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Abstract

It is well known that with any usual multiresolution analysis of L%(IR) is af;sociated
a pyramidal algorithm for the computation of the correeponding'wavelef: coefficients. It
is shown that an approximate pyramidal algorithm may be associated with more general
Littlewood-Paley decompositions. Accuracy estimates are provided for such approximate
algorithms, Finally, some explicit examples are studied.

1 INTRODUCTION

Wavelet analysis has emerged in the past ten years as a completely generic methodology for
solving problems in many different areas such as mathematical analysis and operator theory,
numerical analysis, signal and image processing, computer vision, computer musics, turbulence,
astrophysics for instance. Among the advantages of wavelet decompositions, their relative sim-
plicity and the existence of associated fast algorithms are ones of the most important [1] [6].

There exist essentially two different approaches to wavelets, namely the discrete and the
continuous ones. Roughly speaking, the discrete wavelet decompositions are most adapted to
problems in which it is important to reduce the volume of data, for instance in signal or image
compression, or numerical analysis. On the other hand, for physical signal analysis problems,
one is interested in keeping redundancy on the wavelet transform, to get a finer analysis.

The main drawback of continuous wavelet decompositions is that there is a priori no associ-
ated fastWlgorithm for the computation of the corresponding wavelet transform. Some attempts
have been made in order to cure such a drawback, mainly by matching a multiresolution frame-
work to the continuous setting (see for instance [4] [7]). They are in general associated with
limited classes of wavelets.

We describe here a method for associating fast algorithms to continuous wavelet decompo-
sitions, based on the same philosophy. It is in particular shown that starting from an usual
mother wavelet, the scale discretization yields a new wavelet (called the integrated wavelet) to
which is associated a pair or low and high-pass filters. These filters are in general not discrete,
but may in some situations be well approximated by discrete filters, the localization of which
can be directly related to the regularity of the scaling function.

*Depart. to de Matemética, UNLP, Argentina
!GDR *Ondelettes”, CNRS .

The paper is organized as follows. Section 2 is devoted to a description the version of
continuous wavelet decompositions that we will use in the sequel. In section 3 we present the
algorithmic aspects we are interested in, and in particular our inain result (theorem 4). We
present some examples in section 4 and section 5 is devoted to conclusion.

Throughout this paper we shall use the following notations. We shall denote by || - ||, the
LP(IR), LP([~n,x]) and the ¢?(Z) norms. The LP([-m,x}]) norm is normalized as:

= ([ Pz

Our conventions for Hermitian product and Fourier transform in L2(IR) are the following ones:

(1.9 = [ S@gterdz .

where the star denotes complex conjugation, and

for= /R f(z)e € dx

2 CONTINUOUS WAVELET DECOMPOSITIONS

Let us start from standard notions of continuous wavelet analysis. We will focus on the analysis of
L*(IR), and sometimes describe in a few words the corresponding results in the H?(IR) context

(we will denote here by H*(IR) = {[ € L*(R), f(€) =0 vE< 0} the complex Hardy space).
We shall be interested here in two "decomposition-reconstruction” schemes, corresponding to
different "reconstruction wavelets”.

2.1 The bilinear scheme

Generically, an infinitesimal wavelet (or mother wavelet) is a function ¢ € LY(IR such that the
following admissibility condition holds:

© . 2 dy %, 2 du
o= [Tl = [T 2 = (1)
(in such a case, 9 is in general taken to be a real-valued function). If 1]: is say differentiable,
cquation 1 basically means that ¥(0) = 0, otherwise stated:

[_m P(z)dz =0 (2)

Such a mother wavelet provides the following analysis of L?(IR): for any (b,a) € IR x IRS, one
introduces the wavelet:

vou@) = 2 v (222) ®

and one has the following representation theoremn, the proof of which is well known and can be
found for instance in [3] or [2].

Theorem 1 (Calderén) Let ¥ be a mother wavelet. Then any f € L*(IR) decomposes as
follows:

I = Irxry T1(8:0) $pp.) dhda (4)
Tl(b’ a) = (fr ¢(b,a)>

strongly in L*(IR).



Ty € L3(IR x IR}) is called the wavelet transform of f with respect to the analyzing wavelet ¢.
If ¢ is sufficiently well localized in time and frequency (i.e. both ¢ and ¥ have sufficient decay at
infinity), Ty gives informations on the time-frequency localization of f. Conversely, equation 4
states that the wavelet transform is invertible on its range, allowing the reconstruction of the

analyzed function from its wavelet transform.
If one restricts to the Hardy space H?(IR), a weaker admissibility condition (concerning only
the positive frequency part of 1) is sufficient. Simply assuming that:

cy = /000 lvzv(u)r du =1 (5)

u

Theorem 1 holds for any f € H*(IR).
Let then ¥(z) be an infinitesimal wavelet, and let $(z) be such that

ool = [ pusemo] 5 (©)

. - 2 . 2 .
In other words, [$(u)|" = ~ud. [B(ue)|" for all € € IR, and lim [8(6)]" = 0. @ is called
scaling function, and one associates to it the corresponding:

- 1 z-b
S Bpay(z) = @ ( 2 ) ‘ (7)
To any f € L*(IR) associate its smoothing (with respect to ®) at scale a:
(@) = [ {1,800 8000)(2) db ®
that is: " d
- u
(@)= [ o) )
a

where d,(z) stands for the details of f(z) at scale a:
do(2) = [ btoaVis(2)db (10)

Then s, € L?({R), and one has the following decompositions, whose proofs are immediate from
that of theorem 1:

Corollary 1 Let ¢ an infinitesimal wavelet, and & an associated scaling function. Then any
f € L*IR) can be ezpressed as:

. % d
f=‘!l_’}303n=30a +L da—ag' (11)
(for any ag € IR} ) strongly in L*(IR).

The corollary also holds in the H?*(IR) context. Let us now set

21

D)= [ i) % (12)

Then D; € L*(IR) represent the details of f(z) visible at scale 2*! and not at scale 27, and

—~ . 2=
Die)=Jte) [ |puae)f 2 a. (13)
Introducing the function ¥(z}, such that:
- LI
ol = [ e £ (14)
one then has: 2 )
D) = fi©) [v@e)f - (15)

We will refer to the ¥(z) function as the (global or integrated) wavelet. Notice that equation 14
does not completely define the wavelet ¥. Once again, one can restrict to wavelets with positive-
valued Fourier transform, but this is not necessary. By construction, the integrated wavelets.
lead to a partition of unity in the Fourier space as follows:

$oo 2 - 2 Jjo R 2
3 [E@e) = el + 3 |F@e)| =1 (16)
j=—co J=—00
for all £ € IR. We also have:
B = 18(¢/2)[ - 19(E)IF - (17)
Defining the dilates and translates of the 7 and ¥/ as
bj(z) =2779(27(z - b)) (18)
Yi(z) =2779(279(z - b))
we then have:

Theorem 2 Let ¢ an infinitesimal wavelet, and let ¥ and ® be associated integrated wavelet
and scaling functions as in equations 14 and 6. Then any f € L*(IR) can be decomposed as:

1= [rery e+ Y

J=jo

iy @i 19
[ vy wae (19)

strongly in L*(IR).
We shall use the following notations

Tif(b) = (£, %)) 20)
5;£(b) = (f,%})

2.2 " The linear scheme

It is well known that the reconstructing and the analyzing wavelets can be decoupled i.e. one
can use differents infinitesimal wavelets for the computation of the coefficients and for the re-
construction of the analyzed function from the coefficients. In such a case, the admissibility
condition 1 has to be modified accordingly.



http:coroJla.ry

A particular example of such a decoupling, which has been known for a long time, consists
in taking formally a Dirac distribution for the reconstructing wavelet. Assuming instead of

equation 1 that

k= [ w(u——/ R (21)
one has the following decomposition of any f € L?(IR):
di
f(.’t) = -/R; (fy ¢’(z,a)) —f (22)

strongly in L?(IR). This is the so-called Morlet reconstruction formula of f from its wavelet co-
efficients. Such a linear analysis (linear in the ¢ function) generates a continuous multiresolution
analysis as follows: introduce the linear scaling function ¢ € L'(IR), defined by:

. o du
@6 = [ duson(e) (23)
« is also such that :Z,(u.f) = —udyp(uf) for all £ € IR. Associate to  the following functions:
1 -b
voa@ =5 0 (5) - (2¢)
Finally introduce:
ba(z) =Ty(z,8) = {f, ¥(z.0)) (25)
and
00(3) ={f, \p(.r,a)> . (26)

One then has the linear analogue of Theorem 1 and the corresponding corollary:

Theorem 3 Let ) € L}(IR) be a mother wavelet, such that equation 21 holds, and let ¢ be the
associated linear scaling function. Then any f € L*(IR) can be decomposed as:
f = lim A
,“aoo‘*'fo “a a0 € IR (27)
= fo 6. 2 a
strongly in L*(IR).
The integrated wavelets are then defined as:

~ 1. d
86 = [ $a) T (28)
and yield a partition of unity in the Fourier space:
+oo . -
> 06 =92+ 3 8(2¢) =1 (29)
j=-00 i<ie

The linear wavelets still appear as differences of smoothings at two consecutive scales, as:

0(&) = p(€/2) ~ @(€) (30)
and every f € L3(IR) decomposes as:
@)= 3 (£,0d) ={f,ef)+ Y (1, 05) (31)
-0 i<io

where 8}(z) = ©/(z - b).

3 ASSOCIATED APPROXIMATE FILTERS

3.1 Pyramidal algorithms

Let us recall the usual algorithmic structure associated with a multiresolution analysis. Let
¢ and ¢ be respectively a scaling function and a wavelet associated with the multiresolution
analysis, and set, Vf € L?(IR)

Tif(n) = {f,m) =277 [ f(2)(27%(z - n))"dz (32)
Sif(n) = {f.¢in) = 2792 [ f(2)$(277(z - n))"dz

Notice that for any value of the scale parameter a = 27, we sample the corresponding wavelet
and scaling function transform at unit sampling frequency.
Then if ¢ and ¢ are related by

$(26) = mo(€)d(6) (33)
$(26) = mi(E)e(€)

where mg and m, are the 2x-periodic low-pass and high-pass filters

mo(€) = Ty haelk
m) = Tygue (&4

then the coefficients may be computed using the following pyramidal algorithm

Tif(n) =Ty 0iSi-1f(n—k277"1) (35)
Sif(n) =T hiS;oif(n - k2731)

The algorithm is called pyramidal since scaled copies of the same filters are used throughout the
calculation, and the coefficients are obtained by successive convolutions with such filters. It is
easy to see that the total number of multiplications necessary to process N samples of say S f
is proportional to N log(N). It is schematically described in figure 1 (in the particular situation
where the mo(¢) filter has only 3 non vanishing coefficients).

i

Figure 1: QMF algorithm associated with the wavelet transform on a fine grid

3.2 Approximate filters

We address now the problem of discretization of the previous wavelet decompositions. Up to
now, we have only obtained decompositions that are discrete with respect to the scale, and
continuous with respect to the position. The problem is that no discrete filters are "a-priori”
available.



We shall work with both the linear and the bilinear analysis-reconstruction schemes at the
beginning, and specify our choice later on. We shall assume from now on that a pair of functions

8(20)
ma(€) = 3o (36)
¥(2)
m(©) = 3 (37)

can be defined almost everywhere in IR. This is clearly the case in the bilinear scheme, where
|3] is monotonous for both £ > 0 and £ < 0. The problem is that in general, such a mq-function
is not 2x-periodic, and thus cannot be used in a pyramidal algorithm.

Nevertheless, a modification is possible. Indeed, in Q(Q is "concentrated” around the origin,
in say the interval [, 7 x]!, then one > may expect that @ "does not see too much” the non-
periodicity of mg(£), and that mo(f)tb(f) can be well approximated by mo({)@(f) for some
2x-periodic function m§(¢) 2.

Let us introduce here for convenience the following subspace of L*(IR):

Up = {f € L*(IR), f = }_ (2 - k), {as} € £(2)} (38)

We will assume that the collection {$(z ~ k), k € Z} is a Riesz basis of Up, or, equivalently,
there exists two finite and nonzero constants A and B such that

A< Y |8(£ + 27k)f* < B almost everywhere (39)
k

Then it follows from general results that there exists a function x € L?*([R) such that the
sequence {x(z — k), k € Z} is the biorthogonal basis of {®(z ~ k), k € Z}. x is given by its
Fourier transform 5(5)
O = STate+ 2emp

We will denote by llo the bxorthogona.l space of Up, i.e. the closed linear span of {x(z-k), ke
z}.

Consider now the discretization of the functions T} f(z) and §; f(z), that we shall denote by
T#(n) and S§(n) respectively:

(40)

5‘(n) =S5i(n)Vne Z

THn) =Ti(n)Vne Z (41)

Let m§(£) € L*([-,7]) and m{(€) € L*([~,7]) be two (2x-periodic) candidates for approx-
imate filters, and denote by {h},k € Z} and {¢2,k € Z} their respective Fourier coefficients.

‘We will then set: ‘
T f(n) = Lig*S¢f(n—k) 2
$2f(n) = Ty hSéf(n— k) (42)
and )
TE(n) = SagkSef(n - 271k) o
S3f(n) =Ty hgS3f(n - 29-1) (43)

This assumption is motivated by the fact that we will sample the wavelet transform and the scaling function
transform at unit sampling frequency

2A natural candidate for mg(¢) is the periodization 37, ma(€ + 2xk) of mo(€), but as we shall see, there are
many other choices.

Our purpose is to compare such "algorithmic expressions™ with the exact expressions Sd f and
T‘if, and to find "best approximants” for the m3 and m$ filters.
The first remark is the following

Proposition 1 1. Ker(S$) = Ut.
2. 85} U =T¢ -Uf =0 Foranyj=1,...

Proof: The first part is a direct consequence of the definition of [, and implies the second part
by definition 43.
Our main result is the following.

Theorem 4 Let ®(z) and ¥(z) be the scaling function and the integrated wavelet respectively
associated with the infinitesimal wavelet (z), and let mo(£) and i, (£) be the associated low-pass
and high-pass filters. Fori=10,1 set

o, M3
uima ) = [ [ 1(m(©) - menderree] )

Then the following properties are satisfied

1. There ezists a unique pair of 2r-periodic filters m¢(£) = my(€) minimizing p(m;, m¢),

given by: . R
o Thez (€ + 2mk) B(2(E + 27k)) (45)
Mol = s g e+ 2r k)P
n(6) = rez B(E +27k) B(2(£ + 27k)) (46)

Thez IB(€ + 27k)2

2. For the above choice of filters, and setting

C; = esssup |m;(§)], i=0,1 (47)
¢ER

the following inejualities hold:

1531 = 53 flle < o, mo)2 7 L L2 ‘C""\;’ l1£ll2 (48)

Cov2)/-!
T3S = Tl < 25, ) + Cumo, o3 =Dy, )

- 3. Forany f €Uy Uiy
S¢f =S¢f (50)
Tif =T{f

Before giving the proof of the theorem, let us give the following immediate corollary:

Sbecause this is precisely what is numerically computed in practice



Corollary 2 Assume that the infinitesimal wavelet Y(z) is associated with a linear "analysis-
reconstruction” scheme. Then the associated approzimate QMFs mi(€) given by equations 45

and 46 satisfy

to(€) + mi(§) =1 (51)
so that we have the "reconstruction algorithm”
Sof(n) =Y Ti(n) (52)
i20

This reconstruction formula is the discrete counterpart of Morlet’s reconstruction formula 22.
It was also obtained in a slightly different context by Beylkin and Saito [5]. .

Proof of the theorem: Using the inequality ||f]lee < |If[}1/27, we shall directly work in the
Fourier space. First of all, we clearly have

57 = 5811l < Thez ST ImE(€) — mo(€ + 2mk)I®(E + 2mk) f(€ + 2xk)|dé '
< frilm8(&) - mo(E)](E)F(E)1dE e (53)

< nnfnz[fnima(f)i(o - 6(25)&5] = 27 p(m3, mo)[|fllz

(the last inequality coming from the Cauchy-Schwartz inequality). This explains the occurence

of such a term in our formulation. The minimization of this term is a classical problem, and

leads to 1.z

/ oz + k[ ez +1) - 52z =0 Vke Z (54)
R : 22

or, otherwise stated

j b Mma(6) 3 186 +2nD) - SO®(E + 2m)"(2E + 2n))dE =0 Vh€ Z (55)
0 €% e

The unique solution is precisely that given in equation 45. The estimation of ||Tff — T¥ f{]co is
completely similar, and leads to the approximate filter given in equation 45. The details are left
to the reader. ) ' ‘

Let us now consider larger scales. Before going into the details, let us introduce for conve-
nience the following "intermediate” sequences:

Tif(n) = Tuai"Sif(n-2k) (56)
S;[(n) = T keSS f(n ~ 2-1k)
Then clearly - . o
55T - 3l < I8F - 53Tl + 115} - Sl 1)

ITET = Téflh < WIS = Tiflh + TS - Téflls
Again we focus on the approximations S,‘-‘f, the proof for the details T f being completely
similar.

“g} - @Hl = [ | Thez mo(271(€ + 2?r/c))$(25“‘(£ + 2rk))f(€ + 27k)
- Thez M2 E)(21(E + 2mk)) f(£ + 2nk)|dE

. - . ~ . 1/2
20 5 1l fm Im32 1) 16) - ws)fds] (58)
i
< 2n| fll2'F [fn |ma(&)&(¢) - 6(25)i’de]’ = 2r2'F u(m, mo)|| f1l2

9

The second term is estimated as follows
U837 = Siflh < g lma(2 OUST, S(€) - SE, F(€)lde
< esssupee p mgIISe S - S, flh

Summarizing, for m3(£) = 1mo(€) we have

(59)

ST - 8371 < 2625 u(ii0, ma)lIflla + CollST1 S = S A1l
< 2m2°F p(rmo, mo)(1 + Cov2 + (Cov/2? + .. + (CovZYNIIfl:  (60)

1= . -
< 2025 (g, mo) ELEL | 1

The same kind of estimates yields the error estimate for the 17 f coefficients. This achieves the
proof of the two first iteins of the theorem.

Let us turn to the third part of the theorem. Let us then assume that f € Uy. This means
that in the Fourier space, f is of the form

f(&) = F©)®(6) (61)

for some 2rr-periodic function F' € L¥([-#,7]). Then an explicit computation of 5"‘,"\}' - Stf
yields

STT - S = Thez (m3(€)" = mol€ + 20k))B(E + 2nk) P F(E)

62
=0 if m§ = . (62)

Assume now that f € I)o. This means that in the Fourier space
flo) = Fox© (63)

The same computation as before yields

SET =S4 = Tiex (md(&)" — mo(€ + 2nk)")8(€ + 20k)"R(E + 27k) F(£) (64)
=0 if m§ = .

by definition of the x function (see equation 40 above). This concludes the proof of the theorem.

Remark: asymptotic behaviour:

It is interesting to see what is the asymptotic behaviour of the estimates when j — o0.
Consider for instance the estimate of {15¢f - Sfmm, the coefficient of || f]], goes as:

11551 = 5% flloo ~jmsco H(1ig, ma)V2CE/(CoV'2 - 1) |1 f1l2 (65)

(for Cov/2 # 1) in the limit. The limit is finite for Co = 1 and zero for Co < 1, while it
diverges for Co > 1. In the two first cases, this means that the accumulation of errors due to the
approximate algorithm is compensated by the fact that S;f, lying at larger and larger scales, is
all the time sampled at the same frequency. This shows that "redundancy implies stability”.

3.3 Decay of approximate filter coefficients

The localization properties of the {h;} (and thus {gs}) approximate filters can be directly related
to the regularity properties of the scaling function, as follows.

10



Theorem 5 Let ¢ € L'(IR) be a p-times differentiable scaling function, and let fg(§) =
pant hiei¥ be the low-pass filter defined according to equation {5. Then if for anym = 0,1, ...p
dm4(£) Kn
< 66)
dm |7 (14t (

for some positive constants K, ¢, then
hg = O(K7F) (67)
Proof: Assume that (&) is p times differentiable. Then after p differentiations, equation 45
yields i
Pro(€) _ T4 Gl(E+ 2rk) (©8)
dgp (4166 +2nk) 2P

where G(€) is a finite linear combination of terms of the form

dm(6) - (E)"
dgm  dgrm

and R N
dmg(£) dP-"g(26)"

dm derm
and their complex conjugates. Then the estimate 66 gives

T8 ¢ 1=(0.2m) (69)
and .
d’;’;:{,@ € C(IR) (70)
Moreover, v ir g
Why = /0 ——%‘,—Qe"“‘fd{ (1)
leads to . -
Pl < 5 [ |75 at < 1R e (72)

which proves the theorem.

Thus, under some weak assumptions on the scaling function, it is possible to get well localized
filters. However, this problem is completely independent of the accuracy problem addressed in
the previous section.

Notice also that theorem 5 is to be compared with similar results in the case of classical
multiresolutiop analysis, which led to the notion of r-regular multiresolution analysis (see {6]).

8.4 The bilinear scheme

We have seen in the corollary of the previous subsection that the approximate filters /g and i,
given in 45 and 46 are ideally adapted to the linear analysis-reconstruction scheme. However,
in the bilinear case, /g and iy cannot be directly used to "reconstruct” the analyzed function
from the approximate coefficients, since they do not fulfill the QMF condition:

Imo(€)* + [m1(€) # 1 in general (13)

11

A possibility is then to use different filters for the reconstruction, for instance o as low-pass
filter, and

— 17 2
(e = L=1TdE (74)

as high-pass filter. One has in such a case to be careful with the zeros of the () filter.

As an alternative, the same kind of analysis as before can be performed in the bilinear
"analysis-reconstruction” scheme. The previous arguments have to be applied to the details and
approximations instead of the wavelet coefficients themselves.

5 =1BOE (75)

Using again approximate filters to evaluate the coeflicients, one is then naturally led to the
quantity: . .
s3(6) = Im3(O) 53, 1(6) (6)

At the first step for instance, one has to evaluate
- 2
15§ = il < 111, [1mB(OF ~ o€ B(O]" de )
The minimization of such a quantity naturally leads to

Thez |B(€ + 27k)P|9(2€ + amk)}? (78)
Tiez |B(E+ 27k

Img()I* =

and similarly

Trez |B(6 + 2mR)1¥(26 + dmk)? (79)
Thez |96 + 2mk)|

It is worth noticing that in such a case, the bilinear scheme is well suited for this pair of filters,
and ensures the validity of the usual QMF relation:

Img(E)N? + Imi(€)* = 1 (80)

Im$(O)f* =

Moreover, it is easy to derive the "bilinear counterpart” of theorem 5, relating the length of the
approximate filters to the regularity of the scaling function.

3.5 Some complementary remarks

1. The algorithm described above is actually adapted to the problem of finding approximate
discretization of Littlewood-Paley decompositions, and is a priori independent of the linear
or bilinear schemes derived from continuous wavelet decompositions. In other words, there
is no connection between the b discretization problem and the scale discretization (which
is not a true discretization in the method reported in section 2). Corollary 2 simply states
that if one considers the filters g and ), the choice of the linear scheme yields simpler
reconstruction formulas.

2. Throughout this paper, we have implicitely fixed a reference scale by the choice of a
sampling frequency equal to one for all the voices of the wavelet transform. A change of
this sampling frequency is equivalent to a global scaling of L?(IR).

12



e in the case of a scaling function with exponential decay in the Fourier

. g::em(‘;;l.m%&e)a; Cye~Hl for some positive @). Then if is x'\ot very difficult to s'how

that (in the case of a unit sampling frequency) the approximation of the ﬁhc.ers Obtm{led

by sampling the inverse Fourier transform of mp !eafis to an error on the sca.hn.g f}mc‘uon

coefficients of the order e™2". In the same way, defining the approxm}a.te 2x-periodic high-

pass filter by the QMF-relation leads to the same kind of error estimate for the wavelet
coefficients.

4. Obviously, it follows from the expressions of the approximate filters (b?th in tl.\e linear a:‘xd
) bilinear schemes) that if & and ¥ are associated with an usual multiresolution analysis,
with 2r-periodic filters, one recovers m§ = mo and m§{ = m,.

5. It was shown in [2] how to use Calderdn’s formula to get descriptions of the Fourier space
different from the Littlewood-Paley one, by replacing the powers o'f 2 by an arbnr?.ry
monotonous sequence of scale parameters. It sounds reasonable to think of con:espondmg
approximate algorithms similar to the one described above-, at least for rational scale
parameters. However this has not been done at the present time.

4 EXAMPLES

There are many examples of continuous wavelets for which an efficient algorithm is need.ed. We
describe here some very simple examples (the filters coefficients have been computed using the

Mathematica Package).

4.1 The LOG and DOG wavelets

The LOG wavelets are widely used in the context of computer vision. LOG stands for "Laplacian
Of Gaussians”. As stressed in [2], in the linear "decomposition-reconstruction” scheme, if

¥z) = f(l - g?)em /2 (81)

the associated scaling function and integrated wavelet are given by

¢lz) =5 me**’“ (82)
d 2
= o(z) = \/‘5;(5”’/2 - 2e7%") (83)

The integrated wavelet is then a2 DOG wavelet ("Difference Of Gaussxanz;”), and there is no
problem to derive the details coefficients T“ f form the approximations S¢f. But one clearly
need an efficient algorithm to compute the approxxmatxons In general, the sca.hng function and
wavelet have to be scaled properly in order that the corresponding transforms Fan be aCf:urately
sampled at unit sampling frequency. We shall then consider more general scaling functions

$(8) = e/ (84)
with the corresponding integrated wavelets. We give as examples the plots of the approximate
low-pass filters g(€) (the high-pass filter 7, (§) is easy to deduce) , and the coefficients of 7fqg(£)
and ;(£) for & = 4 and a = 6 respectively. It is worth noticing that in both cases {and in
fact for any positive a), the {h;} and {gr} sequences are rapidly decreasing, as a consequence
of theorem 5.
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Figure 2: Approximate low- pass filter for the DOG wavelet with @ = 4

ki coefficients

{0.3256327400276189, 0.23348983204217, 0.0857982 14731082,
0.01625749135447543,0.0015489926732795, 0.0000922406 284932685,

—6.3294 107%,5.04664 108, —3.0372 1079, (85)
1.84053 1076, ~1.11595 10~,6.76772 10~7,

—4.10463 1077,2.48954 10”7, - 1.50997 10~7, 9.15844 107%}

gi coefficients

{0.6743672599723812, —0.2334898320421699, —0.085798244731082,
—0.01625749135447542, -0.00154899267327945, —0.000092240628493343,

6.3294 10~%, —5.04664 10-°, 3.0372 10-, (86)
—1.84053 108, 1.11595 105, -6.76772 10~7,

4.10463 1077, ~2.48954 1077, 1.50997 107, ~9.15844 10-8}

4.1.2 [+ :6

10 B3 0 5 10
Figure 3: Approximate low-pass filter for the DOG wavelet with o = 6



The corresponding hy coefficients read

{0.3972771041574456, 0.2433136948393599, 0.05323383400865474,
0.004788125238023543, —0.00002934485917262438,

0.00007751303939803943, —0.00003576989742401233,

0.00001688424764446744, ~7.97394 107, (87)
3.76645 109, —1.77913 1075, 8.40398 107,

~3.96976 10~7,1.87518 1077, —8.85773 1075, 4.18409 1078}

and the g coefficients are

{0.6027228958425545, —0.2433136948393598, —0.05323383400865478,
—0.004788125238023527, 0.00002934485917263695,
~0.00007751303939808579, 0.00003576989742395847,
-0.00001688424764445047,7.97394 1076,

-3.76645107%,1.77913 10~%, —8.40398 107,

3.96976 107, -1.87518 10~7,8.85773 107%, -4.18409 108}

(88)

4.1.3 Precision of the algorithm:

As we have seen, the estimate of the accuracy of the approximate algorithm is governed by
the functional u(mg,mg). We present here numerical estimation of this quantity for the DOG
wavelets, for various values of the a parameter. For instance, u(mp, o) = 1.03632 10~!7 for
a = 1, u{mg,g) = 1.63909 10~° for @ = 3 and p(my, o) = 0.0012859 for a = 6. Figure 4
represents the logarithm of u(mg,Mg) as a function of a.

Figure 4: Logarithm of u(mo, ) as a function of «

4.2 "Exponential-type” wavelets

These wavelets are real-valued wavelets, characterized by their exponential decay in the Fourier
space, Let

- 1 n
%(6) = (n"'.:"_l)!ii‘!;e'm,a (89)

n = 1,...00 then controls the number of vanishing moments, and ,(£) has exponential decay
for all n. A direct computation yields the corresponding scaling function

() = e-lia 3 LIEP )

p:‘)p! a?
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Notice that $u(€) ~e~o 1+ O(I€]"). Then ¢y € C*7'(IR) and {d™$/d€™| has exponential decay

¥m = 0,...n — 1, which implies that hy = O(k*—™).
The integrated wavelets are easy to deduce, and t
in figure 5, in the case n = 1 (with o = .3).

he associated low-pass filter is represented

-10 -5 ] 5 10

Figure 5: Approximate low-pass filter for "exponential-type” wavelet with 1 vanishing moment

cause ¢ is nondifferentiable at £=0

=1i i i merically be
The case n = 1 is not very interesting numerically e 3 for o hich the

and the mg filter has slow decay. We shall then show the case
low-pass filter is shown in figure 6.

5 10
ential-type” wavelet with 5 vanishing moments

Figure 6: Approximate low-pass filter for "expon
and the 16 top low-pass and high-pass filter coefficients are given by:
hi coefficients:
{0.2608909,0.21193501,0.11802165,0.047464751,
0.012065044, —~0.001261182, —0.004691885, —0.004500855, (91)
~0.0034217616, —0.0023426834, ~0.0015318216, —0.00096772754,
~0.00060530854, —0.00037287531, —0.00023103465, —0.00014240093}

gi coefficients:

{0.7391091, —0.21193501, ~0.11802165, —0.047464751,

—0.012065044, 0.001261182, 0.004691885, 0.004500855, (92)
0.0034217616,0.0023426834, 0.0015318216, 0.00096772754,
0.00060530854,0.00037287531, 0.00023103465, 0.00014240093}

It is worth noticing that all such coefficients are easy to obtain numerically.
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4.3 The Cauchy wavelets

i lets that were used by T. Paul
ters as before can be used to work with the wave ' : '
:ih: B:T:tfxlnemecha.nical context (they are canonically associated with the radial Schrodinger
i
equa?ion for the Hydrogen atom for instance. They are of the form

. _ F-ffﬁfﬂf-e for positive values of £ (93)
$a(6) = { {

otherwise

= 1,...00 then controls the number of vanishing moments, and $n(€) has exponential decay
for auy,;, A direct computation yields the corresponding scaling function

) et Z";é l!{P for positive values of £ 04
(€)= { 0 E otherwise 54

is particularly interesting since it is canonically related with the Cauchy kernel.
’le‘x}:ieeeillr,s::;en:cxa.liﬁg functim{ coefficients of a fu.nction f(z) € H*(IR) form an analytic function
of z = b+ ia, that is the analytic continuation f(z) of f(z) to 'the.upper half,p‘]an& The
corresponding wavelet transform is then (up. to a factor a) the derivative of f(z) with respect
to its imaginary part: Ty(b,a) = —ad, f(b + ia). ‘ ‘

The previous filters can then be used to get a fast approximate a.lgomhm fof wav_elet trans-
form with such wavelets. Of course, adapted filters can als_o be obtained by using directly the
formula yielding the ; filters. However, ¢, being discontinuous at the origin for any n, such
filters are not suitable for numerical use since they have slow decay.

5 CONCLUSIONS

We have described in this paper a method that associates 2 pair of (2x.-periodic)- filters with
a Littlewood-Paley (or dyadic wavelet) decompositfion, yielding a pyramidal algorithm for the
i a corresponding approximate transform.

wm\l’;:t;t;:en ?xf particull;r shofm rg:at in the case where the Littlewoo('LPal?y decomposition
comes from a "linear scheme” of infinitesimal wavelet analysis (as descr}bed in [2]), such filter
fulfill a kind of "linear” QMF relation, leading to simple reconstruction formulas frorfx the
approximate coefficients. Our main result was an estimate of the accuracy. of the a?;fro‘xxm’ate
algorithm. The problem of finding approximate filters was tra.nsforrfled mto. a mxmmlzz}m).n
problem having a unique solution. Of course when there already exist a pair of 2x-periodic
filters naturally associated with the wavelet, this solution coincides with it. N

In the case of the "linear scheme” of infinitesimal wavelet analysis, we also got e.xplxcn
expressions for approximate filters. It is to be noticed that in some cases, the error estimates
go to zero as the scale becomes larger and larger. This is due to the fact that the wavelet
transform is sampled at a fixed sampling frequency, independently of the scale. In such cases,
the redundancy of the wavelet transform implies the stability of the algorithm. '

As in the case of usual multiresolution analysis, the localization (i.e. decay properties) of
the approximate filters is directly related to the regularity of the scaling function.

We also have discussed some simple examples, in particular those of the LOG and DOG
wavelets in the linear scheme, familiar to computer vision specialists, and wavelets of exponential
type. If the corresponding scaling functions are sufficiently well localized in the Fourier space,
good error estimates are obtaired.
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Let us notice that n-dimensional generalizations of our method with the tensor-product
construction of filters are straightforward.
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