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Abstract 

It is well known that with any usual multiresolution analysis of L2(Ul) is associated 
a pyramidal algorithm for the computation of the corresponding wavelet coefficients. It 
is shown t.hat an approximate pyramidal algorithm may be associated with more general 
Lit.tlewood-Paley decompositions. Accuracy estimates are provided for such approximate 
a1gorit.hma. Finally. some explicit examples are studied. 

INTRODUCTION 

Wavelet analysis hlUi emerged in the plUit len years as a completely generic methodology for 
solving problems in many different areas such as mathematical analysis and operator theory, 
numerical analysis, signal and image processing, computer vision, computer musics, turbulence, 
astrophysics for instance. Among the advantages of wavelet decompositions, their relative sim­
plicity and the existence of lUisociated fast algorithms are ones of the most important [1] [6]. 

There exist essentially two different approaches to wavelets, namely the discrete and the 
continuous ones. Roughly speaking, the discrete wavelet decompositions are most adapted to 
problems in which it is important to reduce the volume of data, for instance in signal or image 
compression, or numerical analysis. On the other hand, for physical signal analysis problems, 
one is interested in keeping redundancy on the wavelet transform, to get a finer analysis. 

The maln drawback of continuous wavelet decompositions is that there is a priori no associ­
ated fast:algorithm for the computation of the corresponding wavelet transform. Some attempts 
have been made in order to cure such a drawback, mainly by matching a multi resolution frame­
work to the continuous setting (see for instance [4] [7]). They are in general lUisociated with 
limited classes of wavelets. 

We describe here a method for associating fast algorithms to continuous wavelet decompo­
sitions, based on the same philosophy. It is in particular shown that starting from an usual 
mother wavelet, the scale discretization yields a new wavelet (called the integrated wavelet) to 
which is associated a pair or low and high-pass filters. These filters are in general not discrete, 
but may in some situations be well approximated by discrete filters, the localization of which 
can be directly related to the regularity of the scaling function. 
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The paper is organized lUi follows. Section 2 is devoted to a de6cription the version of 
continuous wavelet decompositions tha.t we will use ill the sequel. III section 3 we present the 
algorithmic lUipects we are interested in, and ill particula.r our main result (th(!orcm 4). We 
present some examples in section 4 and section 5 is devoted to conclusion. 

Throughout this paper we shall use the following nota.tions. We shall denote by II . lip the 
L"(m), LP([-lI' , 11']) and the lP(lZ) norms. The /,p([-1I',1I"j) norm is normalized a~: 

IIfllp = (1 If(X)lpdX)~
[-,.,,.] 

Our conventions for Hermitian product and Fourier transform ill /,2(lll) are the following ones: 

(I,g) =Jf(x)g(xt dx , 

where the star denotes complex conjugation, and 

j(~) =J,/(x)e-ieZdx 

2 CONTINUOUS WAVELET DECOMPOSITIONS 

Let us start from standard notions of continuous wavelet analysis. We will focus on the analysis of 
L2(m), and sometimes describe in a few words the corresponding results in the 1/2(m) context 
(we will denote here by H2(m) = {f E L2(m), j(~) =0 V~ $ o} the complex Hardy space). 
We shall be interested here in two "decomposition-reconstruction" schemes, corresponding to 
different "reconstruction wavelets". 

2.1 The bilinear scheme 

Generically, an infinitesimal wavelet (or mother wavelet) is a function"" E Ll(m; such that the 
following admissibility condition holds: 

tXl I 12 du flO 1 12 du
Ct/J = J ~(u) -;- =J ~( -u) n =1 (1 ) 

o o 

(in such a case, "" is in general taken to be a real-valued function). If ~ is say differentiable, 
equation 1 basically means that ~(O) =0, otherwise stated: 

i: ",,(x)dx == 0 (2) 

Such a mother wavelet provides the following analysis of L2(m): for any (b,a) Em x mi., one 
introduces the wavelet: 

1 (X - b)""(b,o)(X) =;; "" -a- (3) 

and one hlUi the following representation theorem, the proof of which is well known and can be 
found for instance in [3] or [2]. 

Theorem 1 (Calderon) Let"" be a mother wavelet. Then any f E L2(m) decomposes as 
follows: 

f =InxR+ T,(b,a) ""(b,o) db:o (4)
T,(b, a) = (I, ""(b.o)} 

strongly in L2(m). 
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TJ E L'l(/R X /R+.) is called the wavelet transform of I with respect to the analyzing wavelet t/J. 
If ¢ is sufficiently well localized in time and frequency (i.e. both ¢ and ;j; have sufficient decay at 
infinity), TJ gives informations on the time-frequency localization of I. Conversely, equation 4 
sta.tes tha.t the wa.velet transform is invertible on its range, allowing the reconstruction of the 
analyzed function from its wavelet transform. 

Ifone restricts to the Hardy space H2(/R), a weaker admissibility condition (concerning only 
the positive frequency part of ¢) is sufficient. Simply assuming that: 

roo 1- 12 duC" =J ¢(u) -; =1 o 

Theorem 1 holds for any IE H'l(Dl). 
Let then ¢(x) be an infinitesimal wavelet, and let t(x) be such that 

- 12 roo 1- 12 du
1tee) =JI{I ¢(usgn({» -;. 

2 2 2 
In other words, 1;j;(u{)1 = -u8,. li(u{)1 for all { E Hl, and i~..~ li({)1 
sco.ling function, and one associates to it the corresponding: 

t(b'I1)(X) =! t (X - b)a a . 

To any IE L2(Hl) associate its smoothing (with respect to t) at scale a: 

s.. (x) = in{/,t(b...»)t(b... )(X)db 

tha.t is: 
00 du. 1811(X) = d,.(x)-. 

11 u 

where dCl(x} stands for the details of I(x) at scale a: 

d..(x) == k(l,¢(b.I1»)¢(b.I1)(X)db 

(5) 

(6) 

= O. t is called a 

(7) 

(8) 

(9) 

(10) 

Then SCI E L2(lR), and one has the following decompositions, whose proofs are immediate from 
tha.t of theorem 1: 

CorolJary 1 Let ¢ an infinitesimal wavelet, and t 
f E L2(/R) can be expressed as: 

I = lim 8 Q =8ao + 
.._0 

(lor any Go E /R~) strongly in L2(/R). 

an associated scaling lunction. Then any '_ 

l
Q

O da 
0 

d.. -a (11 ) 

The coroJla.ry also holds in the H2( Dl) context. Let us now set 

2-J da 
Dj(x) = I . dQ(x) - . (12)J2-J-1 a 

Then DJ E L2( ot) represent the details of I( x) visible at scale 2)+ I and not at scale 2j , and 

12 
Dj({) == a.c.~ I({)- 1- "¢(a{)12 da- (13) 

2-1-1 a 

Introducing the function 1t(x), such that: 

1~({)12 == 11 1;j;(a~)12 ~a ( 14) 
l 

one then has: 

fij({) = i<{) 1~(2J{)12 . (15) 

We will refer to the \}f(x) function as the (global or integrated) wavelet. Notice that equation 14 
does not completely define the wavelet \}f. Once again, one can restrict to wavelets with positive­
valued Fourier transform, but this is not necessary. By construction, the integrated wavelets_ 
lead to a partition of unity in the Fourier space as follows: 

+00 . 2 2 Jo 12L li(21 {)1 = I~(2jO{)1 + L li(2)~) = 1 ( 16) 
j=-oo j=-oo 

for all { E fR. We also have: 

li({)12 = IC)({/2)12 
- Ic)({)12 

• (17) 

Defining the dilates and translates of the t J and 110 a..'1 

~t(x) = 2-J t(2-i (x - b» (18)
\}f~(x) =2-j l}l(2- j (x - b» 

we then have: 

Theorem 2 Let ¢ an infinitesimal wavelet, and let 1t and III be associated integrated wavelet 
and scaling lunctions as in equations 14 and 6. Then any I E J}(m) can be decomposed as: 

(19) 
R j=jo R 

1= J. (I,lIItO) tto db + f J. (I,1ti) wi db 

strongly in L2{Dl). 

We shall use the following notations 

Tj/(b) =(/, \}ft) (20)
Sj/(b) = (I,lIIi) 

2.2 The linear scheme 

It is well known that the reconstructing and the analyzing wavelets ca.n be decoupled i.e. one 
can use differents infinitesimal wavelets for the computation of the coefficients and for the re­
construction of the a.nalyzed function from the coefficients. In such a case, the admissibility 
condition 1 has to be modified accordingly. 
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A particular example of such a decoupling, which has been known for a long time, consists 
in taking formally a Dirac distribution for the reconstructing wavelet. Assuming instead of 
equa.tion 1 that 

00. •du 1000 du
k." = tP(u)- = tP(-u)- =1 , (21 ) 10o u 0 u 

one has the following decomposition of any IE L2(Dl): 

I( x) = R' (I, tP(t:,a)) -; (22)J. + 

da 

strongly in L2(Dl). This is the so-called Morlet reconstruction formula of I from its wavelet co­
efficients. Such a linear analysis (linear in the tP function) generates a continuous multiresolution 
analysis as follows: introduce the linear scaling function If> E Ll(Dl), defined by: 

100 • du 
<p(e) = tP( 'II. sgn(e» - . (23)

lei u 

If> is also such that ¢(ue) =-u8u<p(ue) for all e E Dl. Associate to If> the following functions; 

1 (X - b)If>(b.a)(X) = ;; If> -a- . (24) 

Finally introduce: 
6a(x) = TJ(x,a) = (I,tP(t:,o.)) (25) 

and 
O'a(x) = (I,If>(z:.o.) . (26) 

One then has the linear analogue of Theorem 1 and the corresponding corollary: 

Theorem 3 Let tP E Ll(Dl) be a mother wavelet, such that equation 21 holds, and let If> be the 
associated linear scaling function. Then any I E L2(Dl) can be decomposed as: 

I = lim 0'0. 
0.-0 ._ + ro.o £ 4!! In­

,- 0'00 ':Ii (/0. a ,ao E LO.+ (27) 

=fo
oo 

60. a 

strongly in L'l(lR). 

The integrated wavelets are then defined as: 

S(e) = f\j;(a{) dah. 
2 

a (28) 

and yield a. partition of unity in the Fourier space: 

+00 
jE S(2 e) =cp(2ioe) + E S(2j e) = 1 (29) 

i=-oo j$jo 

The linear wavelets still appear as differences of smoothings at two consecutive scales, as: 

See) = <p(e/2) - <p(e) (30) 

and every J E L2(lR) decomposes as: 
00 

J(z) = E {I,e~} = (f,~) + E(f,e~) (31) 
j=-oo i$jo 

where e:(x) =ai(z - b). 
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3 ASSOCIATED APPROXIMATE FILTERS 

3.1 Pyramidal algorithms 

Let us recall the usual algorithmic structure associated with a multiresolution analysis. Let 
¢ and tP be respectively a scaling function and a wavelet associated with the multiresolution 
analysis, and set, 'r/I E L2( Dl) 

Tj/(n) ={I, tPjn} = 2-j/2 f,d(x)tP(2- j(x - n)tdx 
(32)

Sj/(n) =(I,¢jn) =2- j /2 fR/(x)¢(2-J(x - n»)*dx 

Notice that for any value of the scale parameter a =2j , we sample the corresponding wavelet 
and scaling function transform at unit sampling frequency. 

Then if tP and ¢ are related by 

4>(2e) =mo(e)4>(e) 
(33)

¢(2e) =ml(e)4>(O 

where mo and ml are the 211"-periodic low-pass and high-pass filters 

mace) = Lk hkeike 
(34)

mI(e) = Lk9keike 

then the coefficients may be computed using the following pyramidal algorithm 

Tj/(n) = Lk g'kSj_t/(n k2- j- 1 ) 

Sj/(n) :: Lk h'kSj_t/(n - k2- j- 1 ) 
(35) 

The algorithm is called pyramidal since scaled copies of the same filters are used throughout the 
calculation, and the coefficients are obtained by successive convolutions with such filters. It is 
easy to see that the total number of multiplications necessary to process N samples of say Sol 
is proportional to Nlog(NJ. It is schematically described in figure 1 (in the particular situation 
where the mo(e) filter has only 3 non vanishing coefficients). 

i=O 0 

~o~ooh.1 h hI h'l hI 

pel 

,.,2 

0 

0 
~Y ,°0
00000 

0 0 0 0 0 0J-3 

Figure 1: QMF algorithm associated with the wavelet transform on a fine grid 

3.2 Approximate filters 

We address now the problem of discretization of the previous wavelet decompositions. Up to 
now, we ha.ve only obtained decompositions tha.t are discrete with respect to the scale, and 
continuous with respect to the position. The problem is that no discrete filters are "a-priori" 
available. 
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We shall work with both the linear and the bilinear analysis-reconstruction schemes at the 
beginning, and specify our choice later on. We shall assume from now on that a pair of functions 

mo(~) = ~(2~) 	 (36)
c)(~) 

m1(~) = ~(2~) (37)
c)(O 

can be defined almost everywhere in Dl. 	 This is clearly the case in the bilinear scheme, where 
Iii is monotonous for both ~ ~ 0 and ~ :5 O. The problem is that in general, such a mo-function 
is not 211"-periodic, and thus cannot be used in a pyr3.ll!idal algorithm. 

Nevertheless, a. modification is possible. Indeed, in c)(~) is "concentrated" around the origin, 
in say the interval [-1I",lI'p, then one may expect that c) "does not see too much" the non­
periodicity of mo(~), and that mo(~)i(~) can be well approximated by mg(~)i(~), for some 
211"-periodic function mg(~) 2. 

Let us introduce here for convenience the following subspace of L2(Dl): 

Uo ={f E L2(JR),f =I>:k.l:c)(x - k), {a.l:} E 12(Zt)} (38) 

We will assume tha.t the collection {c)(x - k), k E Zt} is a ruesz basis of Uo, or, equivalently, 
there exists two finite and nonzero constants A and B such that 

A :5 E li(e +2d)l~ :5 B almost everywhere (39) 
.I: 

Then it follows from general results that there exists a function X E L2(Dl) such that the 
sequence {X(z - k), k E Zt} is the biorthogonal basis of {c)(x - k), k E Zt}. X is given by its 
Fourier transform 

i(~) 
(40)x(e) = L.I: li(e +211'k)12 

We will denote by Uo the biorthogonal space of Uo, i.e. the closed linear span of {xCx - k), k E 
2Z}. 

Consider now the discretization of the functions Tif(x) and Sj/(x), that we shall denote by 
Tf(n) and Si(n) respectively: 

Sf(n) = Sj(n) Vn E Zt 
(41)T/'(n) = Tj(n) Vn E Zt 

Let m3(e) E L2([-1I",r]) and mf(~) E L2([_1I",1/']) be two (211'-periodic) candidates for approx­
ima.te filters, and denote by {h%,k E Zt} and {g:,k E Zt} their respective Fourier coefficients. 
We will then set: 

Tf I(n) = L.l:gZ"'S3f(n - k)
{ 	 (42)SU{n) = L.I: h%"'S3J(n - k) 

and 
Tj f( n) =Lit gZ'"suen - 2i.-1 k ) 

{ 	 (43)SJf(n) =L.l:hrSU(n - 2J - 1k) 

lThia _pUG. ill moiivated by the fad ihai we will sample the wavelet tr&llsform &lid the scaling function 
t.rusform at. anit. aampling frequency 

aA lWara! caadidate for m:(~) is the periodization L. mo(~ +2rk) of mo(~), but as we shall see, there are 
mlD1 oiber chaicea. 
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Our purpose is to compare such "algorithmic expressions ..3 with the exact expressions S1 I and 
Tl I, and to find "bcst approximants" for the mg and m~ filters. 

The first remark is the following 

Proposition 1 1. Ker(Sg) =Ut. 

2. 	 S; ·ut =Tj ·ut =0 For any j = 1, .... 

Proof: The first part is a direct consequence of the definition of Uo, and implies thc second part 
by definition 43. 

Our main result is the following. 

Theorem 4 Let c)(x) and q,(x) be the scaling function and the' integrated wavelet respectively 
associated with the infinitesimal wavelet t/J(x), and let 11'<l(~) and ml(e) be the associated low-pass 
and high-pass filters. For i =0,1 set 

p(mj, mn = [in I(m~(~) - m;(e»i({)I:.!de] I/~ (44) 

Then the following properties are satisfied 

1. 	 There exists a unique pair of 27r-periodic filters m~(~) = miCe) minimizing p(m;,mf), 
given by: 

mo(~) = L.l:EZ i(~ +2~k)·i(2(e +2d» (45) 
L.l:ez Ic)(~ + 2d)12 

ml(e) = L.l:ez i(~ + 2~k)*ii(2(e +27rk» (46) 
L.l:EZ Ic)(e + 27rk)!2 

2. 	 For the above choice 01 filters, and setting 

C; =ess sup Imi(e)l, i = 0, 1 	 (47) 
(En 

the following inefJualities hold: 

a d !.=J. 1 - (Coh)J
IISif - Sj/l/ex;) :5 J.L(mo,mo)2 2 , h 11/112 (48) 

1 - (,0 2 

a d!.=J. 	 .r.:;:l-(CoJ2)i-1
IITj/-Tjflloo:5 22 (P(m1,m1)+C1P(mO,mo)v2 . ~ r-: )111112 (49) 

3. 	 For any f E Uo uilo 

SU = sfl 
 (50)
Ttf = Ttl 

Before giving the proof of the theorem, let us give the following immediate coronary: 

3because this is precisely wha.t is numerically computed in practice 
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Corollary 2 Assume that the infinitesimal wavelet "'(x) is associated with a linear "analysis­
reconstruction" scheme. Then the associated approximate QMFs m,({) given by equations 45 

and .16 satisly 
mo({) + mt({) = 1 (51) 

so that we have the "reconstruction algorithm" 

So/(n) =	LTj(n) (52) 
j?o 

This reconstruction formula is the discrete counterpart of Morlet's reconstruction formula 22. 
It was also obtained in a slightly different context by Beylkin and Saito {5]. 

Proof of tbe theorem: Using the inequality IIflloo ~ lIil It 1211" , we shall directly work in the 
Fourier space. First of all, we dearly have 

IISr1- Sflilt 	 ~ EkEZ Ig" Hmg({) - mo({ +21rk)1~({ +211"k)j({ +211"k)ld{ 
~ III I{mg({) - mo({)]i({)j({)ld{ (53)

1/2 
~ 21r1l/1l2 IE{mg({)~({) - ~(2{)12d{ =21rJl(mg, mo)lIflll[ 	 ] 

(the last inequality coming from the Cauchy-Schwartz inequality). This explains the occurence 
of such a term in our formulation. The minimization of this term is a classical problem, and 

leads to 
{ cIi(x +k)*[L;hjcIi(x + l) - ~cIi(i)ldx = 0 Vk E Zt (54)

1ft I 

or, otherwise stated 

1211: eil:e[mO(~) L I~({ +21rlW - L ~({ +211"l)*t(2({ +211"1»]d{ = 0 Vk E Zt (55) 
o IEZ IEZ 

The unique solution is precisely that given in equation 45. The estimation of IITiI - Tf11100 is 
completely similar, and leads to the approximate filter given in equation 45. The details are left 

to the reader. 
Let us now consider larger scales. Before going into the details, let us introduce for conve­

nience the following "intermediate" sequences: 

Tjl(n) = Ekgk*Sgl(n - 2i - 1k) 
(56){ Sj/(n) = Ek h'r S8f(n - 2J -

t k) 

Then clearly 

IIS;I - ~11t ~ 115;1 -~11t +II~ - ~11t (57)
liT;1- Tflilt ~ wry1- Tjllit + IITjl - Tf flit 

Again we focus on the approxima.tions S;I, the proof for the details Tj I being completely 
similar. 

1IIS}I - Sf/iit =Ig1l: IEkEZ mo(2i - ({ +211"k»t(2i-l({ +2d»j({ +21rk) 

- EkEZ mg(2i - t{)i(2i - t ({ +2d»j({ +21rk)ld{ 


21' $ 11/112 [ht Imo(2j-l~)t(2j-t~) _ i(2j~)12d~] 1/2 (58) 

1 

~ 211"1l/1h2l? [IE \mg({)t({) - ~(2{)12d{] 2 = 21r21?Jl(mg, mo)llll12 
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The second term is estimated as follows 

IISj! - S}/III 	 ~ Ilt Imo(21-
1{)IIS;_d({) - -21.-d({)ld{ 

~ esssup{EIt ImgIIlS;_tl - S1- 1/11t 
(59) 

Summarizing, for mg({) = mo({) we have 

liS;1- Stflb 	 ~ 21r21? Jl(mo, rTlo)\lflh +CollSi_d Sf-Iflb 
~ 21r21?Jl(mo,mo)(1 +CoV2 +(Co.;2)2 +... + ((;o.;2)i-I)11/112 (60) 

~ 21r21?Jl(mo, mo)I;~~~1r IIflll 

The same kind of estimates yields the error estimate for the 1j"I coefficients. This achieves the 
proof of the two first items of the theorem. 

Let us turn to the third part of the theorem. Let us tlwll a.ssume that I E Uo. This means 
that in the Fourier space, I is of the form 

j(O = P({)~({) 	 (61) 

for some 21r-periodic function F E L2([_1I",1I"]). Then an explicit computation of SrI - SrI 
yields 

Sr 1- SU = EkEZ(mg({)" - mo({ +21rk)*)I$({ +21rk)12 F({) (62)
= 0 if mg = mo. 

Assume now that I E Uo. This means that in the Fourier space 

j({) = F({)X({) 	 (63) 

The same computation as before yields 

Sf! - SrI =EkEz(mO({)* - mo({ +21rkn~({ +21rk)*X({ +21rk)P({) (64)=0 if mg = mo. 

by definition of the X function (see equation 40 above). This concludes the proof of the theorem. 

Remark: asymptotic behaviour: 
It is interesting to see what is the asymptotic behaviour of the estimates when j ..... 00. 

Consider for instance the estimate of US;1- S111100, the coefficient of 111112 goes as: 

liS;1- S111100 "'j-oo Jl(mo, mo)hC~/(Coh - 1) 11/112 (65) 

(for Co.Ji :f. 1) in the limit. The limit is finite for Co = 1 and zero for Co < 1, while it 
diverges for Co > 1. In the two first cases, this means that the accumulation of errors due to the 
a.pproximate algorithm is compensated by the fact that Sil. lying at larger and larger scales, is 
all the time sampled at the same frequency. This shows that "rE'dundancy implies sta.bility". 

3.3 Decay of approximate filter coefficients 

The localization properties of the {h k } (and thus {gk}) approximate filters can be directly related 
to the regularity properties of the scaling function, as follows. 
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Theorem 5 ut t:P E LJ(Dl) be a p-times differentiable scaling function, and let mo(e) = 
E. h.eilc( be the low-pass filter defined according to equation ./5. Then if for any m = 0, I, ...p 

dm~(e)l< ~ (66)
dem 

- (1 +IWt+< 

for some positive constants K m, E, then ' hI. =O(k-p 
) 	 (67) 

Proof: Assume that ~(e) is p times differentiable. Then after p differentiations, equation 45 
yields 

dPmo(e) LkG({ +2d) 
(68)

--;J[P = (LA: I~({ +2l1"k)1 2 ]p 

where G(e) is a finite linear combination of terms of the form 

~~({) dp-m~({)* 
d{m d{p-m 

and 
~~e) dP-m~2e)* 

mdem dep­

and their complex conjugates. Then the estimate 66 gives 

dpmo(e) E Loo([o, 211"]) (69)d{p 

and 
dpmo({) E G(Dl) (70)dtp 

Moreover, 
'-'1' 12l1' dPmo(e) -iked'' 2l1" 0 ----e 	 (71)kPhk = d{p r,. 

leads to 
Ikl'lhkl ::; ..!..i !dPmo({) Id{ < IldPmoll (72)211" d{P - dep 00 

which proves the theorem. 
'Jlj~, under some weak assumptions on the scaling function, it is possible to get well localized 

filters. However, this problem is completely independent of the accuracy problem addressed in 
the previous section. 

Notice also that theorem 5 is to be compared with similar results in the case of classical 
multiresolutio.a analysis, which led to the notion of r-regular multi resolution analysis (see [61). 

3.4 The bilinear scheme 

We have seen in the corolla,r'y of the previous subsection that the approximate filters mo and m} 
given in 45 and 46 are ideally adapted to the linear analysis-reconstruction scheme. However, 
in the bilinear case, mo and ml cannot be directly used to "reconstruct" the analyzed function 
from the approximate coefficients, since they do not fulfill the QMF condition: 

Imo(e)12+ Im}({)12 i: 1 in general 	 (73) 

11 

A possibility is then to use different filters for the reconstruction, for instance mo as low-pass 
filter, and 

{74} 

as high-pass filter. One has in such a case to be careful with tit(' zeros of the ml(e) filter. 
As an alternative, the same kind of analysis as before can be performed in the bilinear 

"analysis-reconstruction" scheme. The previous arguments have to be applied to the details and 
approximations instead of the wavelet coefficients themselves. 

Si{e) = li(2i e)12 ice) (75) 

Using again approximate filters to evaluate the coefficients, one is then naturally led to the 
quantity: 

(76):?({) = Imo{{)12.9j_d({} 

At the first step for instance, one has to evaluate 

IIs~ - stlloo ::; 111112 in Inmo(e)12-lmo(eWI4>(e)12]12 de (77) 

The minimization of such a quantity naturally leads to 

I	 o(e)12 =LA:EZ li({ +211"kWli(2e +4d)12 (78)m
LkEZ li({ +2d)14 

and similarly 

Im~({W = LA:Ezli(e +2dWI~(2e+ 4d)12 	 (79) 
LkEZ li(e +211"k)14 

It is worth noticing that in such a case, the bilinear scheme is well suited for this pair of filters, 
and ensures the validity of the usual QMF relation: 

Imo({}12 +Im~({W =1 	 (80) 

Moreover, it is easy to derive the "bilinear counterpart" of theort'm 5, relating the length of the 
approximate filters to the regularity of the scaling function. 

3.5 Some complementary remarks 

1. 	The algorithm described above is actua.lly adapted to the problem of finding approximate 
discretization of Littlewood-Paley decompositions, and is a priori independent of the linear 
or bilinear schemes derived from continuous wavelet decompositions. In other words, there 
is no connection between the b discretization problem and the scale discretization (which 
is not a true discretization in the method reported in section 2). Corollary 2 simply states 
that if one considers the filters mo and ml, the choice of the linear scheme yields simpler 
reconstruction formulas. 

2. 	Throughout this paper, we have implicitely fixed a reference scale by the choice of a 
sampling frequency equal to one for a.Il the voices of the wavelet transform. A change of 
this sampling frequency is equivalent to a global scaling of L2(Dl). 
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3. Assume that we are in the case of a. scaling function with exponential decay in the Fourier 
space (i.e. i(e) 5 C4>e-altl for some positive a). Then it is not very difficult to show 
that (in the case of a unit sampling frequency) the approximation of the filters obtained 
by sampling the inverse Fourier transform of mo leads to an error on the scaling function 
coefficients of the order e-a ,.. In the same way, defining the approximate 211'-periodic high­
pass filter by the QMF-relation leads to the same kind of error estimate for the wavelet 
coefficients. 

4. 	Obviously, it follows from the expressions of the approximate filters (both in the linear and 
bilinear schemes) that if 9 and ({I are associated with an usual multiresolution analysis, 
with 211'-periodic filters, one recovers mo =mo and m~ =ml. 

5. 	It was shown in [2] how to use Calderon's formula to get descriptions of the Fourier space 
different from the Littlewood-Paley one, by replacing the powers of 2 by an arbitrary 
monotonous sequence of scale parameters. It sounds reasonable to think of corresponding 
a.pproximate algorithms similar to the one described above, at least for rational scale 
parameters. However this has not been done at the present time. 

4 EXAMPLES 

There are many ex:t.Dlples of continuous wavelets for which an efficient algorithm is needed. We 
describe here some very simple examples (the filters coefficients have been computed using the 
Mathematica. Package). 

4.1 The LOG and DOG wavelets 

The LOG wavelets are widely used in the context of computer vision. LOG stands for "Laplacian 
Of Gauaaians". As stressed in [2], in the linear "decomposition-reconstruction" scheme, if 

1/1(x) = 2-(1- x2)e-Zl/2 (81).,fi 

the associated scaling function and integrated wavelet are given by 

1 _ ll2!p(x) =	--e Z (82)
2v'2if 

and 
9(x) = ~(e-Zl/2 _ 2e-2zl ) (83)

2v211" 
The integrated wavelet is then a DOG wavelet ("Difference Of Gaussians"), and there is no 
problem to derive the details coefficients Tlf form the approximations Sff. But one clearly 
need an efficient algorithm to compute the approximations. In general, the scaling function and 
wavelet have to be scaled properly in order that the corresponding transforms can be accurately 
sampled at unit sampling frequency. We shall then consider more general scaling functions 

!/>(e) =e-e10 	 (84) 

with the corresponding integrated wavelets. We give as examples the plots of the approximate 
low-pass filters mo(~) (the high-pass filter ml(e) is easy to deduce) ,and the coefficients of mote) 
and ml(~) for a = 4 and a = 6 respectively. It is worth noticing that in both cases (and in 
fact for any positive a), the {hk} and {gk} sequences are rapidly decreasing, as a consequence 
oftheomn 5. 
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4.1.1 a = 4 

-10 -5 0 1u 

Figure 2: Approximate low-pass filter for the DOG wavelet with (t = 4 

hk coefficients 

{0.3256327 400276189,0.23348983204217, 0.085 79~244731 082, 
0.01625749135447543,0.0015489926732795,0.0000922406284932685, 
-6.3294 10-6 ,5.04664 W-6 , -3.0372 10-6 , (85)
1.8405310-6 

, -1.1159510-6 ,6.7677210-7 , 

-4.1046310-7 ,2.4895410-7 , -1.5099710-7 ,9.15844 1O-8 } 

gk coefficients 

{0.6743672599723812, -0.2334898320421699, -0.085798244731082, 
-0.01625749135447542, -0.00154899267327945, -0.000092240628493343, 
6.3294 10-6

, -5.04664 10-6 ,3.0372 10-6 , (86) 
-1.8405310-6 ,1.1159510-6, -6.7677210-7 , 

4.1046310-7
, -2.4895410-7, 1.5099710-7 , -9.15844 1O-8 } 

4.1.2 	 a = 6 

-10 -5 0 5 10 

Figure 3: Approximate low-pass filter for the DOG wavelet with a =6 
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I 
The corresponding hI. coefficients read 

{0.3972771041574456,0.2433136948393599,0.05323383400865474, 
0.004788125238023543, -0.00002934485917262438, 
0.00007751303939803943, -0.00003576989742401233, 

(87)
0.00001688424764446744, -7.9739410-6 , 


3.7664510-6 , -1.7791310.... 6 ,8.4039810.... ." 

-3.9697610-7 ,1.8751810-", -8.8577310-8 ,4.184091O-8 } 


and the gIl coefficients are 

{0.6027228958425545, -0.2433136948393598, -0.05323383400865478, 

-0.004788125238023527,0.00002934485917263695, 

-0.00007751303939808579,0.00003576989742395847, (88) 

-0.00001688424764445047,7.9739410-6, 


-3.7664510-6 ,1.7791310-6 , -8.4039810-", 

3.9697610-", -1.8751810-",8.8577310-8 , -4.184091O-8 } 


4.1.3 Precision of the algorithm: 

As we have seen, the estimate of the accuracy of the approximate algorithm is governed by 
the functional p.(rno,mo). We present here numerical estimation of this quantity for the DOG 
wavelets, for various values of the 0 parameter. For instance, /l(mo,rno) =:. 1.03632 10-17 for 
o = I, p.{mo, fho) = 1.63909 10-6 for 0 = 3 and /l(mo, rno) = 0.0012859 for 0 = 6. Figure 4 
represents the logarithm of p( mo, rno) as a function of o. 

-10l 	 :::::::> .....-;=:=:: 

Figure 4: Logarithm of p(mo,mo) as a function of 0 

4.2 "Exponential-type" wavelets 

These wavelets are real-valued wavelets, characterized by their exponential decay in the Fourier 
space. 	Let 

¢n(~) = _1_1{ln e- letlar (89)
(n-l)!an 

n =1, ... 00 then controls the number of vanishing moments, and ¢n(e) has exponential decay 
for all n. A direct computation yields the corresponding scaling function 

<Pn(~) = e-1etlo E..!.I~IP 	 (90)
p=O p! oP 
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Notice that ~n(~) "'e-o 1 +O(l~ln). Then ~n E Cn-I(lR) and 1d'''~/dfnl has exponential decay 
n'tim =0, ...n - 1, which implies that Ilk =:. O(k l

- ). 

The integrated wavelets are easy to deduce, and the associatl'd low-pass filter is represented 

in figure 5, in the case n =1 (with 0 =:. .3). 

0.8, 

-10 -5 0 5 10 

Figure 5: Approximate low-pass filter for "exponential-type" wavelet with 1 vanishing moment 

The case n = 1 is not very interesting numerically because <p is non differentiable at e= 0 
and the mo filter has slow decay. We shall then show the case n =5, 0 = .3 for which the 

low-pass filter is shown in figure 6. 

-10 -5 0 5 10 

Figure 6: Approximate low-pass filter for "exponential-type" wavelet with 5 vanishing moments 

and the 16 top low-pass and high-pass filter coefficients are given by: 

hI. coefficients: 

{0.2608909, 0.21193501, 0.11802165, 0.047464751, 

0.012065044, -0.001261182, -0.004691885, -0.004500855, (91 ) 

-0.0034217616, -0.0023426834, -0.0015318216, -0.00096772754, 

-0.00060530854, -0.00037287531, -0.00023103465, _0.00014240093} 


91. coefficients: 

{0.7391091, -0.21193501, -0.11802165, -0.047464751, 
_0.012065044,0.001261182,0.004691885,0.004500855, (92) 
0.0034217616,0.0023426834,0.0015318216,0.00096772754, 
0.00060530854,0.00037287531,0.00023103465,0.00014240093} 

It is worth noticing that all such coefficients are easy to obtain numerically. 
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4.3 The Cauchy wavelets 

The same filters as before can be used to work with the wavelets that were used by T. Paul 
in a quantum mechanical context (they are canonica.lly associated with the radial Schrodinger 
equation for the Hydrogen atom for instance. They are of the form 

¢n(e) = { (n~l)!ene-( for positive values of e (93)o otherwise 

n = 1, ...00 then controls the number of vanishing moments, and ¢n(e) has exponential decay 
for a.ll n. A direct computation yields the corresponding scaling function 

-( ",n-l1.cp r 't' val f'• (e) = e L..p=O p!" lor POSI Ive ues 0 .. (94)
I{Jn { 0 otherwise 

The first one is particularly interesting since it is canonica.lly related with the Cauchy kernel. 
Indeed, the scaling function coefficients of a function J(z) E H 2( lR) form an analytic function 
of z = b + ia, that is the analytic continuation J(z) of J(z) to the upper half-plane. The 
corresponding wavelet transform is then (up to a factor a) the derivative of J(z) with respect 
to its imaginary part: TJ(b,a) = -a{}(lJ(b + ia). 

The previous filters can then be used to get a fast approximate algorithm for wavelet trans­
form with such wavelets. Of course, adapt~ filters can also be obtained by using directly the 
formula. yielding the mj filters. However, <Pn being discontinuous at the origin for any n, such 
filters are not suitable for numerical use since they have slow decay. 

5 CONCLUSIONS 

We have described in this paper a method that associates a pair of (21r-periodic) filters with 
a Littlewood-Paley (or dyadic wavelet) decomposition, yielding a pyramidal algorithm for the 
computation of a corresponding approximate transform. 

We have in particular shown that in the case where the Littlewood-Paley decomposition 
comes from a "linear scheme" of infinitesimal wavelet analysis (as described in [2]), such filter 
fulfill a kind of "linear" QMF relation, leading to simple reconstruction formulas from the 
approximate coefficients. Our main result was an estimate of the accuracy of the approximate 
algorithm. The problem of finding approximate filters was transformed into a minimization 
problem having a unique solution. Of course when there already exist a pair of 21r-periodic 
filters naturally associated with the wavelet, this solution coincides with it. 

In the case of the "linear scheme" of infinitesimal wavelet analysis, we also got explicit 
expressions for a.pproximate filters. It is to be noticed that in some cases, the error estimates 
go to zero as the scale becomes larger and larger. This is due to the fact that the wavelet 
transform is sampled at a fixed sampling frequency, independently of the scale. In such cases, 
the redundancy of the wavelet transform implies the stability of the algorithm. 

As in the case of usual multiresolution analysis, the localization (Le. decay properties) of 
the approximate filters is directly related to the regularity of the scaling function. 

We also have discussed some simple examples, in particular those of the LOG and DOG 
wavelets in the linear scheme, familiar to computer vision specialists, and wavelets of exponential 
type. If the corresponding scaling functions are sufficiently well localized in the Fourier space, 
good error estimates are obtained. 	 . 
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Let us notice that n-dimensional generalizatiuns of uur III('thod with the tensor-product 
construction of filters are straightforward. 
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