l1m~12(zl) 

where the quantitie" dj(O) = 0(1) are determined by the initial condition {4.48} 


Remarks: 


i) The coefficients dj are 0(1) since the initial conditions Uo and Ul are independent of e. 


ii) The condition d1( -00)d2(-00) =F 0 is equivalent to d1(0)d2(0) =F O. From (4.45) and 

(4.48) we compute 

1 2 

d1(0) =2 1 +w ( -00) (uoVw(O) - V~(O)u,) 
w(-oo) 	 . ) (4.53)

2 
d2(0) = 21 

1+w (-00) (uov'W(O)+ v'~(O)Ulw(-oo) 

so that d1( -00)d2(-00) =F 0 is equivalent to Ul =F ±iw(O)uo. This condition is always true 

for real initial values Uo and Ul' 
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