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vertices where the probability of two vertices being joined by a link is peN). Assuming that peN) 

goes to zero more slowly than O(lIN), we prove the following results: 1) IT the number of stored 

patterns, meN), is small enough such that m(N)/(Np(N)) ! 0, as N i 00, then the free energy of 

this model converges, upon proper rescaling, to that of the standard Curie-Weiss model, for almost 

all choices of the random graph and the random patterns. 2) IT in addition meN) < In NI In2, we 

prove that there exists, for T < 1, a Gibbs measure associated to each original pattern, whereas 

for higher temperatures the Gibbs measure is unique. The basic technical result in the proofs is a 

uniform bound on the difference betwen the Hamiltonian on a random graph and its mean value. 
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I. Introduction 

The Hopfield model of an autoassociative memory (HoJ is described by a Hamiltonian function 

m 

HNUitT) -"N I: I:erejtTitTj (1.1) 
(i.;)eA)( A ,,=1

iri-; 

on the space SN of spin configurations tT == {tTihEA whe:re, for a given positive integer N, A == 

{I, ... , N} and the spins variables tTl E S == {-I, +1}, indicate the excitation state of the neuron i. 
mThe variables {enr:i··..· E smxN describe the m patterns the system is supposed to memorize. 

It is generally assumed that tms patterns are 'random', i.e. the components er form a family of 

mN independent, identically distributed random variables. Typically, one is interested in choosing 

m as a function of N as large as possible under the condition that certain crucial properties of the 

system are retained ('memory capacity'). 

It has been noticed very early (see e.g. [AGS}) that tms model formally resembles dosely a 

mean field model of a spin glass, the Sherrington-Kirkpatrick model [SKJ, that has been heavily 

investigated by physicists (see for a review [MJ). Therefore, tools from spin glass theory such as the 

replica method have been employed to study tms model. More recently, it has been realized that the 

Hopfield model is in fact much easier to handle in a mathematically rigorous way than real spin glass 

models, at least if the number of stored patterns, m, is subject to certain restrictions. Moreover, m 

may serve as a parameter that allows to continuously drive the system from an essentially trivial 

regime (m = 1) to a highly complex and unpredictable 'spin-glass' regime (m > N). From this point 

of view, the Hopfield model does represent in fact an extremely interesting disordered mean-field 

model. 

Let us describe some of the main results so far obtained: In 1988, Koch and Piasko gave in 

a remarkable article [KPj a complete analysis of the thermodynamic limit of this model under 

the constraint that m is allowed to growth with the system size N no faster than \~r;. Their 

construction implied the almost sure convergence of the free energy to a calculable limit (which is 

simply the free energy of the standard Curie-Weiss model) as well as that of the distribution with 

respect to the Gibbs measures of the the so-called overlap parameters 

1m"(ei tT ) = Ii Ler~i (1.2) 
j 

A detailed description of these results will be given later. These results have been sharpened and 

generalized to the q-state Potts version of this same model by Gayrard [GJ. More recently, Koch 

[KJ has obtained a further very interesting result. He proved bounds on the free energy for all finite 

N that in particular imply that if m is chosen such that :imNToo N = 0, then the expectation of 

the free energy with respect to the distribution of the patterns converges to the free energy of the 

Curie-Weiss model. As a matter of fact, it is very easy to extend ms results to obtain the almost 

sure convergence of the free energy (see section 3 ohms article). It should be noted that tms result 

holds for all temperatures. 

The Hopfield model as given by (1.1) can be seen as a spin system on the complete graph on 

{I, ... , N}. Both from the point of view of applications in the context of neural networks and from 

that of the theory of disordered systems, it is desirable to study generalizations of the Hopfield 

model on more general graphs, and in particular on random graphs; still more generally, one may 

even wish to study tms model when the interaction between sites i and j is not only governed by 

the matrix E,.. ere: but is modulated by a random variable Eji' This model is then called the 

'dilute Hopfield model' and given by the Hamiltonian 

1 " .~,..,..
HN(e; E; tT) = -N L.t Eii L.t ei ej tTitTi (1.3) 

p (I.;)EA)(A ,..=1 
lri-J 

where p = .IE(Eii) > O. Dilute neural network models are frequently studied in the regime where 

p =cJN (so-called highly dilute model). There it has been noted by Derrida, Gardner and Zippelius 

[DGZJ that the dynamics of this model with asymmetric Eij (i.e. Eij independent of Eji) can be 

solved exactly in the limit N T00 if the number of patterns is kept finite and proportional to c. 

The reason for this is that in this limit the underlying graph has essentially the structure of a 

(disconnected) tree (see e.g. [BOn. An undesirable feature in this situation is the instability ohhis 

model against mixing of patterns and thus noisy dynamics. This last point is very easily understood 

in terms of the Hopfield hamiltonian (1.3). Namely, if the underlying graph has the structure of 

a tree, then by cutting any edge it becomes disconnected, and choosing tT to equal one pattern on 

one of the components and another on the second, this configuration differs in energy only be a 

finite amount from the original patterns. Moreover, one may construct an infinite number of such 

mixtures. 

Diluted networks are of interest not only if they are more easy to analyze but also for pragmatic 

reasons of network architecture. In very large networks, maintaining full connectivity is dearly 

undesirable if not impractical for technical reasons. It is thus natural to ask how BUch a model 

behaves if it is less highly diluted, and in particular one may ask how much the network may be 

diluted if the properties of the fully connected network are to be retained. This has been done 

recently [BGJ in the regime where m aNp where it has been shown that rigorous lower bounds 

on the storage capacity as proven first by Newman [NJ for the model (1.1) can be recovered in this 

situation, provided that p ~ N-. 
In the present paper we study this model from the point of view of mean field theory in the 

regime where m < < N. As we will see, the mean field results prove fairly robust against the effect 
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of dilution and can be re-proven under fairly weak assumption on the fij, although we must always 

require p to be much larger than in Derrida's model. 

To be able to make precise statements, we need to introduce some notation. First, let O( == 

{_I,+I}J'VXJ'V,:F( the corresponding Borel D'-algebra, and let IP( denote the product measure on 

O( such that e== unr:: is a family of independent, identically distributed random variables with 

lfHef =±1) = t. Note that for a given, non-decreasing function m: IN -IN we will denote by 

e(N) the cylinder generated by the family Unr:ll,:::',~(N). 

To define the probability space for the dilution variables f, we need to be slightly more sophis. 

ticated due to the fact that we want the marginal distributions of the fij to depend on the size 

of the network while at same time define all Hamiltonians for different N on the same probability 

space. Thus we take Of: == {O, l}./NxIVXIV, :FE the corresponding cylindrical D'-algebra. Then let 

f == {fij(N)}t'j~~x.N be a family ofrandom variables and for all N E IN let :fiN) be the sigma­

algebra generated by {fij(N')}t';~~x IV' Moreover, we let IP. be a probability measure on (0., :F.) 

such that the families {fij(N)}NE./N are independent for different i,j and that the distributions 

IP!N) induced by IP. on {fij(N)h.jEJNXJN is the product Bernoulli measure s.t. 

IP.(fij(N) = 1) =1 - IP£(fij{N) =0) =peN) (1.4) 

This does not yet fix IPt uniquely and although this is really all we will require, we prefer to 

specify our measure completely by demanding that {fi;(N)}NEJN be a Markov chain with transition 

probabilities chosen such that IP(fij(N) = fiAN - 1» be maximal given the marginalS specified 

in (1.4). A simple computation then shows that this requires 

IP.(fij(N) = I1fjj(N - 1) =1) = p(N)jp(N - 1) 

IP.(fij'(N) = Olfij(N - 1) =1) =1 - p(N)jp(N - 1) 
(1.5)

IP.(fi;(N) = 1lfij(N - 1) = 0) = 0 

IP.(f.;(N) = 0lf,j(N - 1) = 0) = 1 

Remark: Obviously, we may carry through this entire construction with fi;(N) taking values in 

a more general space than {O, I}. 

Let us now define the finite volume partition functions and free energy of our model through 

ZN•.8(ei f ) == '"' ~e-.8HN«(;£;(T) (1.6)L...J 2N
(TESN 

and 
1 

/N,{J(e; f) == - f3N In ZN;/J(e; f) (1.7) 
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Let us further denote by /cw(f3) the free energy ofthe Curie-Weiss model [El, i.e. 

1 z2)/cw(f3) = ~~ ( -p lncosh(f3z) +2" (1.8) 

Then, we have the following 

THEOREM 1: Let p : IN - (0,1] be a decf'etUing function .uch that p(N)N i 00, tU N i 00, 

and let m : IN -+ IN be an incretUing function .uch th~t ~ ! 0, tU N i 00. Then, for all 
0$13 < 00, 

»~/N,/J(ei f) = /cw{(3),IP. X IP( - a ••. (1.9) 

As in the standard Hopfield model, when the number of patterns, m, is small enough, the 

extremal infinite volume Gibbs states of the Dilute Hopfield model are expected to be measures, 

(J0, concentrated near the original patterns eo. Here what we will in fact be interested in is 

the limiting distributions of the overlap parameters (1.2) with respect to the measure (J"'. More 

precisely, in order to construct the measure (J0, we add to the Hamiltonian H N,E,( D') a 'magnetic 
afield' h coupling to the pattern e that is we write 

N 

H~,h(fie;D') = HN(fjeiD') - h LD'ier (1.10) 
j::::l 

We denote by (IN,.8,h( fj e) the finite volume Gibbs measure which assigns to the configuration 
D' E SN the probability 

D' t--+ m~{e; tT) 

(IN,.8,h(fjeiD') = 
exp{ -f3HN,h(fj ei D')} 

~ ~ exP{-f3HNh
(fieiD')}L..(TESn , 

(1.11) 

We denote by m~(e) the map 

m~{e): SN -+ [-I,IJ 
(1.12) 

and by ca[m~(e)] the law of m~{e) under (IN,.8,h( fj e). Let a+ (13), respectively a- (13), be the 

largest and smallest solutions of the equation (I = tanh(f3a) and define m!,,,(f3) == a*(f3)6""" where 

6o,,, is the Kronecker symbol. Then, denoting by 6{z} the Dirac measure on m concentrated at the 
point z, we have the following 

THEOREM 2: Suppo.e that all the tU.umption. 0/ theorem 1 are ..atufied and that in addition 
m < lnN/ln2. Then/or h?: 0 and lor all 0 $ 13 < 00 

lim lim c.a[m~(e)J =6{;;;!... (.8)} IP{ X IP€ - a .... h!O Nfco (1.13) 
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The same result holds for h ~ 0with m!.,.aC8) replaced by m;;.p(;3). 

Remark: The restriction on the number ofpatterns in theorem 2 is due to the fact that even in the 

standard Hopfield model, the analogue of theorem 2 has only been proven under this hypothesis. H 

(1.13) holds in the standard Hopfield model under weaker restrictions on m, we expect to be able 

to prove it also for the dilute Hopfield model under the same conditions plus those of theorem 1. 

Remark: A more general form oftheorem 2 will be give:llater. 

Our proofs of theorems 1 and 2 actually follow from the analogous results in the standard 

Hopfield model together with the following theorem, which really constitutes our main technical 

result. Let IP denote the product measure IPF, X IP( on (OF, X O£ , :FF, X :F.J. 

THEOREM 3: Let m be an increlUing function lIuch that m(N)/N 1 0 as N i 00. Then there 

e:l:istll an even' AN E :FF, and a constant 0 < K < 00 s.t. 

K 
IPF,(AN) 2: 1 - N2 (1.13) 

and 1I.t. if p satisfies p(N)N i 00 as N i 00, then, for any strictly decreasing function "'{ : IN -4 IR 

satisfying "'{(N) 10 lU N i 00 and p(N)N"'{2(N) > c for some constant 0 < c < 00, there ezisu a 

constant p > 0 s.t. 

IP ('9'0' E SN !HN(Ejej0') IEf.HN(E;ejO')! < -yrmN IAN X O() < e-pN (1.14) 

Remark: It should be noted that our results require only the weakest plausible conditions on the 

dilution rate peN). In fact, in terms of the underlying random graph, this condition assures that 

the 'giant component' of the graph is so big that the number of vertices in its complement is o(N) 

(see [BoJ). H peN) were smaller, e.g. limNp(N) > 0, then an extensive fraction of the graph would 

consist of finite connected components and a result like theorem 3 could not be expected. It is also 

very likely that the condition in theorem 1 on the number of stored patterns is optimal, although 

as yet we cannot prove this. The situation in theorem 2 is less clear, the reason being the lack of 

knowledge on the structure of Gibbs states in the Hopfield model if the number of patterns exceeds 

InN. 

The prove of this theorem will be given in the next section. In sections 3 and 4 we will use 

this to prove theorems 1 and 2, respectively. 

Acknowledgements: V.G. would like to thank Joel Lebowitz and the Mathematics Department 

of Rutgers University there part of this work was done for their kind hospitality. We are grateful 

to Hans Koch for sending a copy of his work prior to publication. Finally, we would like to thank 

Pierre Picco for a critical reading of the manuscript and nluable comments. 
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II. A uniform bound on the Hamiltonian 

In this chapter we prove our theorem 3 which provides a uniform bound on the difference 

between the Hamiltonian of the dilute Hopfield model and its average with respect to the dilution 

variables f. We have recently proven such a result for the dilute Curie~Weill model [BG2] (which 

corresponds to the case m == 1) and our basic strategy will be the samej however, this time the 

presence of the random couplings Jij == Ep erer adds considerable complications. 

Let us set (ei,ej) == Ep erer. We may write the Hamiltonian as (we suppress the dependence 

of Eand eon N for the simplicity of notation) 

HN(fj ei 0') = - ~ I: !(ei,ej)!sign(ej, ej)EjjO'jO'j (2.1) 
p i~j 

Here we choose to define 
. () {1 ,ifz>O (2.2)

Slgn z = -1 , if z :( 0 

Now define the set A + as the set of all pairs of sites where the spins are aligned with the couplings, 

i.e. 

A+(O'je) == ((i,i) E A X A, i #: i 100,O'j sign(e.,ej)} (2.3) 

Defining furthermore Eij as the indicator function of this set, i.e. 

Ei . ={1 ,if (i, j) E A +(0'; e) (2.4) 
J 0, otherwise 

and noticing that 

O"O'jsign(e.,ej) = 2Ei j 1 (2.5) 

we may rewrite our Hamiltonian as 

HN(EjejO')= ~ I:l(ei,ej)!Eij+ ~ I:!(ei,ej)!EijEij (2.6) 
p i~j p i~j 

We want to prove that uniformly in 0', the Hamiltonian HN(€j ej 0') is close to its expectation w.r.t. 

the distribution lPf.' Since the first term in (2.6) is independent of 0', the real task is to show this 

property for the second term in (2.6). More precisely, let us consider the probability 

IPI£. (30' E SN : II: I(eal ej)!EijEaj - p I: !(eSlei)!Eijl > P"'{ I: lCei,ei)!Eii) (2.7) 
i~i i~j i~j 

where "'{ == "'{(N) is some positive decreasing function tending to zero with N that will be chosen 

appropriately later. We will show that with IPF,-probability that tends to one as N i 00, the 
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probability (2.7) is exponentially small. Note that (2.7) is bounded from above by 

!P, (3a E S N : ~ I(e;, ei)l 3;;,;; > p(l + 1) ~ I{(;, e;)18;i) 

(2.8) 

+!p, (3a E SN : ~ I(e., ei)18.i ,.; < p(l -1) ~ I(e., ei) IS,,) 

Our estimates will be the same for both terms in (2.8) so that we only concentrate on 

QN(e) " !P, (3a E SN : ~ I(e., e,)18';"i > p(l +1) ~ I(e., e')18,,) (2.9) 

We have, bounding the probability of the union by the sum of the probabilities and then using the 

exponential Markov inequality [CT] 

QN(e):s L :gt exp {-P(l +"'()t L I(e"ej)l:::i; +Lln (p(e l(ei.ei )lt3ij - 1) +1)} 
(TESH - i:;l!j i:;l!j (2.10) 

== '" inC exp {AN(e, tTnL., t>o 
(TESH ­

Now 

In (p( el(e"~j)lt:aij - 1) +1) =:::i; In (p( el(e••ej)lt - 1) + 1) (2.11) 

so that the exponent in (2.10) can be written as 

AN(e, tTl =LSi; ( -p(l +"'()tl(ei,e;)1 + In (p(el(ei,~j)lt - 1) +1)) (2.12) 
i:;l!i 

Now for t ~ 0 we have the following bound 

In (p(el(ei,~j)lt - 1) + 1) :S p(el(~i,ej)lt - 1) 

(2.13)
=P {I(ei' ej)!t + !(eil ~)12t2 + R3 mei, ej)lt) } 

where 
00 Zn 

R3(z) == L n! (2.14) 
n=3 

Our strategy will now be the following: Anticipating that R3 will be small, we choose t· such that 

-p(l +"'() L !(ellei)l::ijt +p L l(eilei)ISijt +p L l(e;,~)12t2 ::Ij (2.15) 
i:;I!J il-j I:;I!J 
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is minimized, Le. 

.. Li:;l!j !(e.,ej)ISij
t = "'( =-~..,...,...-:-:-=- (2.16)

Li:;l!j !(e., ejWSij 
This gives the bound 

() '" {1 2 [Li:;l!j !(ei, ej)ISjj]2 ",... .. )}QN e :s L., exp .-2""'( P " .. I(~' ~.)!2'= .. +p L.,::'ijRa(t I(ei,ej I) (2.17) 
(TESH ~I:;I!J ..., "J -1.1 i:;l!j 

Our aim is to get a tT-independent bound on the exponential in (2.17). To this end notice that first 
of all we have the trivial upper bounds 

L !(e.,ej)!s'j :S L !Ui,ej)! (2.18) 
i:;l!j i:;l!j 

and 

L IUiJ ej)!2Sjj :S L I(e., ej)12 (2.19) 
i:;l!j i:;l!j 

More interestingly, we may also get corresponding lower bounds. Namely, since 

'::' .. _ tTitTjsign(ei,ej) + 1 
-1.1 - 2 (2.20) 

we get that 

LI(e.,ej)ISij = ~ L[tT.tTj(ei,ej) + !(ei,ej)!]
i:;l!j i:;l!j 

= 4[t.W,a)' mN + ~1(e.,e')ll 
(2.21) 

and hence 

~ l(e;,ei)18;;" j [-mN + ~ l(e;,e;)I] (2.22) 

Finally, 

L !(ei,ei)l2sii = ~ L [Lerere:eitTir7j + l(eiJeiW]
i:;l!j i:;l!j 11.11 

(2.23) 

= ~ L (4,: erertTi) 2 - ~m2N + ~ ~ I(e" ejW 
lI.v 1 a:;l!J 

and hence 

(2.24)~ I(e;, ei)1'8;; " ~ [~I(e;, t;)I' - m'N1 
Combining these four bounds we get the following 
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LEMMA 2.1: '* as defined in (2.16) satisfies the following upper and lower bounds: 

t. $ t: == 2"1 La:;:j I(ei, ej)1 (2.25)
E.:;:jl(ei,ej)12 m2N 

ift; > 0, and 
t* > t. = "1 L':;:j I(ei, ej)I mN (2.26)

- , - 2 Li:;:j l(ei,ej)12 

(Note that the condition t; > 0 will be satisfied on the subspace of Of where we will want to 

use (2.25». 

An immediate consequence of this lemma together with (2.17) is the following proposition, 

which yields the desired uniform, but still e-dependent bound on QN: 

PROPOSITION 2.2: The probability QN(e) satisfies the bound 

N {I 	2 [Ei:;:j l(ea,ej)l- mN]2 ~ * }
QN(e) $ 2 	 exp -8"1 p Ei:;:jl(ei,ej)12 +p ~R3(tul(ei,ej)l) (2.27) 

for all es.t. t: > O. 

What we now need to prove is that with very large probability, the exponential in (2.27) is suffi­

ciently small to offset the 2N pre-factor. Note that it depends only on the quantities Li:;:j !(e.,ej)ln 
and it is those we need to control. To see how this can be done, it is reasonable to think of the 

variables (ei, ej) as being essentially gaussians with variance m 1/2. In fact, we have the following 

bounds: 

LEMMA 2.3: The moments of the variables l(e., ej)1 (for i ¥- j) satisfy the upper and lower 

bounds: 

(i) If I ~ T 
m!l! 

(m-I)! 5 lE l(ei,ejW' $ 221 m!l! 	 (2.28)(m -I)! 

(ii) 	If I> T' 

m! (k(k +1»'-1: $lEl(ei,ejW' $ 221 m! (k(k +1»'-1:, if m = 2k 
(2.29)

m!k(k(k +1»'-1:-1 ~lEl(ei,ej)12' $ 22Im!k(k(k +1»'-1:-1, if m= 2k-l 

(iii) The odd moments are bounded in tenns of the even one. through 

(1EI(ei,ej)12'-2)1+~ $lEl(ei,ejW'-l ~ (lEl(ei,ej)12,)1-~ (2.30) 
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(itl) MON!Otler, for the fir.t two moment. we hatle the e%act formulas 

2 	 2m (m - 1) (2 1/2 (2.31)lEl(ehej)1 =m, lEI(ei,ej)1 = 2m [m/21 v;:m!"'oJ 

Proof: Notice first that point (iii) simply follows from .Jensen's inequality [CT1. The even momenta 

are more euy to compute since in this cue the absolute value may be dropped, and since for i 1= ;, 
ere1 hu the same distributiqn u er, so that 

)2'21 m 	 (2.32)lEl(ei,ej)1 = lE 
( 
~ er 

But since er are i.i.d. symmetric Bernoulli, the moment generating function for the r.v. L;=1 er 
is (cosh z )m, and thus 

m )21 	 tJI' m 	 (2.33)
lE ( Lei = dz" cosh zl:l'=o 

p=l 

Thus, wejuat need to estimate the 21-th derivative ofcoshm z. Let us put C.(z) == coshm 
-- z sinh- z. 

Since 
d (2.34)dz C. =(m - ,)C.+1 +,C.-1 

it is natural to label each term appearing in the 21-th derivative by a random walk W of length 21 on 

{O, 1,2, ... , m}. Moreover, since at the end we must set z = 0, only such walks will give a nonzero 

contribution which finally produce a Co, i.e. we count only walks starting at zero and ending at 

zero. Finally, we define the weight of each step of the wall:: by 

, if wH 1 w, =1W(W'+lI Wt) = {m -w, 	 (2.35) 
W, , if W'+1 - Wt = -1 

Then we have that 
tJI' 21 


d%2' cosh
m zl:£O=o = L IIw(whwt-d (2.36) 


",:0-0 t=1 

Now since W must contain the same number of steps going up as going down, we may pair them 

in such a way that to each step going up at, say, time t (and starting at w,), we associate the 

next step down starting at the position w" = W, +1. Notice that such a time t' will necessarily 

exist. Now the weight of each such pair is (m - w,)w,. = (m w,)(w, +1), and the weight of the 

walk is the product over all pairs of these quantities. The important observation is now that the 

function (m - z)(z + 1) attams its maximum at z = mil, and therefore the walk with highest 

weight is simply the one for which w, is as close to this va!ue as possible under the constraints that 

Wo = w" = O. It is trivial to see that such a walk will have the weights corresponding to the lower 

bounds in (2.28,2.29). 
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The upper bounds are simply obtained by multiplying the highest weights by the trivial upper 

bound 221 for the number of contributing walks (this could be slightly improved to e'). 
Finally, the exact formulas (2.31) for the first two moments are obtained by sta.ndard compu­

tations. This concludes the proof of lemma 2.3. <:; 

The reader will now verify that if we were to replace all powers of l(e.,ei)1 in (2.27) by the 

respective moments, this would indeed yield an exponentially small value for QN. Our next step will 

therefore consist in proving that the fluctuations ofthe powers of l(e.,ei)1 about their expectations 

are sufficiently small. More precisely, we want to control the probabilities 

p"(6l '" 11', (~[[(f',fill" -lEl(f" fill"] '" 6"N' lEl(f.. eoll") (2.37) 

Note that the obvious bound 

P"(6) ~ N(N -I)1P((lUhe2)1" -lEl(eh6)1" ? 6"IE I(elt 6)1") (2.38) 

would be a disaster as the last probabilities in (2.38) do not depend on N and thus will never offset 

the N2 prefactor. To improve it, we must exhibit some independence of the terms appearing in the 

sum over i and j. To do so, lYe go only halfway towards (2.38), i.e. we notice that 

P"(6) ~ NlP( (L: [lU.,6)1" -lEl(ei,6)I"J ? 6"NlE1(elt6)1") (2.39)
i,tl 

The terms in the'remaining sum are now independent. To obtain a bound on p" that behaves like 

IIN2 , we now use the sixth-order Chebychev-inequality to bound the probabilities in (2.39). This 

gives 

1P( (L: [I(ei, edl" -lEl(ei,el)I"] ? 6" N IEI(616)1")
i,tl 

(2.40) 
IE (Ei,tl f1(ei,edl" -lEl(ei,edl"])6

< -"--------::-----'-­
- N6 66" {lEl{elt 6)1")6 

Let us put ai == I{e" 6)1" -IEIUi,6)1". Then, since lEai =0, 

lE (~ai)6 =~lEa1 + (:) ~lEa~lEa~ 
• • t.,..J 

+ G) ~lEa~lEa~ 
t.,.., 

(2.41) 

+ (:) (!) L: lEa~lEa~IEal 
i,ti# 

= NIEa~ + I5N{N -I)lEa~1Ea~ +20N(N - 1) (lEa~)2 

+ 90N(N - I)(N - 2) (lEan3 
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With these preliminaries it is now an easy matter to prove the following 

LEMMA 2.4: There ezuLt a finite posiUve constant 0, such that, uniformly in m, nand N, 

IE (Ei,tl [lUi,6)1" -lE!Ui,edl"J)6 3
--'-----...,..---'-- < N 0" (2.42)(IEI(elt6)1")6 ­

Proof: Note that from (2.41) it follows that the quantity on the left of (2.42) can be expressed 
as a finite sum of terms of the form 

Co..iN' .~I(e:h6)lno.
• i __~. ~ ~. (2.43) 

with a =2,3,4,6, i =1,2,3 and co.•• finite numerical constants. Using the upper and lower bounds 

from lemma 2.3, one easily checks that the ratios of expectations in (2.43) are all bounded by 

CORst", uniformly in m. But this yields the claim of lemma 2.4. <:; 

From lemma 2.4 we can now deduce the 

LEMMA 2.5: There ezuLt a finite positive constanLt 6 and K such that 

11', (3"~3 :~ [[(f., fill" -lEl(f" fi ll"] '" 6"N' lEl(f" eo ll") $ :' (2.44) 

Proof: Just notice that by (2.39) and lemma 2.4 

11', (3"~3 :~ [I(fhfill" -lEl(f., fill"] '" 6"N' lEl(6, f,ll") 

~ LIP( (L[lUitei)l" -lEIUi,ei)I"]? 6"N2IEI(eh6)1") (2.45) 
"~3 i,tj 

(0)"::;LN21 5" 
"~3 

from which (2.44) follows if 6 is chosen such that 016 < 1. 0 

Let us now define the event AN E :F( as follows: 

DEFINITION 2.1: wEAN, iffe==e(w) satisfies 

(i) V"~3 Ei,tj l(eitej)l" ~ {i +6")N2lEl(ehe2)1", with 6chosen as in lemma 2.5. 

(ii) (1 - e)N2m ~ Ei¢j I(ei, ej)12 ~ (1 +e)N2m and 
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(iii) 	(1 - f)N2 ~!!."' ([:7:1) ~ Lii; I(eit e;)1 ~ (1 + f)N2 ~!!."' ([:7:1) for some f < 1/2. 

We define further the set 
00 

A= 	U n AN (2.46) 
No=1 N~No 

From the previous results it follows already that AN has large probability: 

LEMMA 2.6: There ezisu a constant 0 < K < 00 such that 

K 
lPe(AN) ? 1 N2 (2.47) 

Moreover, 

lP~(A) = 1 	 (2.48) 

Proof: The bound (2.47) is easily pieced together from the previous lemmata. (2.48) follows from 

(2.47) and the Borel-Cantelli lemma [CT]. 0 

Now the event AN was constructed in such a way as to ensure that (2.27) is small. More 

precisely, we have 

LEMMA 2.7: On the set AN, we have, for any function "( s.t. "(N) t O,as NT 00, the following 

(i) 
t: < 3 27_ .;m(1 m/N)-1 	 (2.49) 

(ii) 

II:ii ; l(ei,e;)I- mN]2 1 [-mN + (1- f)v'2m/'II" Nf 
Lin l(ej,e;)12 ;?: 2 (1 + f)mN2 (2.50) 

1 2 2 1 2> -N +-m --Nm1/ 
-	 3'11" 3 3V21r 

and 

(iii) 

L R3(t"IUi, ei)l) ~ "(3K N 2 (2.51) 
iii 

Remark: It should be noted here that no assumptions are made in this lemma on the speed with 

which 7(N) tends to zero. This is, as we will see shortly, essential in order to get the weakest 

possible assumptions on peN). This renders our proof somewhat more complicated. A simpler 

proof can be found under the assumption that "(N)v'ii1Jl to. 

13 

Proof: The proves of (i) and (U) are fairly immediate, u.ing point (iv) oflemma2.3 (and as.uming 

m large, for simplicity). To prove (iii), just notice that on AN, 

LR3(t:I(e.,e;)!) = L (t:t L l(e.,e;)ln 

n.
iii n~3 ii; 

~ L (t:t (1 +6")N21Et(6,e2)ln 

n~3 n. 

m/2 ( * 21-1 ( ")¥< "'(1+621-1)N2~ 221~ 
-	 ~ (21-1)! (m -1)1 

(2.52)
m/2 ( *)21 'I' 

+ L{1+621)N2~221~
1=2 (21)! (m -I)! 

00 (*)21 1 ( ( 1)21-m) ¥+ '" {1+621-1)N2~ 221m' m+ 
L." (21- I)! • 2 

l=m/2+1 

00 (t* )21 (21-m+ 	 L (1 + 621 )N2_u_,221m! ~) 
l:m/2+1 (21). 2 

Now we will alway. assume that miN goes to zero as N goes to infinity. Therefore, t: is effectively 

bounded by, say, 7,,(/.;m, for N large enough. Moreover, "( will be taken to zero with N, so that 

we may ....ume it to be u unall u de.ired. It i. then a trivial matter to realize that all four sums 

in (2.52) converge and that moreover 

m/2 * 21-1 , ,¥ m/2 	 I'¥ 
"'(1 + 621-1)N2~ (221~) < N 2 "'(1 + 621-1)621-1"(21-1_'_­

(2,53)~ (21-1)! (m-I)! - ~ 	 (21-1)! 

~ 01N2"(3 

and similarly 

m/2 ( * )21 'I'
"'(1 +621)N2~221~ < 02 N2 7 4 	 (2.54) 
~ (21)! (m -I)! ­

while the last two sums are bounded by 

(2.55)0 3 (1 + 6m)7mem"(m 

and are thus completely negligible. Combining these bounds yields (iii). 0 

We are finally ready to merge these results into a bound for QN: 

PROPOSITION 2.8: A....ume that miN to and pN i 00 as N r 00 and choose"( s.t. pN"(2 > c 

for ..orne constant 0 < C < 00 • Then, for wEAN and for N sufficiently large, there ezisu p > 0 

... t. 
pNQN(e) ~ e-	 (2.56) 
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Proof: Inserting the bOWlds rrom the previous lemma into (2.27), we get that 

QN(e):-s; 2N exp (_~PN212 +PN2K13) 
(2.57) 

pN212 )= exp -~(1- 32K1) +Nln2( 

Choosing nowN large enough and 1(N) such that 

2 32 
> 1- 32K1 ln2 (2.58)

pN1 

we get the bOWld (2.56). ¢ 

From this proposition and lemma 2.6 we now get immediately our theorem 3. ¢¢ 
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III. Convergence of the free energy 

In this section we discus.s the consequences or the unirorm bounds obtained in the previous 

section ror the convergence oCthe free energy oCthe dilute Hopfield model. Let us denote by IN,,,U) 

the rree energy or the standard Hopfield model, and let UI introduce 

llIN,,,(ei f) == IIN,,,(ei f) -IN,,,(e)1 (3.1) 

We have the rollowing 

PROPOSITION 3.1: Assume that p(N)N i 00 and J(!J)k ! 0, as N i 00. Then, for all~, 

»~ llIN,,,(ej f) = 0, lP( X lP€ - a.• (3.2) 

Proof: By theorem 3 there eDsts an event CN E F( X F,. s.t. 

K _ 
lP(CN) ~ (1- N2)(1- e pN) (3.3) 

such that on CN, ror all fJ' E SN, 

IHN(e; fj fJ') -1E€HN(ei fj fJ')1 < 1(N).jm(N)N (3.4) 

ror any decreasing function 1 satilrying 1(N) ! 0 as as N i 00 and p(N)N1(N)2 > c ror some 

constant 0 < c < 00. But IE€HN(eifjfJ') il nothing but HNU;fJ'), and hence a trivial calculation 

showl that (3.4) implies that 

llIN,,,(ei f) 5 1(N).jm(N) (3.5) 

If we moreover choose 1 such that with 1(N)vm 10 as N r 00, setting C == UNo~O nN~No CN, we 
see immediately that on C, 

lim lllN ,,(ei f) = lim 1(N)Jm(N) = 0 (3.6)
Nloo' NToo 

Now combining the constraints on 1 gives the condition pN 1 0 as N i 00 while (3.3) and the 

Borel·Cantellllemma imply that JP(C) = 1, which proves the proposition. ¢ 

Thererore, to prove theorem 1, we just need to prove the almost lure convergence or the rree 

energy or the Itandard Hopfield model. Now in a recent paper, Koch [KoJ has shown that Wlder 

the assumption that mIN! 0, 

IEdN,fj(e) -t Icw(~) (3.7) 
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Tirozzi and Sherbina {TS] also very recently proved this convergence in probability (with a bound 

on the probabilities that cannot yield almost sure convergence). As a matter of fact, it is very 

easy to modify the approach of Koch to prove the almost sure convergence (this would even seem 

a more natural consequence of his computations). Let us state this result and give the proof for 

completeness. 

THEOREM 3.2: Assume that m(N)/N L0 IU N i 00. Then 

}if! IN,p(e) = /cw(p), 1P( - a.s. (3.8) 

Proof: We follow essentially the analysis of {Ko]. The first step consists in rewriting the partition 

function in terms of Gaussian integrals in a standard way: 

2-N L e-PHN.d6) = (Np)m/2 ( dmze-iNP(%'%)+L~"1Inco8h(P("'.(;» (3.9) 
N 2~ lfim 

6ES 

where z is an m-component vector and (Z,ei) L;=1 zl'ef, etc .. Now notice that 

1 N 1 N 1-6 

-'2Np(z, z) +LIncosh(p(z,ei» = - '2Np(z,z) +L -2-p(Z,ei)2 


;::1 ;::1 

N 1-6 
+ LIncosh(p(Z,ei» - -p(Z,ei)2

i=1 2 

1 N 1-6 2 
~ - '2 Np(z,z) +L -2-p(Z,ei) 

;=:1 
(3.10) 

1- 6+N max ( In cosh(pz) - --pz2) 
zEfi 2 

1 
= - '2Np(z,(lI (1- 6)A)z) 

1- 6 2)+Nmax Incosh(pz) - --pz(zEn 2 

where the m X m-matrix A has components AI''' = k L~1 erer. Of course, this decomposition 

is only useful for a choice of 6 such that the matrix (ll - (1 6)A) is strictly positive. If this is 

the case, then inserting this inequality into (3.9) gives the following upper bound on the partition 

function 
ZN,( ~ eN max. (In C08h(Pz)-l:j!,8z') det (li (1 _ 6)A)-1/2 

(3.11)
~ eN max. (Incosh(pz)-!.y!Pz') (~min(lI - (1 _ 6)A»-m/2 

where ~min(M) denotes the smallest eigenvalue of the matrix M. (3.11) yields immediately the 

lower bound 

1-6 ) mIN.,8(e) ~ _13-1 m:x ( Incosh(pz) -2-pz2 + 2PN InP'min(lI (1 6)A)) (3.12) 

17 

Ifwe could choose 6 = 6(N) inlsuch a way that 6(N) L0 as NT 00, this lower bound would converge 

to the Curie. Weis. free energy, and since the Curie Weiss free energy is trivially an upper bound 

for the Hopfield free energy, this would give the desired convergence. The following proposition 

tells us that with probability one this is indeed the case. 

PROPOSITION 3.3: Let ~mQz(A) denote the largest positive eigenvalue 01 A. Then, for any 

coft6tant c and for N large enough, toe have that 

1P (~moz(A) > e.;;;;JN +(1 +c)N-1/6 ) ~ 2N-C (3.13) 

Bounds on largest eigenvalues of random matrices can be found for instance in [KF]. They prove 

results like (3.13) for symmetric matrices with i.i.d. entries. Their method is in fact well-suited to 

be adopted to the present situation. The basic input into the proof of (3.13) is the following bound 

on the trace of the powers of the matrix A: 

LEMMA 3.5: Let Ie ~ N1/6. Then 

lE( trA' ~ 2Ne2kP/(l+p) (3.14) 

tohere p = v'm/N. 

Remark: Koch [Ko] and Tirozzi and Sherbina [TS] announced analogous bounds on the traces 

of (A - 1I)'. We present a proof along the lines of [KF] in an appendix. Let us also note that 

our proof has the additional virtue that it also holds when the er are centered but not necessarily 

symmetric random variables. 

Let us now show how lemma 3.5 implies proposition 3.4. 

Proof: (of proposition 3.4, Using lemma 3.5) Notice first that ~moz(A)k ~ tr Ak, for all Ie (note 

that A is a positive matrix). Thus, using the Chebychev inequality and lemma 3.4, for all Ie ~ /6N 1 

1P (~mQZ(A) > e2p/(I+p) + z) ~ 1P (tr(Ak) > (e2pl(I+P) + z)k) 

< lEtr(Ak) 
- (e2p/(I+p) +Z)k 

2e2P(I-p)jr 
< N -:--::~.,.--.,.----:-:- (3.15)- (e2p/(I+p) + Z)jr 

ze2P/(I+P») k=2N 1 - --.."......,,.,---:­( 1 +ze2P(1-p) 

ze-2P/(I+P)} 
~ 2N exp { -k 1 +ze-2p/(I+p) 
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Now we choose Ie as large as possible, i.e. Ie = NIls and z = (1 +c)N-1/slnN. Then (3.15) yields 

1 6 
PI(1+P») {1/6 (1 +c)N- / In N }

IP ( Amaz(A) > e +z 	 '5;2N exp -N e2p/(l+p) + (1 +c)N-1/6In N (3.16) 

-2NN-(1+ c)e2P/ (1+P) 

which proves the proposition. 0 

We are now ready to prove theorem 3.2. 

Proof: (of proposition 3.2) By proposition 3.3, and using the triangle inequality, we see that with 

probability greater than 1 - 2N-2, 

Amin(! - (1 - c)A) ~ 1 (1 - c)(e.;;;TN +3N-
1

/
6

) (3.17) 
"" 5 - (Jm/N +3N-1/6 

) +5( Jm/N +3N-
1

/
6

) 

so that we may choose 5(N) =(Jm/N +3N-1/6) which tends to zero with N and get that 

1 (3.18)fN,f.({3) ~ - m:x (lncOSh({3P) - 1 - !(N) f3p2) +~ In( Jm/N +3N- /
6)2 

Now the last term in (3.18) goes to zero with N, while the first converges (by continuity) to 

max (lncosh{{3p) - tf3p2) = fcw(f3). Since (3.18) holds on an event whose complement has 
p 

summable probability, a standard Borel-Cantelli argument as in previous instances yields conver­

gence on a set of full measure. 0 

Theorem 1 is now a direct corollary of proposition 3.1 and theorem 3.2. 00 
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IV. Limit distributions of the the overlap parameters 

In this section we will assume that meN) < lnN/ln2, which is the restriction under which 

the analogue of theorem 2 could be proved in the standard Hopfield model ([KP], [G]). We first 

prelent an extended form of theorem 2 to the cale where the external magnetic field couples a 

finite number of patterns with equal strength. That is, for any finite I < m and any family 

{al,. .. ,a,} E {I, ... ,m} we define the Hamiltonian 

I N 

H~~h .. ,011 (fj e; IT) = HN( fj ej IT) - h 2:2: lTie~j 	 (4.1) 
i=1 i=l 

We denote by g~~~:hOlI (fj e) the corresponding finite volume Gibbs measure. Futhermore, for any 

finite integer' < m and any family {PI,. ",Pk} E {1, ... ,m} we define the map 

MjJ··.. 'Il.. (e) : SN -+ [-1,1]" 
(4.2) 

IT 1-+ (mjJ(e;IT), ... ,m~(eilT» 

and we denote by COllt... ,OII[M~····'Il·(e)] the law of MjJ·· .. 'Il .. (e) under g~:~:hOlI(f;e). Now defining 

m;j.{Il1,....Il .. }({3) == a±{{3)(cOlj ,Il1'" .,cOlj ,Il") where cOl ,Il is the Kronecker symbol, and denoting by 

c{z} the Dirac measure on IR" concentrated at :1:, we have the following 

THEOREM 4: Suppose that all the assumptions of theorem 2 are satisfied. Then for h ~ 0 and 

for all 0 $ {3 < 00 

1 I 
lim lim cOlI!....OII[M~·····Il·{e)J = - 2:c -+ IPf. X IP£ - a.s. (4.3)
hlO NTIXl I. {mO },{"I ......... }(t3)}

.1=1 

The same result holds for h $ 0 1I1ith m!;'{IlI!... ,Il.. J({3) replaced by m;}.{Illt... ,Il.. }({3). 

We shall only give the proof of the particular case of theorem 4 given by theorem 2 and 

moreover, we only consider the case h ~ O. This proof will closely follow that given in [G] and 

makes direct use of some results established therein. Therefore, in order to be concise, we will only 

stress the aspects due to the dilution and refer for details to [G]. 

One main ingredient of the proof consists in a random partition of the set A = {I, ... , N} 

which can be brieJly described as follows. Let us fix an arbitrary enumeration of the d = Ism I=2m 

elements of the set Sm and write 

8 m == {elt ... , e", ... , ed} 	 (4.4) 

with e" =: (el,· ", e:, •• . ,er). For allp =: 1, .•. ,m, we denote by ell the d-components vector 

ell =: (er, ... , e~, ... , e:). Note that the vectors ell are orthogonal to each other, i.e., 

~(ell,e") =cll ," 	 (4.5) 
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Now any given realization of the r.v. £ together with the enumeration (4.4) induces a random 

partition of the set A into d disjoint (possibly empty) subsets Ak(e), defined as 

Ak (£) {iEA:£i =ek}, Ie,= 1, ... ,d (4.6) 

The random partition (4.7) has the property that, for m < In N lin 2, the cardinality of each subset 

Ak (£) remains close to its mean value .It. More precisely, remembering that £ == £(w) is a r.v. on 

the probability space (O(,F(,lPC) we recall from [G] the following 

LEMMA 4.1: [G,KP] Define the event'DN E .1'( tU 

'DN = {w E O( /IAk(£)1 == ~(1 + ).k), I).kl < 6(N), 1 ~ Ie ~ d} (4.7) 

where 6(N) =ninN tend. to zero CI& N tend. to infinity. Then 3No ... t. 'tiN> No 

lPe('DN) 2: 1- 2dexp {_ ~ (1- ~) -1 62(N)} (4.8) 

Now let us define the map Xc: 

d { 2 2}
Xc: SN t---+ E( =!l -1, -1 + IAk(£)I"'" 1- IAk(e)l'1 

Xdrr) = (X(,l(rr), ... ,X(,k(rr), ... ,X(,d(rr» (4.9) 
rr~ 

{ X(,k(rr) = IAJ()1 ~ieA.W rri 

Note that XC(rr) is a d-components vector. Using the random partition of A, the overlap parameters 

can be rewritten in term of XC< rr) as 

N 

m~(rr,e) =~ Lerrri 
.=1 

1 d 

=NLe~,L rri 
k=l ,eA.«() (4.10) 

1 d 
=;j L e~(1 + ).k)X(,k(rr) 

k=l 

1
=;j(eIJ,[M +Id]X(rr» 

where M is the d X d diagonal matrix with entries Mkk = ).k. Thus given any z E E( the overlap 

m~(rr,e), regarded as a function ofthe configurations rr, takes the value 

1 
m~(rr;() = ;';ceIJ,[M +Id]z) (4.11) 
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for all rr in the subset {rr E SN/Xe(rr) =z}. 

From now on we assume that h 2: o. To prove theorem 2, it is enough to show that under its 

assumptions, for any continuoUJ function 9 : [-1, 1] -+ m, 

9(0) ifO~j3~1 
lP( X lP£ - CI.... (4.12)limlim L 9(m~(rrj£»g~.I3.h(E;£;rr)= { «13)6) if 132:1 

hlO Ntoo tl'ESN 9 CI IJ,II 

By (4.11) we have 

L 9(m~(rrj(»g~,tJ,h(E;£; rr) = L 9(~(eIJ, [M +Id]z»V~,tJ,h(Ei £i z) (4.13) 
tl'ESN zEa, 

where v~,/M(Ej () is the probability measure on Ec induced by g~,I3,h(E; £) through the map Xc 

which to each Z E E( assigns the probability 

(4.14)V~,tJ,h(Ejej z) = L g~,tJ,h(Ejei rr) 
tl'esN , 

x(tI')=z 

Thus, to compute the expectation (4.13) we are left to study the measure V~,,8,h(Ej (). 

Let us denote by g~,,8,h(e; rr) the finite volume Gibbs measure associated to the mean Hamil· 

tonian 

lE£H~,h(Ej(j rr) =HNce; rr) - h(rr,f:') (4.15) 

that is to say the Hamiltonian of the standard Hopfield model with a magnetic field coupling to 
IJthe pattern e . Let ji~,tJ.h(E; e) be the measure induced by g~,tJ.h<e; rr) under the map Xc. The 

following lemma presents a bound on the density V~,,8,h(E; £i z) in terms of the density ji~.,8,h(ei z). 

LEMMA 4.2: There eN'" an el1ent CN E :F( x .1'£ IUch that on CN, fof' all Z E E( 

e-2,8NVm.,(N)jiOt (~. z) < vcr (E'~' z) < e2tJNVm.,(N)jiOt (ei z) (4.16)N,,8,h Iii, - N,tJ,h , ... , - N,tJ,h 

where -yeN) u cho.en a. in theorem 3. Moreovef', for N large enough 

pN (4.17)lP(CN) 2: (1- :2) (1 - e- ) 

where p and K are po.itive con.tant •. 


Proof: By theorem 3 there exists an event CN E .1'( x .1'£ whose probability satisfies the bound 


(4.15) such that on CN, for all rr E SN and for any function.., satisfying -yeN) ! 0 as N T00 and 

pN-y2 > c for some constant 0 < c < 00, 

IHN(E; e; rr) -lE£HN(Ej £i rr)1 ~ -y(N)y'i1iN (4.18) 
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Now note that 

IHN,h(fj elT) -lE.HN,h(fj ejlT)1 = IHN(fj ei IT) - lE.HN(fj ej (1')1 (4.19) 

and (4.18) and (4.19) together with the definitions of PN,p,h(e, z) and IIN,p,h(e, z) easily yields 

(4.16), which proves the lemma. ¢ 

Let us now consider the measure VN,/3,h(e). Since the mean Hamiltonian (4.15) can be expressed 

in terms of the overlap parameters as 

IE,HN .• (e.e;a) ~ -N {~[m~(a;e»' - hmN(a;e)} +mN ( 4.20) 

we have by (4.11) that, for any given z E 5€, the right hand side of (4.18) takes the same value for 

all the configurations IT such that X€(IT) = z. Therefore the density VN,/3,h(ejZ) can be written as 

exp{-NFN,/3,h,M(Z)} 
(4.21)VN,p,h(e, z) == L2:E2:t exp{ -NFN,p,h,M(z)} 

for all z E 5€, where 

mil }
FN,p,h,M(Z) == -p ~[;.;(e~, [M +IdlzW +h;.;(e

Q 
, [M + IdJz) +In I {IT E SN : X€(IT) == z} I{ 

(4.22) 

(4.21) has now a convenient form in that, roughly speaking, the point at which (4.22) takes its 

minimum value can be computed exactly and PN,p,h(ei z) can be shown to be concentrated at that 

point. We collect the result we will need in the following 

LEMMA 4.3, (0]: Let a(p, h) be the largest solution of the equation z == ta.nh(P[z +h]) and denote 

by zQ(h,P) E [-1, 11d the tJector 

zCl(h,P) == a(p,h)eCl (4.23)• 

Let e(h, N) and 'i(h, N) be two arbitrarily chosen /unctions that tend to zero as N tends to infinity. 

Define the subset A E E€ as 

A == {z E 5€ I liz - zQ(h,P)11 :S ¥de(h, N)} (4.24) 

Then, for all '" E 1)N and for N large enough 

L PN,/3.h(e,Z) :SeN{36(N)-aQ2(h,N)} 
zEA' (4.25) 

+ eN{36(N)+MhQ(h,N)-!¥-(,,(h.N)-q(h,N»2} 
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where a and b are posititJe constants. 

We are now ready to complete the 

Proof of Theorem :I : Subtracting from both sides of (4.13) the term g(~(e~, zQ(h,P») we 
get 

IL [g(m~«(I'i e)) - g( ~(e~, ZQ(h,P»)] gN,lJ,h(fj ei (1')1 
tl'E.sN 

(4.26)
=1 Z; [g( ~(e~, [M +IdJz» - g(~(e~, zQ(h, pm] IIN,lJ,h(fj ei z)1 

2:E.::.c 

and decomposing the sum over z E E€ as the sums over z E A and z E AC 

I ~ [g(~(e~, [M +IdJz» - g(~(e~1 ZQ(h,P»)] "N,,6,h(fjei z)1 
2:E.::.c 

:S L Ig(~(e~, [M +IdJz» - g{ ~(e~, zQ(h,p»)I"N,lJ.h{fj ej z) (4.27) 
2:EA 

+ L /g(~(e~, [M +IdJz» - g{~(e~,zQ(h,p)))I"N'P'h(fj ei z) 
sEA' 

so that we are left to show that eaclt of the two terms in the right hand side of (4.21) goes to zero 

as N tends to infinity. To bound the former note that for all z E A and '" E 1)N 

I~{e~, [M +IdJz) - ~(e~, zQ(h,p»1 :S 5(N) + ,,(h, N) ( 4.28) 

since on 1)N, l(e~, Mz)l :S d6(N), and by definition ofA, I(e~, [z-zCl{h,P)l)1 :S d,,(h, N). Therefore, 
by continuity of g, 

Ig(~(e~, [M +IdJz» - g(~{e~, zCl(h,P)))/ :S , (4.29) 

for any arbitrarily small, provided that N is sufficiently large and finally, for all '" E 1)N 

L Ig(~(e~, [M +IdJz» - g(~(e~, zQ(h,P»)/"N,P,h(fi ei z) :S , (4.30) 
zEA 

To treat the second term in the right hand side of (4.27) we use that since g is bounded, 
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Ig(~(e'" [M +1dJz)) - g(~(e", i cr (h,.8ml ~ where II. 1100 denotes the norm of the 

supremum. Thus 

L Ig(~(e,.,[M +1dJz» - g(~(e",icr(h,.8)))IJlN. .B.h(E;ejZ) ~ 211gll00 L JlN..B.h(Eiei Z) (4.31) 
zEA' zEA' 

Inserting successively the bounds (4.14) and (4.23) ofLemma 4.2 and 4.3, we have that, on CN n'DN 

L JlN•.B,h(Ejei z) ~e2fJNVm"'(N) [e N {36'(N)-a?(h.N)} 

...EA· (4.32) 
+eN {36'(N)+bfJh;(h.N)- !¥-(q(h.N)-Q(h.N))2}] 

and this last bound converges to zero as N tends to infinity provided that "'I is chosen such that 

"'I(N)Jm(N)! 0 as N i 00 and that e(h,N) and i(h,N) are chosen such that 

2.8rm"'l(N) +36(N) - arCh, N) < 0 (4.33) 

and 

2.8rm"'l(N) +36(N) +b.8hi(h, N) b~h (U(h, N) - i(h, N»2 < 0 (4.34) 

which is possible for any a and b. Note that putting together the above constraint on "'I and 

those of theorem 3 imposes the condition m(N)/p(N)N ! 0 as N i 00. Now setting e == 

UNo>OnN>No{CNn'DN}, (4.8), (4.17) and the Borel-Cantelli Lemma imply !p(e) 1. Thus 

(4.26) and (4.27) together with the previous bounds give 

»~I L [g(m~(tTje»-g(~(e",iQ(h,.8)))]gN.fJ'h(E;e;tT)l=o !P(x!P£-a.1J (4.35) 
tTE$1V 

Finally using (4.5) 

~(e'" i a(h,/3» a+:!) (e", et:lt) = a+(.8)6,.,v (4.36) 

uniformly in N, and since 

lima+(.8)6".v {~+ «(.I) (4.37) 
h!O m".v'" 

the case where h 2: 0 of theorem 2 is proven. 0 
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Appendix 

In this append.iJ: we give a proof of lemma 3.4. Since this result may have some more general 

interest, we present it under more general conditions on the er. Our proof is largely inspired by an 

estimate on largest eigenvaluea of random matricea given by Komlos and Fiiredi [KFJ. 

We will assume the following about the er here: 

(i) Unr:11.:::..~ is a family of i.i.d. r.v.'a 

(ii) lEe; =0 

(iii) lE(e;)' ~ tT', for all I 2: 2. 

{ 

We shall also, without loss of generality, assume that m $ N. Let us define the (N + m) X 

(N +m) matrix B with elements 

e~-m' ifo>mand/3$m 
(A.l)Bcr;3 = e~-m, if.8 > m and 0 $ m 

0, else 

Notice that then 
2 {Ef:1 ejef, if 0 $ m and /3 $ m (A.2)(B )cr.B = E;:1 e~e~, if 0 > m and /3 > m 

0, else 
Clearly B2 is the direct sum of two matrices B1 and B2, and the matrix A we are interested in is 

just A = -!iiB1 • Let us introduce the two index seta 11 = {I, ... , m} and 12 ={m + 1, .. . ,m + N}.. 

Clearly then we may write 

(A.3)lEtr B~ = L L lE (BcrOfJoBfJoal ••• Bcr._I.B._I B.B.. _Iao) 
ao.·· .•cr.. _l Ell tJo,·.. ,fJ"-1 El, 

We may think of the two aums as sums over sequences (00, .. " Ok-1) E It, etc. For such a sequence 

we will denote by 
(A.4){(OO, ... , Ok-1)} == {t E 11130:9<A:8.t. Of =t} 

the set of different values the sequence runs through. We may then arrange the sums in (A.3) in 

such a way as to firat sum over all possible subsets r 1 C 11 and r2 C 12 and then over all sequences 

for which the values run through exactly these subsets. Thus 

lEtrB~ = L L L L lE (Bt:lto.BoB.Bot:ltl· •• Bt:lt._I.B._IB.B._It:ltO) (A.S) 
rlCll r,Cl, ( .. o ........ _I)EI~ (#o .....#._tlEI~ 


{(.. O.···.... _l)} ..rl {(#O.·...#._1)) ..r2 


Now it is obvious that the sums over the sequences in (A.5) do not depend on the exact sets r 1 

and r 2, but only on the cardinalities of these two sets. Thus we may write 

k min(k.m) min(k.N) (m) (N)
lEtrB1 = ~ ~ Ek r. (A.6)

L., L., l' IJ " 
r=1 .=1 
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where 

EIc,r,. == L L IE (BOl0i30 B f300lt ••• B 0l4 _ 1i34_1 Bi3__ 10l0) (A.7) 
(.,o .....Q._t)EI~ (lIo •...•II._1)EI; 


{(ao.· ..• ., 4-1)J ,,{ 1...... } {(IIO ..... II._1)J ={ ... +1 ........ +.} 


and where we have used that the combinatorial factors in (A.5) count the number of subsets of 

given cardinality. Note that EIo.,.,. does not depend on m or N anymore (the appearance of min 

(A.7) being completely spurious). 

To estimate these last quantities, we would like to think of the sums in (A.7) in a slightly 

different way. Let us denote by gr,. the complete bi-partite graph with vertex sets labelled by 

n == {I, ... , r} and 8 == {m +1, ... , m + .}, i.e. the graph with vertex set n U 8 and edge set 

'Il X S. Each term in the sum (A.7) corresponds to a walk of length 21:, w, on this bi-partite graph 

(i.e. a sequence of edges linking alternately the sets 'Il and 8) with the property that each vertex 

of gr,. is visited at least once. Moreover, it is clear that any walk which passes over any given edge 

of gr,. exactly once will give a zero contribution as the expectation of the corresponding product 

of BOli3's vanishes by assumption (ii) on the distribution of the e. We will denote by 

WIe(r,a) 

the set of walks that give a non-zero contribution. By our assumptions, we then have 

LEMMA A.I: 
E Ie,r,. < _ t12Ir+.-lljWIe,f,. , .)1 (A.8) 

We are thusleCt to estimate the number of walks in WIe(r,.). 

Notice first that for fixed r and ., the shortest possible walk contributing must have length 

21: = 2(,. + • - 1). Let us thul first consider the case I: = ,. + • - 1. In this case, the walk mUlt 

visit each edge either zero or two times. Moreover, the edges it does visit form a bi-partite tree 

on ('Il,8). It turns out to classify all such walks according to the different trees they generate, to 

count the number of walks for a given tree and then to enumerate all bi-partite trees. We get 

LEMMA A.2: Lett be a bi-partite tree on ('Il, S) with co-ordination numbers d}, ... , dr, C +!, ••• , C +•.•m m 

Let OCt) denote the aet 0/ all walks in Wr+.-1(r,.) that generate t. Then 

r m+_ 
IO(t)1 = (r +s -1) IT(d; -I)! IT (Cj -I)! (A.9) 

.=1 j=m+1 

Proof: Let us pick a particular vertex i, say in n. Suppose w arrives at i at time no for the first 

time. There are d; - 1 branches emerging from i (other than the one the walk just comes from), 
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and the walk must pass completely over them before it is allowed to return. So at the next step, 

there are (d; - 1) choices for the walk to continue. Given that choice, the walk will return to i at 

some later time nl after having passed exactly Over the entire cholen branch. Now there remain 

(d. - 2) choices to continue and 10 on, until after the (d, - l)st visit of the vertex i it leaves it in 

the direction it first came from to never return to it. Clearly, the total number of choices arising 

from the visits at this vertex amounted to (d, - I)!, and obviously each vertex contributes IUch a 

factor, whence the two products oUactorials in (A.9). Finally, it remains to decide on the starting 

edge for the walk, of which there are (r +. - 1), which accounts for the first factor in (A.9). 0 

By this result, we only have to know the number of bi-partite trees with given co-ordination 

numbers. However, this il a standard problem of graph-theory and one has the following general­
ization of Cayley'. formula: 

LEMMA A.3: Let T(",.jd., ... ,dr;Cm+l,''''Cm+.) denote the numbe,. 0/ bi-partite tree. with 

given co-ordination number. di , Cj. Then, i/ "Ei d. ="E Cj := ,. +. _1 
j 

(r - 1)!(. - 1)1
T(r,.jdh ... ,d,.;cm+l,""Cm+.) = 1'1 -l)!. .. (d -l)!(c +l l)!. .. (c +. _ 1)! (A.10) 

r m m
 
and zero otherun.e. 


(The proof of this formula is by induction as in the standard version of Cayley's formula. See 
e.g. [BE]). 

Combining these results we get that 

LEMMA A.4: Let I: = r + • - 1. Then 

("+._1)2!WIe(r,·)1 = (r + • - 1) (,. - 1)1(. - 1)1 (A.Il),,-1 


The proof of this formula is straightforward. 


Let us now return to the general case, I: ~ r + • - 1. Using the previous results, it is fairly 
easy to prove the following rather crude bound: 

LEMMA A.S: 

IW.(r,·)I:5 C(r:: -1») (..)'(·-·-·+1)(r +. -1)(r! ~ ~ 1)'(r _ 1)!1)!(. (A.12) 

Proof: To get (A.12) just note the following: First, for an arbitrary walk w, it is still possible to 

construct in a unique way a bi-partite tree, t(w) on (n,8). To do this, just follow the walk and 
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include into t successively all edges that lead to a vertex not previously visited by the walk. Then, 

we may construct a new walk, w(w), of length 2(r + • - 1), whose associated tree is also t(w) by 

again following w and including an edge into wif it is an edge from t and is visited the first or 

the second time. Moreover, we give it the orientation + if it is visited the first time and if it is 

visited the second time. It is easy to verify that this creates the desired walk. Now we know how 

many walks wexist; thus we need only to estimate the number of walks w giving rise to the same 

w. To do this, just squeeze 2(k - r • +1) edges between those of w. There are (2(1';:-1») ways 

of distributing them, and there are no more then .r ways of placing each edge (in fact there are 

much fewer). But this gives the estimate in lemma A.5. 0 

Let us define the quantities 

SN,m,k,r,. == 0-2(1'+.-1) (~) (~) (2(r:! _ 1») (.r)2U-r-.+l)(r+. -1) (r: ~ 1 1) 2 (r-1)!(.-1)! 

(A.13) 

We clearly have that 

E tr B~ ~L L S N,m,k,r,.. 

k+l q-l (A.14) 

=L L SN,m,k,r,q-r 
q=Ir=1 

Now a simple calculation shows that 

5k6 

SN,m,k,r,q-I-r ~ 120-2N(1 kIN) SN,rn,k,r,q-r (A.15) 

and therefore, if k ~ N 1/60-1/J, 

1 
SN,m,k,r,q-l-r ~ iSN,m.k,r,q-r (A.16) 

Thus 
k+lq-l k 
L L SN,m,k,r,q-r ~ 2 L SN,m,k.r,k-r (A.17) 
q=lr=1 1'=1 

and finally we arrive at 

LEMMA A.6: For k ~ NI/6, 

EtrB~ ~ km~SN,m,k,r,k-r (A.18) 

What we are left with finally is to determine the maximum in (A. IS). For N large, and using 

that ok <: N, we find that the minimum is realized for r ::::; m1', where l' == rfp (remember that 

p = ../mIN). Inserting this value, a simple calculation show that the right hand side of (A.18) is 

equal to Nk+le2k
"Y, up to an irrelevant correction factor that goes to one as N T00. But from this 

lemma 3.4 is obvious. 00 
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