
Broken Conformal Syrrunetry and 
Hadronic Scaling** 

a 

\ 

_1_1 B. C. Yunn 


Department of Physics, The Johns Hopkins University 


Baltimore, Maryland 21218 


Technical Report 

/' 



Abstract 

High ~nergy, large momentum transfer hadronic reactions are 

studied in the framework of a broken conformal symmetry_ In the 

conformal SYlllrnetry linlit, hadrons are aSSigned phenomenological 

fields which belong to infinite dimensional irreducible representa­

tions of a pseudo unitary group SU (2, 2), which is homomorphic to 

the conformal group, and also their effective action is conformal 

invariant. Studying simple Lagrangian models, we conjecture that 

the conformal symmetry is spontaneously broken and also that the 

scalar field X(the Goldstone boson), which has nonvanishing vacuum 

expectation value, has a scale dimension d = -2 + 2 ~ where b 
represents deviation from the canonical dimension. We then cal­

culate the inverse propagator up to and including the first order in 

the tadpole expansion explicitly and find that hadrons lie on almost 

linear Regge trajectories, which are determined by regular null sur­

faces of the inver.e propagator. The widths of resonances are con­

nected to the anomalous part of the dimension, S. Empirical fit 

with the data (baryon resonances) gives $"",0. 04. In this framework 

we also study inclusive reactions of the type PI + Pz ... q + X in 

regions of high transverse momenta. On studying the absorptive 

part of the six-point conformal amplitude, we find that the single 

particle distributions exhibit a parton-like structure and also obey 

simple sealing laws; presently available experimental data on the 

reaction pp -II> 11'°X support this conclusion. We also predict large 

rates of heavy particles (K, l ) production. 
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Chapter 1 

Introduction 

Our object in this <report is to study conformal symmetry as an 

approximate space-time symmetry of hadron systems in the high 

energy, large momentum transfer region. As is well known, the 

Poincare group is the largest exact space-time symmetry group 

of physical systems. However, the conformal group, which con­

tains the Poincar6 group as one of its subgroups, has also appeared 

in various places as an exact symmetry group. Conformal invari­

ance of Maxwell's equation was noticed by Bateman and Cunning­

ham1) in 1909. On noticing a simple correspondence of ordinary 

fields over Minkowski space with fields on the four-dimensional 

surface in a five-dimensional projective space, manifestly confor­

mal invariant free field equations and invariant interactions were 

first discussed by Dirac and Kastrup2), respectively. An attempt 

to formulate electrodynamics based on the conformal group was 

given by Page. 3) In relation to this, special conformal transfor­

mations were interpreted as transformations to constant acceler­

ating systems. The physical interpretation of conformal symmetry 

and its relevance to the real world were extenSively studied by 

llarious authors, notably by Kastrup, Mack and Wess. 4) By now, 

the more or less accepted interpretation of special conformal 

transformations as local scale transformations is due to Kastrup. 4) 



-2­

A current algebraic formulation of studying broken conformal 

symmetry known as PCDC (partially conserved dilatation cur­

rent) was given by Mack?) In the framework of canonical Lagran­

gian field theory, it has been also shown that the conformal sym­

metry (or broken conformal symmetry) can be consistently for­

mulated and also that the scale invariance necessarily implies 

the conformal invariance too, under very general conditions. 

However, recent great interest in conformal symmetry is largely 

due to scaling phenomena in deep-inelastic electron proton scat­

tering predicted by BjOrken6) and verified soon after the predic­

tion was made by the MIT-SLAC experiment:) In an effort to 

explain such a peculiar behaviour of nucleon structure functions, the 

8Wilson's operator product expansion ) a~ small distances has been 

extended to the light cone. 9) As originally postulated by Wilson, 8) 

it has been assumed that the leading light-cone singularity may be 

determined only by scale invariance. If this is the case it is also 

very natural to assume conformal invariance on the light-cone 

based on our previous experience with local Lagrangian field 

theories. Conformal covariant operator product expansions have 

been developed by Gatto and his collaborators. 10) 

In a completely soluble field theory model, likethe Thirring model, 

Wilson11) has shown that the scale dimensions of operators depend 
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on the coupling constant. Although the results obtained from the 

Thirring model do not necessarily carryover to four dimensiOns,12) 

it is generally agreed that anomalous dimensions could play an 

important role in the real world (i. e. four dimensional theories 

as well. This belief is further strengthened by some perturba­

tive results in renormalizable field theory models. 13) It is known 

that the results of the MIT-SLAC deep-inelastic electron proton 

scattering experiment7) prefer at least near canonical dimension­

ality; the appearance of canonical scaling in ep..... eX may be due 

to the fact that the dimension of a conserved current is canonical. 

However, it is true that there is no way to distinguish small devia­

tions from the canonical dimension with present experimental ac­

curacy. It is worth mentioning at this point that almost all calcu­

lationsl3) for the anomalous dimension give very small deviation 

from the canonical value. In the main te~t we also give an esti­

mate of the anomalous part !J for a scalar tadpole mediating the 

symmetry breaking. We find that ~ is around 0.04. 

At this stage it is appropriate to ask the following question: how 

do we construct conformal invariant theory accepting the occur­

rence of anomalous dimensions? A big step toward this problem 

taken by Migdal14) is known under the name of bootstrap approach 

to conformal symmetry which is essentially non-perturbative. 

Migdal has observed that the integral equations which determine 
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nonzero. This latter case has been widely studied in the 

literature and it will motivate our work as well. 

At this point it is instructive to study a simple Lagrangian field 

theory model due to Nambu and Freund~8, 19) Consider a Lagran­

gian consisting of two scalar fields, fft) and 4"(2) ; 

[(z)= {f(~r}1,1" ('-.'1')'1,.,. ~&'rts 1- A, (f1:.. IlJ'L 
where 11, is the only dimensional parameter. We can define 

) 

"the improved energy momentum tensor", dJj!j, originally sug­

gested by G\irsey20) and recently rediscovered by Callan et aL • 21) 

With~plI in our hand, explicit representations of the scale current 

D)L and of the special conformal currents K'" are concisely writ­

ten down in terms of the fields: . 

13c :;. x. V (/})I'~ (~) ) 

~v~ (~~').t - ~ f 'L 1,) ~fcl'l.) . 
In the present case, however, the symmetry is broken explicitly by 

the last term in!('l) , so these currents are not conserved. Let 

us see whether our Lagrangian admits solutions with spontane­

ously broken symmetry. To this end, consider the action integral 

w(r, ~) := ! lh) lit- 7 

and take functional derivatives with respect to f and 0/, then 

look for constant solutions for!!! and ~~ . We find solutions 

$'1 Scy 
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a.) '1::.-0 ~ cf ~ 1 J, 

b) if~ J r~t(;~) ~ 
where a) is an unstable solution. (This can be easily established 

by considering the second derivatives of the action.) Let us take 
J. 

the solution b) with t;::...,. f"o/""and introduce a new field, 

X(x):: '/-'(%) -~-=-
1. {~,.,J ~ 

Evidently we now have (01 Xl X)} 0)=0- In terms of "and X, 
the scale (conformal) breaking term in the Lagrangian is simply

-t",;-,.,1. where ",;::=-}.,a. In the limit of switching off the 
'J., 2­

symmetry breaking \a,..,DWith it~fixed), ?rl~-90 should be 
21) 

noted. A particularly nice feature in the case of spontaneously 

broken conformal symmetry is that the dynamical mechanism 

which gives rise to nonvanishing vacuum expectation values for 

"'does not appear if we go over to the symmetry limit contrary 

to other types of symmetries like SU (2) t8) SU (2). The Nambu-

Freund model is also a good example of the scalar dominance 

of the trace of the energy momentum tensor. In the particular 

model discussed here, this is easily verified by computing the 

trace Of~", explicitly. One finds: 



In the main text (Sec. 3.1), a generalization of the Nambu-Freund 

model is found and a perturbative scheme is developed. 

The plan of this report is as follows. General properties of a 

conformally invariant theory are treated in Chapter 2. After 

defining conformal transformations (Sec. 2.1), the induction pro­

cedure for the representations of SU (2,2) is briefly discussed 

(Sec. 2.2). In Sec. 2.3 we give a plausible argument for the pres­

ence of anomalous dimensions. The concept of the effective action 

is discussed and it is argued that the effective action method is 

best suited for studying approximate symmetries of hadronic 

systems whose "fundamental" dynamics is unknown. Assuming 

asymptotic conformal symmetry, a set of diagram rules for the 

construction of conformal invariant irreducible vertices is given 

(Sec. 2.5). Some features (like the absence of ultraviolet diverg­

ences) will be briefly discussed in Sec. 2. 6. Finally in Sec. 2.7, 

problems involving fermions will be discussed. Breaking of con­

formal symmetry is discussed in Chapter 3. We give a mathe­

matical formulation of the problem in order to put physical ideas 

into workable form (Sec. 3.1). Some explicit calculations are re­

ported; the inverse propagator will be calcul~ted explicitly to first 

order in the "tadpole expansion". We give explicit representa­

tions of these in momentum space (Sec. 3.2 and 3.3). We then 

make partial wave projections, first at integer pOints. Using 
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Carlson's and Hartog's theorems repeatedly we prove that analy­

tic continuation of these expansions is possible in the two relevant 

variables ( Rand J):::. 't.. -() (Sec. 3.4). In Sec. 3. 5 we extract 

the information about hadron resonances from the inverse propaga­

tor by looking for its zeroes. We find that:hadrons lie on almost 

linear Regge trajectories. Their widths depend explicitly on the 

anomaly of the dimension, of the scalar tadpole which breaks con­

formal symmetry. A fit to the spectrum of the well-established 

baryon resonances gives a value ~ "'" 0.04. Further examina­

tion of the singular surfaces of the Green functions shows that at 

fixed angular momentum they give rise to "dilatational trajectories" 

as first conjectured by Del Giudice et al~3) Chapter 3 is concluded 

with some remarks. "Hadronic Scaling" is treated in Chapter 4. 

We calculate to zeroth order in the tadpole and use the results of 

the first order calculation in the spectrum; this is justified since 

24
the Brillouin-Wigner ) perturbation method used in Ch. 3 assures 

the n-th order in the "wave function" gives n + I-th order in the eigen­

value. The necessary concepts and facts are enumerated in Sec. 4.1. 

The six-point conformal amplitude is considered utilizing a Mellin 

projection technique (Sec. 4.2). It is shown that the absorptive part 

of the six-point "skeleton" vanishes. This gives a natural reason 

for studying the perturbatlve calculations treated subsequently. 

We give a first order perturbative calculation for the absorptive 

_._- ..._------------------­
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part of the six-point amplitude. We find that the inclusive cross 

sections obey simple scaling law. A specific form of the scaling 

function is evaluated in an ind<'pendcnt correlation modeL A parton­

iiI'\.("> structure of the cross sections emerges naturally in this frarne­

work. Combining these results with the previously obtained dimen­

sional rule we predict that at high energy and large transverse 

momenta the inclusive production of "heavy particles" (K,l etc. ) 

sho"..lld be more frequent than pion production (Sec. 4. 3, 4.4). 

Finally, this report is concluded with discussions in Chapter 5. 



-10­

Chapter 2 


On Conformal Invariant Theories 


2. 1) Conformal Group 

Even though our physical space is the four-dimensional Minkowski 

space we first consider the conformal group in a general n-dimen­

sional space Rnm: 

with a metric tensor o 
1 

-f jJ -:. J.l , It1fl ~p ~ 11 • 
We define conformal transformations on the space R: as follows:25) 

)a "Rotation"; tty I 61"'" ,.. !!:: _ I\P 
v 

", v"'" , 

b) Translation; 'l,' '" ::. %JA .... :t,4l., (2.1) 

c) Scale transformation; ~1M:::. " 

d) Special conformal transformation; 

where t".~:::. (;JA X..-.. 

a (n + 2) (n + 1)/2 parameter Lie group, it is easy to exhibit in a 

standard way the Lie algebra of conformal transformations. They 

are:5),25) 

( 'PIA, 1'IIJ ::: 0 , 


( MIA: (J ::: -;, ( 'PM ~II"- pil1J11 , 

(11.11: r(f]::: i ( MJIr,II'~ "''''1.(16'-M7 litMJAf1'16) , 

X. ~, 

Since the above transformations constitute 
) 



[ 1("', K"'J =0 ) -11­

( K"', M*J -= i ( ~"'V~_1JA'kV) , 
( k") pVJ =-:J.i ( ,JA"D + M,u1~ 

(2.2)(D , p~J :: -i pJA • 

(0 I kif J :: i I<JA, 
(D ,MAA~ =- 0, 

where pu) HAI~ kJl and D are generators of translation, 

rotation, special conformal transformation and dilatation re­

spectively. Notice that both subalgebras formed of MP~ pAl and 

M~ I<AI are that of E (In J n-m) (pseudo-euclidean group). This 

fact is of some use when one induces representations of the con­

formal group on those of its subgroup. As we can see in Eq. (2.1) 

special conformal transformations have been realized nonlinearly 

~ m+. 
on Rn ; however, on the extended space Rn+2. these can be real­

ized linearly. We see this in a following way: 

Define J~"" =MAA"" 

In+ll~ = k. ( P}C_kJ.C) 
(2.3) 

In+~,11 = i ( pM+K") 
J"tl,ft+2: -0 

then simple manipulation using commutation relations Eq. (2.2) 

shows: 

where A, B, C and D runs from 1 to n + 2. Thus the conformal 
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group is locally isomorphic to the group SO (m+1, n-m+1); in 

fact the same relation may be shown to hold globally too.. Let 

us now check that conformal transformations defined in Eq. 

(2.1) preserve the angle bptween two vectors in R:. Let ~,~ 

be two vectors, then the angle between them is defined by: 

(2.4)X 14-~ 
1\ 0 - (%.",/11)1. 

It is now evident that translations, rotations and scale transfor­

mations preserve the angle. Note that under special conformal 

transformations: 

(2.5)ff'(x)()(~J , 

where o-(x) == 1- :le·): +C·X:l., SO 

Consider, for instance, n =2, so that the conformal group is 

8Q3,1) or SO(2,2) depending on the metric 1)l~ (1,1) or (1, -1). 

Notice that these groups are locally isomorphic to SL(2, C) and 

SL(2, R) ® SL(2, R), respectively. For the physical Minkowski 

space we have n = 4, m = 1, therefore its conformal group is SX2, 4). 

One important fact is that SO(2,4) is homomorphic (2 to 1) to the 

special pseudo-unitary group SU(2, 2). This is important because 

we are going to deal with the covering group SU(2, 2) instead of 

SO(2,4). The reason for this has been discussed by Wigner26) 

for the case of the inhomogeneous Lorentz group. Wigner' s 
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discussion applies - with a straight-forward change of the argument ­

to conformal groups as well. In fact, only bilinear expressions of 

half-integer spin fields are measureable and need to transform as 

single valued quantities. It is also to be noted that exact conformal 

symmetry necessarily implies that the mass spectrum should be 

either continuous or zero because of the commutation relation 

(0 J P~] =-t pM. One should also note that the special con­

formal transformation can convert time-like to space-like vectors 

and vice versa. 

2. 2) Induced Representations of SU(2, 2) 


Consider a four-dimensional representation of the conformal al ­


gebra expressed in terms of Dirac r -matrices. 


p,cl = - k¥'" ( I -t Y5j ) 1 

MJAV::: ~ (k)l, t"] , (2. 6) 

K~ :; -1 k.M ( I - t,) , 

o -::: ~rD } 
where the ¥-matrices satisfy the standard ant commutators: 

l kJl, ~vJ =~ ~PLl. 
We also have )D+:::(O, tf(=-t1tand ¥~~r~ ::. "I-f' t"t 1 , where t 
denotes hermitian conjugate. (Note: (Ij is hermitian). In order 

to be more specific, let us choose a particular representation of 

r -matrices, namely the so-called chirOJ. representation. They are: 

~1;:~) ) k~::(;:-:~), ~O=(~I,~) ,(2.7) 
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where (Tit and 1 are 2 x 2 Pauli matrices and identity matrix 

respectively. It is now straight-forward to see that the follow­

ing subgroups of SU (2,2):16) 

(,,0) M:::.( (m+r!
1',:::. t;-" 

I :) Jo J 
(2. 8) 

C :::.( f ,e) o:::. ( ?\.'" )~ 0 , I } o ) 
correspond to translations, Lorentz transformations, special 

conformal transformations and dilatations respectively. Here 

t and C are 2 x 2 hermitian matrices and 1rI eSL(2, C) and i\. is 

a real number. Let ':f'x, x.) be a field transforming according 

to a representation of STJ(2,2) where X is a coordinate in Minkowski 

space written in a spinor form and x..is a Gelfand-Naimark spin 

label. Under' e SU(2, 2): 

1(1) f(x/a) ::,s(' I t,z) f (X: 1) J (2.9) 

where primed variables are transformed ones. Suppose we choose 

X = 0, then as is easily seen from the above Eq. (2.9), p(O,x.) should 

belong to a representation of the stability group (little group) of 

X =0. Note that translations are the only transformations which 

can shift the origin X =0, so the structure of the stability group 

is identified as (SL(2, C) C8) D) ~ C . Since we are going to in­

duce representations of SU(2, 2) on those of the stability group 
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(SL(2, C) <tD D) ~ C , there arise two types of representations: 

a) Finite dimensional representations~7) These are used for 

elementary particles .. fi>r example in the Lagrangian field theory 

such representations are ::lssigned to the fundamental fields .. 

b) Infinite dimensional representations. 28) Composite systems 

like hadrons are most likely to be described by the infinite dimen­

sional representations even though a conformal symmetric theory 

does not contain any energy scale. 

We further note that the representation matrices of the special 

conformal generators K}A should be null or nilpotent in the case 

a), which follows from the fact that the generators of translations 

are nilpotent in any fillite-dimensional representations of the 

Poincare group. So far, the most attention has been given to re­

presentations in which the generators of special conformal trans­

formations are represented by null matrices. In what follows we 

also restrict ourselves to this case. 

Let Cfe O,~) belong to an irreducible representation characteri 2ed . . 
by three complex labels t, 1. and '10 wher'e ~ is so-called conformal 

weight and ('" 
" 

12
.

) are representation labels for SL(2, C). We have 

then: 

for' E SL(2, c) aD D (This is known as the Weyl group, hereafter 
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we will denote it by W) 

where 

Xl = ,,' X -t ~t.' 
(I ~ 
(/12 /'­

-t qtit, , (2.10) 

0«9, '%.) :: 'It;{ -t '''1. . 
The bar here stands for complex conjugation. Under the trans­

lations we may choose our basis such that spin indices do not 

change: 

Now conSider..:J(3)r(X,x..) where g is a general element of 

SU(2, 2): 

1 (3) r(X,~) ~J (a) 1 (x) if (O,:t-) 

(We have J (X) tf (0, x) == f{x'z) from Eq. (2.11) ) 

::;. J(X) 1 ( h) 1 ( 0, X ) (2. 12) 

whereX'ET4 and .:J(~)standsfor -:;-'tXJ1{aJJ (X) ). 
We now claim that hEW }'l) c4 by choosing X' appropriately. 

This is because we can always decompose g E. SU(2, 2) such that 

g = C 4 W T 4. We find h and X' explicitly as follows by straight­

forward calculations: 

h ::: ( ( X"1. of ~,,,l,; ,1'2. 
(2.13) 

o ) X1,t + 1~ , 
X'=- ( X1ft ~ 112.;-i (XI,. t 1u) } 
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where 

3~ ( g" ,"2) gjk's are 2 x 2 matrices. 
'1..( I ,,,~ , 

The matrix h can be further reduced to a product of elements in 

Wand C4' namely: 

h=- " 9,,. (X", -t1u) 

o I f 

--I 

(2. 14) 

Hereafter, let us denote 1r = Xg12 + g22' for brevity. We can 

now complete the induction procedure since we know how :!(h) 

acts on ~o, '%) from Eq. (2.10) and translation 1(x'), on 1<0, x). 

We have therefore: t '1' , 
1{~} rlX:Z:) ::: IJ~h' o«h,t.) 'ol/(;)2-1

, ,!(X,!.) 
where X' is given in Eq. (2.13), and (2. 15) 

".., "'" 
-:r I =- h" t: -t hz, 


1I,t %. + tt. 
 I 

0( tt, x.) ::. t,t 2 -t h11.. 
It is known that the representations which we have just induced 

are unitary irreducible when the parameters "t, jf andj 2 are as 
29follows: ) 

,'L. :::. ..... r -t,'f , 
, J. M r'JI ::: .....1-. -t 1: -t c r , (2. 16) 

Jt.
, 

:::. ...t -"'i: 
M 

-+.'f') 
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where M is an integer and r, r are real numbers. 

If the field f<x,~) describes bosons, it should transform as 1:. 
\ \ tr ~11 0;::.. 11... ::::. 1: (real). On the other hand, J{X, lC) for fermions 

transform according to a reducible representation ~ , (j l' j2) e 
(j2' jl)· This is to accommodate parity which is a good quantum 

number for strong and electro-magnetic interactions. Further it 

should be noted that finite dimensional representations are ob­

tained when ,/(X, X.) becomes a polynomial in X J 'i . 

2.3) Anomalous Dimension 

As we briefly have discussed in the introductory chapter in con­

nection with the Nambu-Freund model, in the framework of a re­

normalizable Lagrangian field theory it is possible to define di­

latation and conformal currents introducing the conformal energy 

momentum tensor (8)P&l : 

OP ('%) ::. Xv OJ JI'" (~) , 
(2. 17). 1 V 

1<.4111('~) ::::,XP -tf is>'If' ( % ) - Z. IJ) IA (2.) . 

Note that ~,., J</I~'Z) = ,r-J., D"tz}, which shows that the dilata­

tion invariance necessarily leads to the conformal invariance. The 

respective generators of dilatation and special conformal transforma­

tions are: 

V (XO) ~f"LV/j)DV('L) i~x. , 
(2. 18) 

K)cl'.t'l :::: ! (2..1"";Xf dD p(%) - 2 Z(ffJ ""D(;X)) /z. . 
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In general, D and K)l depend on time, x'0, because of symmetry 


breaking terms in the Lagrangian J{2.). 

We now use canonical commutation relations: 


[f{z) I 1Tl~)JlD~r ::.i$'(~-l) 1 (2.19) 

~L 
where 11(,) :;.ii~.;;) is the conjugate momentum, to deduce the 

equal-time commutation relation between D and f: 

( 'O(tO) I 'f(,.)J :: l ('t.·1i - Jo ) f(7) . (2.20) 

Here we have to assign 4::.,1 to a scalar field,~:: -~ to a sPin-~ 

Dirac field, etc. 30) The quantity J is called the canonical dimen­o 

sion of the field. Renormalization effects, however, destroy the 

canonical commutation relations in a well-known manner. In fact 

it is not guaranteed that we get the canonical value for the dimen­

sion of the field after renormalization, namely JtJo below: 

(2.21)( Dl:tO
) I 1(1)J :::±(:t.~-J) if£x) } 

where 'iff'].) is a renormalized Heisenberg field. The quantity d, 

which is called the anomalous dimension of the field, is a function 

of the coupling constants contained in t. Such an occurrence of 

the anomalous dimension in a renormalizable Lagrangian field 

theory has been first demonstrated by Wilson11) studying the exactly 

soluble Thirring model, which involves a massless Dirac field 

with a self-coupled interaction 1lW'J:.) 1'~'I.) where 311) is 
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the current cfA~'+. He has shown in particular, that 

a't :: -~ -~I. ( , - ~L)-' for the field tand d = - (r -~)
" ( , .,.~r' for the composite fields ift and'tkrt · 

This has to be compared with db::-i and -1 for tf and if'+ 
(or cfcJr~ )respectively. Note d = do only when il.:::..O, i. e. for 

a free field- theory and also d could take any value in this speci­

fic model. Let A.,be small and make perturbative expansion, we 

J (2.22) 

for- if'f 6" f Yr tf 
The fact that the elementary field <t'changes its scale dimension 

2, ",. 
in order 1l but the composite fields like 't't change dimension 

already in order 7l seems to be a general phenomenon in field 

theory_ We only need to remember that similar phenomena appear 

in the realistic four-dimensional ~4>1~ moder'3!-here f(%) is 

a scalar field. 

At this point it is to be emphasized that the anomalous dimension 

is an inevitable concept if one wants to avoid the conformal invari­

ant theory being a free field theory. Consider for definiteness the 

propagator of a spin zero (scalar) field theory_ The propagator 

may be written: 

4-(f')==f~~(~) I (2.23) 
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where m is the mass of the scalar field. Suppose now that the 

symmetry breaking is sufficiently gentle, namely @plA is domi­

nated by generalized mass terms. We expect our limiting theory 

to be conformally invariant when P~t>". SO (("Cf) will approach 

a conformally symmetric propagator, say Cfe..l ,). As we will 
J 

see in Sec. 2.5, (fee,) 0( (rJ . Therefore if d = -1: 

Cr(r) -7 ? (2.24) 

free field theory. 


2.4) Effective Action32) 


Let us attempt now to construct a phenomenological theory describ­

ing the observed hadrons. It is widely believed that hadrons are 


"composite" objects. This view is supported e. g. by the success 


of various attempts to assign excited hadron states to Regge tra­

jectories, the fact th~t various "parton" models are at least quali ­

tatively successful in explaining the main characteristics of had­

ronic reactions at high energies and large momentum transfers, 


and so on. However, neither the exact nature of the "fundamental" 


constituents of hadrons (if there are any) nor their dynamiCS are 


mown at present. At this point it is worth remembering that in a 


field theoretical framework if the fundamental theory generates 


N· h'· d Z' 33)bound states or resonances, Haag, is IJma an Immerman 



-22­

has shown that a local field operator could be introduced to each 

bound state or resonance. So let us assume that hadrons are com­

posite objects consisting of some unknown fundamental constituents 

(quarks?) and furthermore that perhaps a renormalizable Lagrangian 

field theory exists to describe their fundamental interactions. Let 
,..,
'Ii x) be a renormalized Heisenberg field assigned to a physical 


"" hadron and J ('X,) be the classical c-number source of <fCt.). It 

is known that the functional YCJ): 

Y(1) ::::.(01 T nr(ifJ\:]t:l)¥t%)) 10 ) , (2. 25) 

is the generating functional of the time ordered vacuum expecta­

tion values T (t.,. .... t..): 

(2. 26) 

Note that J (~) is a commuting or anticommuting classical field 
,."" 

depending on f('1) being a boson or fermion field. The connected 

T-functions are generated by taking functional derivatives of X(J) 

defined by: 

(2.27) 

We now define a c-number quantity r(Z.) , which is known as 
I'\,tI 

the phenomenological or effective field of the hadron to which 'If%) 

is assigned, as follows: 

'f' ~X(1) I IV (2.2S) 

('z,/ ~ !1(~ ==- fi1) ({) (T (r(~4H'[J1Y'l)<;;f.}1 0) 
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vertices. Once we accept such a purely phenomenological approach, 

we may discard the specific assumptions made in the beginning of 

this section. The only purpose was to arrive at the concept of ef­

fective actions and fields in a logical way. The quantum field 

theoretical framework may not exist for strong interactions, but 

effective actions and fields may still provide a useful phenomeno­

logical framework for hadrons. In fact, Domokos et al~8) has 

shown that a consistent space-time description of hadrons is pos­

sible by introducing an infinite dimensional phenomenological 

field fathe hadroIlS. 

It is clear that the symmetry properties of the effective action 

play an important role, since the effective action inherits the sym­

metries of the fundamental Lagrangian although it may possess 

dynamically originated symmetries as well. 32) Let Cf be an in­

variance group of the Lagrangian. :FOr definiteness we may choose 

<f= SU (2) (isospin rotations). The Heisenberg fields 

transform as follows: 

(2. 36) 


where g ~ SU (2), J(g) is the unitary operator and S is a re­

presentation matrix of g. On using the assumed invariance of 

the Lagrangian under <l and Eqs. (2.27), (2.28) we can show 

that: 
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(2. 37) 
, 

under the transformation of the external. source, 

It now follows from Eq. (2. 37) that W is invariant under the 

transformation 

(2.38) 

With this much background we describe an ideal conformally sym­

metric hadronic system. One assigns an effective field ~(X ,x) 

not to a single hadron, but to a sequence of hadronic states - or 

rather, to the object to which that sequence collapses - in the 

conforma1ly invariant ..limit and assume that effective action, 

W (j) is SU (2,2) invariant. Let us make a formal functional 

Taylor expansion of W ( f) : 

Wler) ~ 1:/1 trftI"/(d~i 'f{(,%t) WrI (t z" . . -t" t..) (2.39) 
. ~ ) 

where Wo =const, W1 = 0 and W2 = - ti' etc. (W1 = 0 implies 

the stability of the vacuum.) By the assumed invariance property 

of Wunder SU (2, 2) we have: 

(2.40) 
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We also assume ~~ ~c. in view of the previous discussion given 

in Sec. 2.3, where ~(. is the canonical weight of the field. From 

Eqs. (2.15)~ (2.39), (2.40) we finally find the covariance condi­

tion for the n-point vertex W . 16) 
D 


, , I , ) 


W ( V ?I. ••... X,. 
 a... 
n ",''''I I.I -. 

:;: ~ I Jet r(3.xJ~·lltt'(() 0( rh,'4) ZftJ,fi) (2.41) 

X ~{t','ti-} Utili} W" (XI x, I • • . . , XIt x..) , 
where we have used the relations: 

J+X :: IJet h (' X) I If tlfX'J 
(2. 42) 

J
Z
'.{ ;: o«(t,-t.)2. ~ (r.~) 2-lfl J,l t(~,X} It. 

Our next step is to construct the most general form of W n satisfy­

ing Eq. (2. 41). This will be done in the next section. 

'i)2.5) Construction of Conformal Amplitudes; Diagram Rules. 

Following DK, we will visualize the construction of the irre­

ducible vertices Wn 's by means of a set of simple d~agram rules. 

For the moment the effective fields cy'C'fx,x.) , are assumed to 

be of Boson type which implies jl = j2 =!£ . (We have already 
2 '(0 

used this relation when writing the effective field as 'f ). The 

.diagram rules for Wn are as follows: 

a) Draw the simplest symmetric diagram with n vertices and 

attach only one external line to each vertex. Thus we see that 

thereare n -1 internal lines and one external line meeting at 
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each vertex. 

Fig. 1 

For example, n=4; 

Associate with each internal line, joining the vertices jb) and k 


the propagator gjk: 


d.oJ- X' .of 'OJ1! o.:k~jk = - e ttl '.{ (flitoXi')(ntt .XjtH 1 Nil.(2.43)( 

where X1~u =- Xl' - ~; ,and the complex lightlike vector njle. 
is given by 

n1~)1 :: (1:; , ,) OM (~ ) . (2.44) 

. The conformal weight 't jk and the Lorentz label cr jk assigned 

to the interna11ine satisfy the relations which are valid by defi­

nition: 

1:fit ::: f ~f I 't Ii 1IOC 1 
(2.45) 

o.lc .... (5"~i ) 0.,.]" .=' 0 

The normJization factor Njk are chosen to be 

1 (2.46)rV 'It. - ~-----=:---~-
1 - r ( t +'Cit) r(/ ..f OJk) . 

c) Associate with each vertex k the covariance assuring factor: 

http:Nil.(2.43
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where the formal ~ -functions should be understood in the follow­

ing sense; we observe that the labels ~1'~ can be made to lie on a 

single Jordan curve in the complex t:, plane. The latter can be 

mapped onto the real line. Similarly for l1~' (Let Z ( t") be a 

parametric equation of an arc where t runs through an interval 

0( ~ t ~ (! . An arc is called a Jordan curve ifZ(o() = Z(/3) and 

Z(t. ) = Z(t~ ) only for t,= t;.). It is also to be noted that to 

each external field f~ 't. we have assigned its contravariant part- I , 

I I XO t..P1:, Q 
ner, 11.~' -~-2, 6i = - 6't, -2. Consider the two fields 1 ,) · 
The quantity I: 

1~JJ~Ji ((;(X,1I.) 'fL~(K,,,) ) (2.47) 

is an invariant if 1:ft4z ~ 0 ) 0" -#- 6"',+ Z::::0. Hence we call 
-r-z. -0-2. t trCf J contravariant to i:f . Eq. (2. 47)can be generalized 

to an arbitrary number of amplitudes without any difficulty. It has 

been pointed out by Montvay34) that in the construction of SL(2, c) 

covariants one is forced to assign contravariant fields in order to get 

the correct limit at the physical integer points. Our construction is a 

generalization of Montvays ideas to SU(2, 2). d) Multiply the expres­

sion resulting from the application of rules a) through c) by an arbitrary 

function, 9"('1k ,6fk) ,of the internal labels. The function Gr has 

to satisfy certain rather mild integrability conditions. In what follows, it 

will be assumed that ~ is analytical around the principal series of 

SU(2,2). e) Integrate over the variables ~.~ J <fjk. along a hyper-

contour running through the principal series of SU(2, 2) in each 
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internal variable. A finite deformation of the hypercontour should 

be possible away from the prIncipal series. This is because of 

the assumed analyticity of G' in the rule d). 

As an illustration let us ,pork out the four point vertex., W 4 (Xl :c.,.,. , 

X X ),explicitly. While we go on, we will also demonstrate the
4 4

rules given here being equivalent to the rules given in DK. 

step a) is carried out in Fig. 1. 

step b): 

(2.48) 

step d) and e): 

Wt (XI ~ I Y1 "t, ~1 ~ I ~ Xq-) 
;:: J.. -J Jttl. . · .. tl cIjt Stc, -41'4$ -t,'t) · . . . f ( 6f- "11 ; ~~)6ft ) 

i ) ( Xl. ~\'42- V Z6i+)l.lf(lit ,"., cSj+/ - t -tf.0 ......j (~. ~~)(,;;fXJfh N,+ .7 
We have six independent 1::jk and four ~ -functions, so there re­

main two independent parameters after taking into account S-func­

tlonconstraints. Let us parametrize the solution of covariance 

equation: 
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as follows: 

'Crt =-t ( f~ of 'ft -t~) . 
-c/~:::: t (1:(, -t 1. f> ..,. f 1. ..f 11- ..,. Itr ..,. ~2J ,. 

(2. 50)'[,." ::::: ·..t ('(1 --t 1"3 -f k,) > 

-t,~ :::: ~t (", ~ t:at -t [,) • 


t1.t ::::: i (1.~ ..,.1. 1:If ..,. t1 -t t:s -t~, "1" ilL) . 

1;1t -:::. .{ (G ' ..,. '[I. ..,. ~... ) , 


where k , k2 are independent channel variables introduced in DK.
1

A particular solution when kl =k2 =0 is denoted by ~kO. It is 

not difficult to see that the integrations over ~. reduce to 
L I. Jk ,.... 0 0.-'!'t 

J.k dk (XI~t Xtfz..~ ~( Xll'l Xz,l~('I~' ~ 0:.) f'-~tt-fio~ln,... I--X14"t-{,:o ~ (J,4­fJ , ." X 1. " txt X.... J (t, t) lit 
fa. "It Iif 2) 1,., 2) 


omitting inessential factors. The integrations over k , k2 can

1


easily be recognized as Mellin representations. Similar calcula­

tion can be done over the variables Ojk. W4 may now be written 

in the form: c<: 

/ ) ( X 'l • , 1'ttl. V - ) l 11.-Wi::: q-(h,hz.,h, k/ .- ,~-tfo1 [(n,eA,,)llf,,-Xn} 

(-x t -1(' 0) '(3"1 _ 1"34- (2.51) 
)(. " " • • ~ ~ (1114" Xilf) (nJlf· Xl...)) , 

where hi' h2' hI" h2' are independent harmonic ratios, 

h :: X,; ~ ,I n'S"X,:II~· Xu.J1.... 
, X" \I \. k:', V '1.11 V J 'etch~ A11- J ,I 11,1. . "I't 1114" .\ ~If, • 


Equation (2. 51),may be written down directly applying the rules 


given in'DK. This completes the demonstration. It is also 

http:34-(2.51


-32­

straightforward to see that DK-representations reduce to the 

Symanzilc 35) representations for the degenerate series of SU (2,2). 

2. 6 Some Remarks on SU(2, 2) Invariant Amplitudes 

As we can see from the construction rules, the two and three point 

vertices are special in the sense that they are determined exactly 

up to an arbitrary constant which depends on the conformal weights 

and Lorentz labels. In general we have n{ n-I)/.:2 internal weights 

'Ljk and the n constraints among the weights; therefore n(" ...~) /2­
independent parameters remain. 

a) Two-point vertex 

In this case, 2(2-1)/2 = -1. We have a constraint, namely, 


W 2 = 0 when 1',:f 72 ' "I ~ 6i.. According to the diagram 


::~;~:'~2~) =tXI~~,;r~~~ .x.t)(n,~·~~)r(rl-r}p(f1C))' 

where 't:;:.. ~f ::: '(1- , 0' =0; =6i. · (2. 52) 

It should be noted that the uniqueness of W 2 also follows from 

the fact that it is the intertwining operator for SU (2, 2) 36) 

b) Three-point vertex 

3(3-1}/2 -3 = 0, there exists a unique solution: 

"C.L :. 1. (C·..,. tL - z:.),e 1 ~ J'Z... t (2. 53) 

cr. it =1 (~...,. °i -~.) • 
w!ere (j k i) in cyclic order. We have for W 3: 



where K is a constant which can be determined only if we 

have complete solutions of dynamics. R is worthwhile to 

note that the fact that the conformal invariance alone could 

determine two and three point vertices is essentially because 

we cannot form conformal scalars with less than four space­

time points. 37) 

c) Absence of ultra-yiolet divergences14) 15) 16) 

14
This has been first noted by Migdal ) in a paper where he 

suggested a bootstrap approach to the construction of con­

formal invariant theory. Subsequently the absence of diver­

gences has been further clarified by Mack and Todorov. 15) 

In particular they were able to show the absence of infrared 

divergences too along with ultraviolet divergences. For ex­

ample, in specific model of the pseudo-scalar Yukawa theory 

if the scale dimensions satisfy the restrictions: 

for pseudo-scalar field, (2. 55) 

-.£ <. J (-! for Dirac field, 
-z." L 
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the complete absence of ultraviolet divergences is guaranteed. 

The reason behind this is roughly as follows; although propaga­

tors are more singular than the free canonical ones, but vertex 

functions (three-point) are less singular in such a way that they 

can overcompensate the singularities occurring in the propa­

gators. Hence we have a convergent theory in the ultraviolet 

region. 

d) Connection with duality. 

An interesting property, first pointed out by Domokos and 

K(5vesi-Domokos, 16) is that conformal covariant amplitudes 

do not have simultaneous singularities in the overlapping 

channels. It shol.ild be noted, however, that the structure of 

the singularities is quite different in the dual resonance 

amplitudes .and the SU (2, 2) covariant ones; for instance ris­

ing Regge trajectories cannot be accommodated in the SU (2,2) 

covariant amplitudes simply because no energy scales exist. 

It has been speculated that the dual resonance amplitudes may 

ge> orer to the.sU (2,2) covariant ones when the slope of Regge 

trajectories becomes infinite. So far this is only a conjecture; 

see, however, subsequent chapters, especially Ch. 3. The 

argument which led the authors quoted to the concept of weak 

duality goes like this; according to our Feynman-like diagram 

rules, especially Step a), it is quite evident that the structure 
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of singularities is determined by symmetrical Feynman-like 

diagrams. Such a diagram is known38) to be free of simul­

taneous singularities in the overlapping channels. A fur­

ther connection with duality has been given by Del Giudice 
3

et ale 2 ) in a different context introducing the concept of 

dilatation trajectories. 

2. 7) Problems with Fermions 

In this section we briefly discuss how to modify our rules in order 

to construct SU (2, 2) covariant amplitudes including fermions. 

First, let us consider a spin-l/2 Dirac field, ~(%). It is easily 

seen that the conformal invariant Dirac propagator is given byf5) 

(2. 56) 


'() 
where d is a scale dimension of t and ~ ==-;iJA' We have also 

chosen a normalization factor according to our rule. When the 

dimenSion, d becomes canOnical, (d = - 3/2), the propagator 

(2.56) reducesto that of a free field theory. Notice that the factor 

( l-t'o) II t Vz is just a conformal invariant propagator of a scalar 

~ield with a scale dimenSion, d + 1/2. In general it can be shown 

that the conformal invariant amplitudes containing fermions re­

duce essentially to those of bosons. This is evident in the case 

of propagators as we see,from Eq. (2.56). In order to under­

stand how the rules should change, we consider a three, point functio.n 
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as an example. Suppose the vertex number 1 and 2 are attached 

to the Dirac field, 'f' and a scalar field, say 4> ,is attached 

to the vertex number 3. On remembering the conservation law of 

"particles of half-integer spin", we find that there are only two 

ways of satisfying this; 

a) the internal line connecting vertices 1 and 2 should carry a 

spin-l/2 quantum number, or (and), b) the internal lines connect­

ing vertices 1 and 3, 3 and 2 are fermion lines. The case a) 

corresponds to a coupling qi \.f'<P . On the other hand, if the theory 

contains both q;tyq>and <1>3 couplings, then we have to take into 

account the cases a) and b) together in constructing an ampli­

tude. The diagram r 11les are now simply, a) Associate the 

fermion propagator with each internal fermion line. b) Make sure 

that dimensions are conserved at each vertex. c) Add all possible 

diagrams permitted after the selection rules (or conservation laws) 

have been applied. 

One must also notice that the above considerations can be carried 

over to infinite dimensional representations of SU (2,2) about which 

we are presently concerned at least in one possible version of the 

theory. Namely, in the framework of a relativistic orbital excita­

tion model for hadrons39) it is assumed that the spin and orbital 

.degrees of freedom are decoupled in the lowest order approximation. 

The propagators in such a theory are simply obtained by multlply­
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ing the spin part of the propagators with the orbital part. Since 

the orbital part of the propagator is well described by the boson pro­

p agat or , it is easily seen that the fermion propagator is given by: 

(2. 59) 

') 

where g is a boson propagator already given in Eq. (2.57). 


It is to be remarked at this point that even though this is not the 


most general theory, it is certainly one of the simplest possible 


theories. 


Now the modification of diagram rules given in Sec. 2. 5 necessary 


in order to accommodate fermions is straight-forward; 


Rule bl )With each fermion internal line we associate the propagator: 


lA
5J", ~ t .l-Jl "k

)'t-ii J ) 
where 0Jl are Dirac matrices. 

lRule C ) At each vertex the conservation law of particles of half-

integer spin has to be taken into account; the Dirac indices car­

ried by fermion lines have to be coupled to invariants. 
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Chapter 3 

Broken Conformal Symmetry 

3.1} Formulation of the :Problem 

We have seen many theoretically remarkable features of the con­

formal invariant theory in the preceding chapter. However it is 

understandable that we have not gained much practically unless 

we have a definite scheme to break the conformal symmetry down 

in the real world. The zero (or continuous) mass spectra are 

simply not realized in nature. Evidently, nature does not choose 

manifest conformal symmetry_ PIowever it is perfectly possible ­

and also very reasonable intuitively - to expect the symmetry to 

show up as an approx~.mate space-time symmetry in some kine­

matical region. Now the question is 'which region?". At pre­

sent we only have a highly speculative answer; the small distance 

region, or, equivalently, the high energy, large momentum trans­

fer regions of reaction amplitudes are the most likely candidates. 

The behaviour of field theories at small dislance:Olas been ex­

tensively investigated. Note that in this region we are dealing 

with completely off-shell amplitudes, hence, it seems that the 

know ledge of the' short distance limit of a theory is of no direct 

relevance to the observed amplitudes. We want to assume 

conformal symmetry as an approximate symmetry of the strong 

interactions which show up as an exact one at, short distances. 
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In order to establish a connection with observable amplitudes, it 

is, however, necessary to discuss the possible mechanisms by 

which this asymptotic syr.ametry is broken. This is the subject 

of this chapter. In the ip+-roductory chapter, we have briefly des­

cribed the well-known Nambu-Freund model involving two scalar 

fields. There we have noted that manifest conformal symmetry 

is broken by a non-vanishing vacuum expectation value of a com­

posite scalar field XiX) of scale dimension equal to - 2. The 

Nambu-Freund mechanism provides an explicit example for a 

"gentle" breaking of SU (2,2). We wish now to generalize the 

Nambu-Freund model to study the hadron spectrum. Our results, 

however, reflect ver~· few of the specific features of the model; 

therefore we believe that they are more general than the context 

in which they are derived. 

In the subsequent calculations, we will be dealing with Bosons 

only. The modifications required to accommodate Fermions are 

trivial in view of our discussion in Sec. 2.7 (see, however, Sec. 

3. 6). Assuming that we have two kinds of Bosons, o/~X,,,,) and 

t( X), we guess the form of an effective action W (r~crf) in 

such a way that it reduces to the familiar Nambu-Freund model 

if both if and cyare canonical scalar fields. In the conformal 

limit the field 'j1:~describes a "collapsed tower" of hadl'ons and 

<t' is assumed to be a scalar of the scale dimension d ",-1. 

Note that we are allowing the appearance of an anomaly in dimen­
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sion. We now specify our rrodel as follows: 

w( Cf'r~ 0/) , 
:: W(f ~(f) -t W ( tt) -t W;..t (f,0~ of W('t) , (3. 1) 

~o 
where the functionals W (~ >and W ('I'> are given by a func­

tional Taylor series as in Eq. (2.3q). It is to be noted that in the 

construction of W (0/) there is a slight modification of the dia­

gram rules16) because of the fact that we do not have spin vari ­

ables, 't-J!..' to integrate over. With such a modification in mind 

we find for instance: 

W' (<f') ~llmAt. +) J4XJ4y <fiX) tf( r) · (3.2) 

-3-~ 

X(-Jd(:-Y)f~oj r(-I-$)' + 0 «V") , 

where ~ is the anomalous part of the scale dimension of <f'. We 

choose Wint as follows: 

W'~J (CP:6"'f') ::JJ'X, J~, JXzJ~ J'fX~ 'f~,zJ tff(Xl,~ 

'2. (3.3) 

J( F(X,1"X'l~jXgJt£X3) + · · · .. ~ 
where F is nothing but a SU (2, 2) covariant three point vertex 

which may be given by Eq. (2.54) with a simple change <i.e. t"J.... tJ"ll. 

because of '-"being the scalar field. We find a unique solution for 

'C. tJ.:L. 
, 1t ' 1£ • 

"(;t2 ~ 1
1, 

(-"C,-f-z,fJ) 
J 
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'Cu :::- t (t,- 1'2--J) - z.. } 
(3.4)-Cr; ~ { (-[, ~rz......J) -1- ) 

(111, .where d is the scale dimension of the composite field I 

Therefore F is now given by: 

( V V) 'k( t~1I +'olt(-tr-f2.tJ) 6'
F X, ~ I 1\1- x,; ~> =-1- -Qef ~ f 1 t l nil· X,}f n,,,. YI1)~ 

K(-tid ~'l\ .ft'())i(r,-ft-J)-l(..Jd~$ .,.,oj1l-Z,-ff,,-JJ-1. (3'~1 

J(li'(I"'~ f'(2-t{(-4-r,~J)) prt.l '4-fa"JJ) r(tl-Ctfii-Jj 5 . 
Finally wI is chosel: ~ ~ follows: 

I J (d z, )-; 1)1+{ 2. ) (3. 6)W(l}):::.tl J4'X f(f (X) +(lI4j teX) 
J 

where I\.. is the dimensionless CGupling constant and m is a 

mass parameter. The action Wi containe an explicit symmetry. 

breaking term. This is necessary for the stlldy of the spontane­

ously broken space-time symmetry as we have noted in Ch. 1. 

In order to see whether our model admits nonvanishing vacuum 
SW 
~expectation values we have to look for constant solutions of $t("" 

and ~~ • Indeed we find two solutions: 

a) r(0 -;;.0 4-::::-0, JI _ 
(3.7) 

b) 1t:6 -;;. 0 I ",' -;;. ~"') 1. 

http:l}):::.tl
http:olt(-tr-f2.tJ
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Evidently the solution b) is '{vhat we want. Let us now define a 

new field 1l. essentially by '~hifting the origin of fl.-space "; 

-d J )UX):::(tJ/1) 2!-(~1.)L.i~X) -/. (3.8) 

One must notice the complete similarity of our X -field to the 

Nambu-Freund t introduced in Ch. 1. Notice also that the 

vacuum expectation value of t is zero. On rewriting W in terms ,

of X. , we fir st of all find that W can be expanded into a series 

in powers of x:. It is to be noticed that this is not possible for 

W' in terms of the field 0/ . We have: 

VJ'::: lLm+fJft{i {/ f~,)it:11)r~+ (I ~M;4t(X)Jl 
(3.9) 

.~ ",."t 1 r If 1):::; ~. t z: {#1411. (t -I-i) J '( ~ CK -t · · · 

We also find that Wint can be written in the form: 

'W,-"J (f~X.) := W,-:r (~("~ X) -t w:-~ (Cj
e1 

where Wi: represents a series of "tadpole terms":t 

W;';;'l'f~6) :::: (tt1"ri [J'fX,J;" J*X'lJ~. ti'XJ (3.10) 

)( if'tfx. '1..) f (;6fXz ttl f ( X, ~ lXI-x..j X~) -t · · · 
From Eqs. (3.1), (3.2), (3.9), (3.10) it is easily seen that, for 

r·t6example, the inverse propagators of the field are given 
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as follows: 


Cf-t( X, 1., I Yz Xt j r:, (2 0') (3.11) 


= -({'(;,-rJ ~ It,%r '(z~i Us) _(~'firJ}~ F(X, til ~Zll-; X3) 

+ (higher order terms in the tadpole expansion), 

where W2 is the SU (2,2) covariant two-point vertex already 

given in Sec. 2. 6. Two important facts should be noticed im­

mediately from the Eq. (3.11). 

a) The symmetry breaking causes a dimensional mixing; the 

Green's functivll of the field r'C'" is no longer diagonal 


in the conformal quantum numbers, 'Z:: ,(j' . However in 


the model being studied here there is no mixing in the Lorentz 


label, a- , to first order in the symmetry breaking. 


b) 	 The SU(2, 2) limit of the theory determines the two-point 

vertex, - ~-I , uniquely to first order in the symmetry 

breaking; the arbitrary constant K in the SU (2, 2) covariant 

three-point function can be absorbed into the mass scale 

of m. 

It is also to be noted that our model indeed reduces to the Nambu-

Freund model. This is most easily accomplished through the use 

34)1:tr-. X .\. " 
of Montvay's expression of, f ( , %'/ in t~rms ofa field in 

the canonical basis and of therelation~f) . 

" ...., 
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~1(v-ft) (-~ l.., t '(1\ V 1. z, l#­
(3. 12)

e.. Z ::: Uf G"" ~ (X) 

r(Z -tV) • ((J-1).1 t' 


where n =2,3,4, .... , Q _ j" 1-- · Notice that the 

--J1,IA}t.p. 

right-hand side of the Eq. (3.12) is essentially the residue of 
v' 

(-detX + io) at II = -n. 

3. 2) Inverse Propagator; Zeroth Order 

As one car: see from Eq. (3.11) we only need to calculate inW2 

the zeroth order. In a graphical notation we have: 

-.... • • 

't" X, 

Fig. 2 

The representation in the coordinate space is given by Eq. (2.52.). 

Let us now Fourier-transform W : 

~\ r + 
2 

~ ) ,'P.K,L11{J ~ x..Xt; V't=-· J ttl. W-z. (r.z, ,Kt.(2) Co e . ) (3.13) 

where the momentum p is written in a spinor form, namely, 

p ::: fjA~ · We note that the Fourier transform can be readily 

carried out when () = 0, i. e. spinless particles: 
l 1. -%-(. • 

( -p -t'o1"( 1(' --I P. X-I JJ4: (-X -t1'O~ t 
r(Z te) ::: -- t.. r.x.. rl-r) e (3.14)

2 . ~11) 'L' . , 

where ~--, '(1 L should be made. In our subs~quent calculations, 
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we also use the following reJ atiol1 frequently: 

,~ f"" ,A 1, ell( -A -(0( Z. 
(3. 15)Z =~ -PC e 

r{-~J j~.. r;( , 

which is valid for rIft 2 /.'!. For other values of Z the analy­

tic continuation is assumed. Let us now write down an integral 

representation of W 2, using the relation, Eq. (3. 15), we obtain: 

~ -1 zen. (--t' '(~o.,.t (Jolt/A o<!.,.I/f-o-lW.'2- (p, X, 1"J(6/ :;:. J. (" I~ • 
'ft t.ft:j r(~.) rOtC P(-t: (3.16)I) 

xltlX e;y-t'[ -dX ~poX) (ii.X) -+ p. X\ , 
where the integrand always includes the usual damping factor 

exp- E (oltp) , € "I 0 , which, however, will not be written out 

explicitly from now "n. It is to be noticed that (n ·X) (ii· X) 
is a real number. At this point we introduce a real symmetric 

second rank tensor Ap" : 

(3.17) 

then: 

Recalling that n tr are complex light-like vectors, we intro­
I 

duce two more real light-like vectors k,l: 

(3. 18) 
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42)

A standard spinor calculus rives us the following identity: 

So we now have: 

It is easily seen that the matrix AptI has two distinct eigen­

values, each doubly degenerate : 

(3.21)-0( 
) 

These are negative definite, since the time component of the 

light-like vectors k, : ; 'l shown to be positive; in fact kO =It,/2 -t I I 

1(} =- l:t" 2..... I . Let q be a particular vector ortho­

gonal to k, I and r--" =- €/JV (>'k".t, 1"" then we see that the 

vectors k, 1, q, J- a.re eigenvel.-tors of A: 

OpV ktl (or i,) ::=. -0(. k~ (or 1.)') ) 
(3.22) 

~ V '1.., (or r".) ::=. - ( ~1 ~ (Lt)) tp (ot" r;.) 
Accordingly: 

(3. 23) 


The inverse of the matrix A is found to be: 
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-I -/ ~ {J 
~ v:: (! ) lol~ +- (t,.,/.rtLRp)j (3.24) 

)A 0( (oct l d.J) z. 
We are now able to carry out the X-integration: 

W_ -2-(tl.. ('-c' C-() ( '(+1 -6-ff ltx i (XIAI/,..,X II-t p.~) 
Z - POfG) rt-" f{2f(l ((-C) ) J'(JI'" '" e"/ t ' (3. 25~ tI 

= " 1/ " ) tW,&o(fi'~-'-f(dd Ifrl-e-, p.14 flpll P 
Putting Eqs. (3.23), (3.24), (3. 25) together we get: · 

vJ. _ t ff-f.(,(') t-6".for 1i 'L (dO( J 0< r f.,-"-f , 
'l. - rl ''''Ii) ;'(:6) r(l+C) ,"{-rr~ ~ 0(1' ~f~'lJ (3.26), 

X ear ¥ flo(+ ~(~,t)) (0( p2-+t3 (f·~) (,.R.)) . 
Let us introduce a variClble z9 which will turn out to be the angle 

between the two light-like vectors k JA and I JA. in the rest frame 

of the momentum P: 

(3.27) 

(3.28) 

out that the integration over t can be easily evaluated. So we have 

now: 
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IN. _ zr.,.t(-t)'t-(j~/1f 1. f(6'-r) ~R)tS _,'ft t-tS. 
t -Wt-t6)r{-tf) l'fl-tt ) r(-9 ( l (4") 

(3. 29) 

( ,,,,}Q-JIP -~-f )0-(-1 '1(9) '(-6
X ~ -;; c1u t: {/+u (ut ~ t 

~ 0 	 • 

The integral is easily recogni zed as one of standard integral 

representations of the hypergeometric function, ~ f r :
43) 

.4, f, (4), j c. j ,- Z') 
,. 	 . (3. 30) 

::. I ( dM 11 (.-.t.. ..., (f -tu) 4-L( U.,. 7. )-Q.. 

8(.I~·I c.-~) )() 
 1 

where B is a beta-function. So we get an explicit momentum 

space representation of W : 
1. 2 	 I. Q f' 2. 1:-11" 

~ 	~ 1 'C (,21[l i' (ei- r;) (~ ) IS" (-4) · 
'Z- P{t..ff) i'(-C) (' z (3.31) 

X ( .. 1f!, ) tt'-! L (6'-( , ..tt ; ( ; £4'iI Z~ )
'l. 1r II I • 

It is easily checked that we recover Eq. (3. 14) from Eq. (3.31) 

when (J = O. Equation (3.31) can be written in the form contain­

ing a Jacobi function: 	 l. 

W___. 1,6' (Ur)t rfC-C) (t.-t) ° ("'1. ) r-tf 
1- PCl.-t r) i'(-C) .: 	 z... z. (3. 32) 

0(0I 1.6-() 
X (~1-tt)6'-r. L (-C.()s.~)

L if:-(; ~ } 
where we have used the relation:44 

rJ (rI.,fj) n(nfA) "... 	 ,rh ('1.) :;:. (-I) j' 2. rI (-n I ntO(1~-t; . (3.33) 

f3-tl j t (/..U ) ) 
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Notice, under dilatation "-f~p , that Wa ~ i!r:.-4wa 

which assigns the scale dimension (f""- t to the field If l:6' . 

The cut of W 2 should be chosen to lie along the positive real axis. 

Even though Eqs. (3.31), (3 .. 32) are our final expressions of the 

Fourier transformed W 2' it is necessary to derive a different ex­

pression of W 2 in order to avoid similar long calculations of the 

Fourier transformed representation in the following section. 

This time, we start from the representation, Eq. (3. 14) and then 

make use of the relation, Eq. (3.15). Mer some straight-for­

ward manipulations we find: 

W,,) p, 'X, ~l ; 'Co)-( / 1~ -0-1 '2. 't 
;;. 2. (~ -.- Jo(J~ (o«~) (-fP- iO' (3.34)

1'(11"') p(-,) ['(loft) (. &> "/ , 

where 1P = rtal" -~n is a complex four vector. Equation 

(3.34) is defined in the region, 1m nO) 0 ,IIt1 "It. <0 . 

Beyond this region it is defined by the analytic continuation. Let 

us now compare two expressions, Eqs. (3. 32) and (3.34). , We 

obtain: 

(3. 35) 
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3.3) Inverse Propagator; First Order Correction 

In our symmetry breaking scheme the first order correction term 

to the inverse propagator is given by the second term of Eq. (3.11). 

In a graphical notation: 

-... 
x~,x,. ~"X I 

Fig. 3 J 
In what follows, the Fourier transform of W / ( = (m"'f'i. fJ4X3 
f(X.Xt t ~j~) ) will be given explicitly along the line which 

we followed to derive Eqs. (3.34), (3.35). Mer a somewhat tedi­

ous calculation we find: 

W~ ( p, Xt ~z. j -r, 1;7. 0 ) 

-!l (111) t l t (-r,- rz.-J) -+ 1- (3.36)== (~f.) .....;'1,..~________~_-....-_-----:::---_--r-' 

r(ft"}r~-.r) ~(fa'I-t1i~) r{l+tlti-f,+J ) r(HtC1f--f.+d J • 

X tj o(oIt1 (c¥f.»O-'f J4k. (-k:':7J(-(IP-Ll-lO){{~-flt-J) -2­

where 1P :: p-ftJtI-P;; · The integration over k can be 

carried out in a standard way; the 0<.. -parametrization, Eq. (3.15) 

and subsequent rescalings, etc. We obtain: 

"< I=.-t(,..1.rt~ 2") .,.2.i {-t,-Ct.JJ1'({(-t;-rz-J}J 
rll""~J N-G") r(2tt(~-C,1d)) r('l-fL(t,-rt.tJ~ (3.37) 

)( f( ltd) (0" J. -0-( l. t. (If -t(l-tJ ) 
P(-d) r(2-tt(Jtt,-f~) )ode< If (<<f) f-fP- to

). 

http:l-fL(t,-rt.tJ
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The remaining integral is now recognized as the one already given 

in Eq. (3.35) with 'C replaced by 1/2 (t, -trz-tJ). Therefore it 

is readily evaluated to give the following complete momentum , 
space representation of W 2 : 

W~' :: lltl"rt II (i, f" J) ~ {p, X, 11. ;, -1 (ft-ttl.fd) I 6" ) 

where t I J (3.38)
(2Tl PI1.+a r(_J. If:t-ff'L'''' J 

/t(C,tlJ):;:. pc-tl) P{l+t(f~,~-tJJ) r(2-tt(~tI'r,t J) 
and I_I l tJ %. 1. '\). (r ..,. 7 ..f- _I) 6) is given by Eq. (3.32) 

"1.,. r. , t J 1.. , \t, " I 

replacing e by 1/2 (t, .... 'Zz +d). 
It is worthwhile to remark at this point that the canonical dimen­

sionality of the symmetry breaking field 't is not allowed in 

this expression since ~he coefficient A blows up when d = -2. 

3.4) Partial Wave Amplitudes 

We now have an explicit expression for the inverse propagator, 

~I, in both coordinate and momentum space to first order in 

the tadpole expansion: 

<;--1 (X, %.t Xl Xt j 't, t., cf") -4 4: . • 
::. __ ~l~"L) I~J (X 'I. ¥~ .. r4i') -(,..z..l 'Lf4 ~3 F{~,l, y,,~ )X~)

1 , l"'f 2 -. ) "1 I (3. 39) ,Wt 

G(' (r, ~;(t j "C, l2() ) 

:: -flG-t,) W't If,%.tt,, ;(,0) 
-(ttI'tt R(t:, r, J) W (P, 1, :(1.; t{t,t f1.+J) I ~) •t 
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We are now going to make partial wave expansion of Cf-f in the 

rest frame of the momenta p, we write: 

q1( y,~, t .. ; r:, (2 J):;. L {2P-fV 9-~ cp iC1(tJ ) ft 1UJJ8) )(3.40) 

where ~(U)/9) is a Legendre polynomial. First, we will con­

sider W 2 in detail. The angular dependent part of W 2 may be 

written as follows: 

,,,2.6-[ (O,u-t:.) )-f {19 j 'to):: (""" l"i) f:.-o (-Ubf} , (3.41) 

where we have used the relation k·l = I ~ II LI ( ,- us 19) 

which is valid in the rest frame of p. The partial wave ampli­

tudes,f(~), defined similarly can be calculated, if ~-o- is integer 

and fe (.2G-t) ) -I , using the formula: 45) 

t [' (~'l~)o(P,.fot,.)('-5~) ft lL~l~) iU$~ 
I ) (3.42) 

_ (.-1) L..,."" -:?{01-+",+1 r (o(-t' l' fet"'-t I 
- r (I1f.,.1) r{ 0<-1-+-",+0 r(o<fR -tflt.f 2 ) , (i"*1·" 

( tor Q, WI =infe3e,... ) ~eo( >-I ) . 
We find: 

t(Qj'Co) ~4.r-,' tl'8jCo) ftl~e) duntl , 
(3.43) 

~ff)f No""!) P(6-11-t1) i'{f-t".,.rj 
f(l'1-1) No-i-tl) r(~-tRTt) T(I-II-+I) 

} 

http:i'{f-t".,.rj
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where we defined aJ =L-tr, and also used the relation: 

(3.44) 

Since Eq. (3.43) is defined only in the region where ,;, R. are 

integer and f, G >u-I ,we need to make the analytic con­

tinuation in order to define the amplitudes, .f (I.) for other values 

of the variables. At this point let us note that f(~) is a meromor­

phic function of the complex variables I and LJ. Now the crucial 
46) 

question is whether we can apply the Carlson's theorem in each 

variableJ, tJ separately. If it is possible, then the Hartog's 
47) 

theorem will tell us that we have a unique analytic continuation 

ofthe function tc.t) in both .t and 1/. Since the above mentioned 

two theorems are of fundamental importance, we wish to quote 

them here. 

Carlson's Theorem 

Let f (Z) be an analytic function in f?4!. Z ~ a. and if f (Z) = 

o(e11%1) with ~<:1f , when Iz'~D<", fe2~ {(.. Then the 

function f (Z) is uniquely determined by its values at the integral 

valuE$of Z. 

Hartog's Theorem 

When a function f (~,~/.), for values of Jz.1 ~ r- and of I Z'J ~ r-' 
is a regular function of Z everywhere within the assigned z.-circle 
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for every value of Z, within its assigned circle and also is a regu­

lar function of Z, everywhere within the assigned Z, -circle for 

every value of Z within its assigned circle, it is a regular func-
I I

tion of Z and Z everywhe .....c within the indicated field of Z, Z 

variation. 

Equipped with the above two theorems, let us now examine the 

asymptotic behaviour of f(tJ. This will be done by using the 

standard asymptotic expansion for the r -function: 

~) -z , 1.. 2-1 )lf~ ::. e. z'L"i (2.".) 1.. ( , + ~ -t. · · · (3.45) 
I 

for ,1111, 2 , <1f . 

It is easily seen that E'l. (3.43) is not suitable for the analytic 


continuation since, 


P{ l-v+I ) e1fI €1 
r{o-Qt.) r (0'+1-1'2) Pl e-V-t IJ 

) 

and also the factor (-1)1 causes trouble. However, this can be 

avoided by defining signatured amplitudes when they are necessary. 

Therefore we have to recast Eq. (3.45) into a form which is suit ­

able for the continuation. This can be done by using the relation: 

, 
(3.46) 

for 1 = integer. 

We now have: 



·. 
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fe n 0., .l _ ~ 116 Pl6tt} ?l4f--tl+t} rlett/tO rU-6") 
1( )VOI -- (8.47) 

Tf p(II-tt)rro-fetZ)PlI-V+I) . 
We now investigate the asymptotic behaviour of Eq. (3.47) in each 

variable /, and II separately. 

This is polynomially bounded, hence the Carlson's theorem is 

applicable. We have a unique analytic continuation in .I. . 
b) 'lJ' ~ IJO 1.I 

- ~T16 rUt') ra-oJ IlJ)r+z.?·49)f(1 jV.) ) 
Ii r(6ff~t} 

The Carlson's theorem is again applicable and we have a unique 


continuation in JJ as a consequence. 


Combining a) and b) we are guaranteed to have a unique analy­


tic continuation in both variables1, JJ according to the Hartog's 


theorem. This completes our assertions about the partial wave 


amplitude of W 2. 


Next we go over to the correction term W 21. In a similar way 


as in W
2

, the angular dependent part is seen to be: 


r I .\ I. . 8)2A_i<'c,-ttz.-tJ) (D 16-t(t,~.fJ))
T(~jt;t"Z~J'::'~~~. If I (_~(3.50) 

. J,:C{4-tti-tJ)-o 

http:16-t(t,~.fJ
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Evidently the partial wave amplitudes t(l)iS now given by Eq. 

(3. 47) with L/ replaced by JJ I, where V' is defined by 

LJ I =i (t,-tt,+J) - tr . On applying similar steps which we 

carried out for tftl we can easily see that a unique continuation , 
in 1 and 1/'exists for the amplitudes f(l;/I~as well. Sum­

marizing what we obtained so far, we may write: 

r- -,( f i'G tz 6"") =- ~ ('CI-tz..) w't(l,f; 'CIO) ­
~i J (3.51) 

-(tt4''f t RCL,T)} ')).(t, Pi t([,-ff2,-+J) r) } 
where "'1,.(e, ; (,0) is given by

J 

W::: ~?!,('J,trl' ,.1'(6.-t:~(_f)t:'-rl!lIgl)6""+(ijl11(3.52) 
'Z I 12.-tf1) ('(-(') 1, • 

One notices that the definition of cos 11 is Lorentz invariant, and 

further that the vectors 

k~ - 11- (k -r) e. ) 

J.;-.- ?{~,tJ fp. } 


become (0, i.) and ( () J Q ) respectively in the rest frame of P , 
""'" ~ 

we may rewrite the partial wave amplitudes in a manifestly covari­

http:1'(6.-t:~(_f)t:'-rl!lIgl)6""+(ijl11(3.52
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2 

For r~o (space-like momenta), the series, Eq. (3.40), has 

to be rewritten as a Sommerfeld-Watson integral: 

where the contour C may be chosen, for example 

Fig. 4 

It is interesting to observe that if~ is singularity free through 

the entire right-half plane when the representations are on the 

principal series, therefore we can open up the contour without 

picking up any singularities unless we cross the line ~ Q. = -1. 

3. 5) Regge Trajectories; the Hadron Spectrum 

The singular surfaces of the Green's function (or equivalently, 

regular null surfaces of Er' )'are investigated explicitly up to 

first order in the tadpole expansion. By doing this we are able to 

obtain the spectrum of the physical particle states which is quali­

tatively very encouraging to our symmetry breaking scheme. Before 

proceeding, it is to be remarked that a perturbation series expan­

sion of the Green's function in powers of the symmetry breaking param­

eter necessarily breaks down at its singular surfaces; on the other 
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hand it is believed that the series expansion makes sense for 9"-1. 
This is essentially the reason why we are studying <f-i instead 

of 9'. In what follows, we study the regular null surfaces of the 

inverse propagator by th~ Brillouin-Wigner variational techniqUel:
4

) 

As we have seen,the symmetry breaking term mixes the conformal 

weights; 'C is no longer a good quantum number of the perturbed 

system. Hence, we have to introduce new effective fields which 

diagonalize the quadratic part of, the effective action. It follows 

from the orthogonality property of the partial wave expansion 

that each partial wave may be considered separately in the follow­

ing calculation. To begin with, we make the following ansatz for 

the perturbed effective field: 

10<)= z-t,t)tll.irtrftAt'acc') /1:'»), (3.55) 

where f Jde' implies that the integration is extended over 

the principal series, i. e., 12e z: ,= -( ,and Z is a normali­

zation constant which is determined by the condition <,0( Io() = I 

Z:; I + (tlt2
)-{ l'Jde I tJ.( -c ') a(-c') . (3.56) 

The perturbed eigenvalue o«(t:) is chosen such that: 

(3. 57) 
• 
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We also denote that the eigenvalue of the unperturbed inverse 

propagator, M{.(1, p), in the 1:"-representation by h(1) . The 

coefficients t.l (1:') in Eq. (3. 55) are determined by imposing 

the condition that the perturbed effective fields extremize the 

quadratic part of the perturbed effective action (see Sec. 3.1). 

5w ::. ~ <0< f l{ -( ,0<) = 0 (3. 58) 

5ac'C') ~ (let'\ ~ 	 )
J ~ /:.;

where W is the eigenvalue of ;-t in the cA ~epresenta-

tion. 


From the Eqs. (3. 55), (3.56), (3.58) we obtain for tAl -eJ:, 


a. ('(') =_ <1:'1 ~'(I., f) I'9 (3. 59) 

W -f!(C') ) 
where W should satisfy: 

n ) IJ l.rJ.r1 , <'t' Iw:'J-z:'><r'I~'IV (3. 60)
iA) =/" (t: + '"/ r) () t. __	....;..1.______ 

LtJ _~(f-') I 

and f.> l 'C) is given by: 

~lt) ::: h(r) T (M~-4~r: r 'V/U,p) I t> (3.61) 

Further, let us define the function H ( z.) by: 

H(Z) =2 -Acc) -(tt.2.rJ,(Jr.' (c/ ~/ r) (C' ILi', t) (3. 62) 

r / rr 2 -(!>lC.') • 
Evidently we recover Eq. (3. 60) by setting H(W) = O. It can be 

also shown that the normalization constant Z is given by the equation, 

Z - (311)- fi z=u) . 	 (3. 63) 
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These equations give the general solution to the symmetry 

breaking problem as defined in the present chapter. Now the 

singular surfaces of the Green's function are given by the vanish­

ing eigenvalues, W =o. From Eq. (3.60), we see easily that 

these are determined by ~he equation: 

j'3('C):(m;-{pfJC' <-cl ~/I t')( -c'I ..'t.'1 't') (3.64) 

') ~('t') 
It is to be pointed out that the problem treated here closely re­

sembles that of certain non~elativistic many-body systems which 

exhibit spontaneous symmetry breaking. The omission of terms 

higher than quadratic ones in the action corresponds to the free 

quasi-particle approximation in the non-relativistic many-body 

problem. We now examine Eq. (3. 64) to lowest order in the sym­

metry breaking parameter. Clearly, the results should be treated 

with some caution. Nevertheless" it is reasonable to expect that 

the leading singularities of the Green's function will be reproduced 

up to small corrections. In this order, we have: 

(3.65) 


This is easily seen to be given by: J 

Pl'C) =-'\ ((fj t:c9[ I +(~)"i5 rll.,.I1'+/J r(t-V-H)~. 66) 

::: 0 , .,.", p( t..,.,;+ , ) i'(t-v'ot t)J 
where r(4f"-II~') l' (II-tl) J) 

13 ::: rur-II-t') f {II'.,.'} 1/(L-1: J 
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The physical particle states are determined by the roots of the 

square bracket in Eq. (3. 66). In the SU (2, 2) limit all discrete 

levels of the system must have zero mass, hence we look for 

such solutions of the first 'lrder formula , E~. ~: 66), which are 

close to massless states. The factor (- L):t. blows up when 
1. 4,"'r -+ 0 ' hence the solutions must be close to the poles of the 

r-functions in the denominator. We now approximate r(Z) by 

using the relation: 

(-0" 
~ (z.+n)f(z) = -- (3.67)

nlZ~-fI 

The other factors which depend on f are evaluated at the position 

of the poles as usual. We may also write d = -2 in every factor 

where this does not give rise to infinities if the deviation from the 

canonical dimensionality is really small. This is indeed the case 

as we will see shortly. In this way we arrive at the following approxi­

mate equation for the leading singular surfaces which come from the 

poles of rU+JI-tf) : J 
5 cs,I.,,,,) = -rr5l9+v+,.+n) +(~t.5t:=o (3. 68) 
n (nt,)(n-PII) u,.;r;(-t) J 

where we put S=f t. · 

This gives rise to a series of Regge trajectories, t :::'cXn(S) , 

with intercept at -II-I-n . One, also, must notice that at 

fixed t Eq. (3. 68) gives an almost linear relationship between 
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masses and scale dimensions - thereby recovering the dilatational 

trajectories which we mentioned before. The Regge trajectories, 

R =oh(S), have several interesting qualitative features. 
I-A 

The fact that the S -dependence occurs in a form"- (-~) (we 

let d = -2 + 2~ ) predicts the total width over mass ratios should 

be a universal constant. This is because the total width of a re­

sonance of mass M lying on such a trajectory is given by: 

J",o(n( Mt) M'1 (" (" z.eM ~-Jf.eo(,,(s) ::: I_~ ta,.,ffd -1TdM. (3.69) 

as 
Evidently the ratio ~/M depends only on the dimension of the 

symmetry breaking term and hence it should be universal. In 

order to test this prediC'tion, we fitted the total widths of all the 

well established baryon resonance~tt>o a curve: 

(3. 70) 


where M was introduced in order to take threshhold effects 
o 

roughly into account. This is shown in Fig. 5. Indeed the data 

are approximately consistent with Eq. (3.70) with a universal value 

of ~ "" 0.04. A similar pattern is found in the case of meson re­

sonances. However, experimental uncertainties prevent one from 

drawing any firm conclusions at this time. It is also interesting to 

notice that the slope of the Regge trajectories tend to infinity in the 

SU (2,2) limit, i. e., m~ 0 . Hence all the excited states collapse 
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into an infinitely degenerate massless object. Incidentally this 

is what we expected when we assigned the SU (2, 2) covariant field 
:or 
~ to the hadrons. 

As we have emphasized before, the results of the first order cal­

culation cannot be trusted seriously in a quantitative sense. In 

particular, the positions of the daughter traj ectories for S '# 0 

may be substantially affected by higher order terms in the tadpole 

expansion. (For more discussion on this point, see Sec. 3. 6:) 

It should be also noted that the threshhold of the Regge trajectories 

lie at 5=0. This is because the tadpole expansion is not unitary 

in each order separately. 

Finally we notice that the trajectories, 5~ (S,', V) , which 

arise from the poles of r ( I-II'-t') are low lying so that 

they contribute to non-leading singularities. In fact: 

5 ': 7r~ ( ,..,. .Q-v'..,.fl + ( :..i."r~ :. 0 (3.71) 

n {,,-tI)lrr-tt -"1 ~1i(-,J 4'" 
Hence the leading trajectory of 5 I intercepts the t axis if we 

n 
assume d""....j,, ,; 1\1-' (i. e. around canonical values). This 

is around the position where the third daughter trajectory of Sn 

intercepts the /l, axis. 
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3. 6) Hemarks 

First, it should be noted that the calculations which we have per­

formed are also equally applicable to fermions. This can be seen 

from the fact that the fermion propagator in momentum space is 

equal to boson propagators. multiplied only by a factor KIAe. in 

the frame work of orbital excitation model which we have chosen 

as a possible theory. Therefore the structure of singularities 

which depends on the orbital part should be quite similar.. Even 

though such a complete decoupling between a spin and orbital part 

may not be the case in general, we believe the singularity structures 

should not be qualitatively much different. 

Secondly, we would like to speculate about the behaviour of Regge 

trajectories, Eqs. (3.68), (3.71). As we already noted, the first 

order calculations cannot be taken too seriously in a quantitative 

sense, however, keeping this caition in mind, some speculations 

may be helpful in understanding our results. As they stand, the 

Regge trajectories rise almost linearly with mass square; this is 

an extrapolation since, strictly speaking our results Eqs. (3. 68), 

(3. 71), are valid only in the neighbourhood of small S. In order 

to see the behaviour of trajectories at hig~ S , we have investi­

gated Eq. (3. 66). Since the factor (-];,.; approaches zero 

for Jsl"'"g, the solutions must be close to the poles of the r­
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functions in the numerator. In this way we find two classes of 

decreasing trajectories with S : J 
J:::.-I+';-'" + 8~1T{-l) (~t.''L

iT (/ ( n+r -w) IfItf ~ ) (3.72) 

l=-(-II'-11 f (5~1jl~) (-5)t
'1fn (n-f -tZ,II) t;:;~ 

Hence it is quite tempting to conjecture - combining Eqs. (3.68), 

(3.71), (3.72) - that the trajectories will rise almost linearly to 

some point and approach constant values asymptotically. 

If turning points are sufficiently high-lying to give rnany resonances, 

we would get a very complicated resonance spectrum with an in­

creasing degeneracy of the states. 

Finally we would also like to mention what are the possible effects 

of the higher order (11 ~2.,) correction terms in the tadpole series. 

()ne cannot be too precise on this point since the higher order 

terms contain arbitrary functions as coefficients. As is easily 

seen, they are homogeneous functions of p;
2, 

the general n -th 

order term of the tadpole expansion is shown to be proportional 

to: 

by a simple power counting argument. Our preliminary estimates 

suggest that the n-th order correction term to the partial wave ampli 

tudes contains a factor typically like rl '~II-~ "") which would give 

a leading trajectory with an intercept at _I+1I+'Jland subsequent its 
1, 

daught~rs. 
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Chapter 4 


Hadronic Scaling 


4. 1) Introduction 

One 	of the most prominent features in high energy hadron colli 

. 49) f . f fSlons - at center 0 mass energies 0 a ew GeV or more ­

is that there is a stringent limit on the transverse momenta qT 

of all outgoing particles. They are typically of the order O. 3 

to 0.4 GeV / c and are largely independent of the incident energy 

and the type of reactions studied. Therefore it is in general a 

good approximation at accelerator energies to describe the de­

pendence in qT by a sharply decreasing exponential distribution. 

It is also known that most of the produced particles in such col­

lision processes are pions. (About 900/0 of the products at 20 Ge V. ) 

However, there is reason to believe that the situation may be 

quite different in the region of large transverse momenta. <Say ~ 

qT > 3 GeV / c). In fact, recent experimenters at CERN - ISR,50) 

have discovered that the distribution in qT becomes wider ~ showing 

a clear deviation f::om the exponential dependence at small qT' It 

is also expected that one may see more strange particle production 

than what one would expect from an extrapolation of the data at low 

qT' This is of extreme importance since it may lead us to a new 

understanding of hadronic reactiop.s ... 
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A quite remarkable property of high energy hadronic reactions 

is the appearance of phenomena, called "scaling". Such pheno­

mena have been known for some time and have been extensively 

studied for the deep-inelastic lepton-hadron scattering processes. 6, 7) 

10 0 1 h d· . 50)However, sca Ing In pure y a ronlC reactIons, such as 

p + p.., .." + anything, has been observed only recently. (In 

order to avoid a possible misunderstanding, we wish to emphasize 

that the scaling phenomena discussed here are different from the 

" 0 ,,51)Feynman scalIng observed at low transverse momenta. As 

is well known, Feynman's scaling hypothesis states that the in­

clusive single particle distribution depends on the observed

".,longitudinal momentum only through the variable 'X:::. ___ . rs 
However, the magnitude of the transverse momentum remains fixed 

and is about -- O. 4 Ge V / c. The scaling properties discussed here 

refer to the kinematic region where all the independent kine­

matic invariants are large, - typically 2 GeV or larger - and 

thus they are analogues of the "Bjorken scaling" observed in in­

elastic lepton scattering.) It is well known that the scaling pheno­

mena observed in the lepton-induced reactions may be explained 

by assuming that hadrons are composite and their constituents ­

known as "partons,,52) - behave as if they were point-like 

particles in the infinite momentum frame of the hadrons. In 
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describilg hadronic reactions at large transverse momenta, it is 

quite tempting to apply parton concept since we are essentially 

probing the short distance structure of the hadrons. In fact, vari ­

53ous parton models ) have been quite successful in explaining 


''hadronic scaling". However, it is quite conceivable that scal­

ing phenomena reflect more general aspects of the dynamics of 


hadrons than is suggested by the specific models. 


In this chapter we propose that the hypothesis of asymptotic con­

formal invariance,together with some additional, rather general, 


assumptions leads to an understanding of at least the main qualita­


tive features of the data on hadron induced inclusive reactions in 


this, "scaling region". 


A general framework to study the inclusive reactions, 


P 1 + P2 ----+ q + anything, 

has been introduced by Mueller?4) He has observed that the cross 
oJScr 

section of an inclusive reaction, ~ 1f,:5 ,can be regarded as 

a discontinuity in a six-point forward scattering amplitude. This 

is a generalization of the relation - known as the "optical theoreIn" ­

between the total cross section and the absorptive part of a forward 

scattering four-point function. So we have at high energies: 

~°ft __ l A
d,s s ~ 

where A denotes the absorptive part just mentioned. 
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In the following sections we study a six-point conformal 

atnplitude in its tnost general for.m except spins. (We have negl.ected 

all the spins for sitnplicity of calculations). A scaling law follows 

itntnediately in our schetne. However, a specific fortn of the scaling 

function can only be obtained by making certain assutnptions on the 

fortn of the atnplitude. To be tnore specific we assutne that an ar­

bitrary generalized reduced matrix eletnent is a cotnpletely factorizable 

function of the independent channel variables, c.. This is a tnathe­
1 

tnatical 	interpretation of the physical assutnption that the dynatnics 

responsible cor the process under consideration is a very cotnplicated 

one and hence dynatnical correlation effects are cancelled out to a good 

a pproximation; we call this an independent correlation tnodel. 

It is found that we can fit the available experitnental data on 

pp..... iTOX excellently with the scaling function so obtained. We also 

present the predicted production rates for the reactions pp .. KX and 

pp ...,. l x. 

4.2 	Six-point Conformal Atnplitude 

In what follows, calculations will be done under two sitnplifying 

assutnpti ons ; 

a) We neglect all spins, so we work with a Symanzik repre­

sentation instead of the tnore general DK -representation pre­

viously described in Ch. 2. 

b) We work to zeroth order in the sytntnetry breaking tadpole. 

However, this is consistent with the first order calculation 

of the spectrutn. 

We begin by drawing a six-point conformal diagratn. 
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Fig. 6 

The confortnal covariant six-point amplitude, T 6' may be 

written in a straight-forward manner by the familiar construction 

principles: 

" (t.f, "'f ~J ;:. r·· J1fJ,"l (;It.) 'St r (-'til..) · 

· V ) ( f ~i+'C1·++) ~o ( tj-z., · .. , ~ ) J (4. 2) 

where GO is an arbitrary function of scale dimensions "I,-and Ni/£IA 

==- ~ ,II .-'tL.ll denote space -time differences. In writing this form of 

t ~ C~ 
T 6' e have absorbed certain constant factors, e. g. r-t) 1 into 

GO. Instead of working directly with (4.2) we find it more convenient 

to derive an equivalent form which turns out to be more suitable to 

calculate the Fourier transform and to our subsequent calculations. 

Consider an amplitude F: 
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( ( , J,c. z. 1j~ )F('lt,,,,1c) ==roJ;[iic: ('l;") l'C-~1 ~(C;Z, oOI~') 

J" " (4.3)( (t, l.:J"{ ,J~'t.i -,'~ · ,~
~r°). ;i ~iT~ (Z1'L) 6rCtft,oo~)_Btf (-d:~llfiL) J 

where in the secon form we Lve absorbed various i'lfactors into G. 

Evidently F does not represent a conformal amplitude unless the in­

ternal dimensions satisfy the covariance conditions. However, we can 

project out conformal portions of the amplitude F by uS ing the Mellin 

projection technique which reads as follows: 

Let ~(x) be an arbitrary function which is in general not 

homogeneous. We can project out a "homogeneous component" of 

degree do in '(, by 

~(t-) SO f~ ~ ,..-010 F(~) 
o (4. 4) 

It is easy to see that ~(1J~ so -tfl ~rJo A necessary 


generalization to functions of many variables can be done without any 


difficulty. In view of E-.i. (4.4) and its subsequent generalization we 


construct an amplitude F C from the amplitude F by multiplying each 

z.., 

~'I by PiPit and integrating over po for each vertex j with a factor 


JI~-f~ from 0 to 0" 0 
 ' 

E;.,. 0 0 'X-LJ ~ (()O .#-t!..~ :. :Cj+4 S~ ~~'{r_ ("it •• ~, \ 0o 

c.. "11 I II )0" Jl
j
' ""'a ;'4. zrr, '1 I :I 

· S tIO i t!5t 11~'Cjt«JJ (-t"1:. ~-t tJ t IJ. op. ..) (4. 5) 
6 1*" 7IJC a' --, i,[-, a , 
It is easily checked that the amplitude F C is indeed a conformal 


amplitude. For example, we see under a special conformal trans­

formation (2. 1) 
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Fc.(£" == 7T I '-.2C'l:,'f"J.£/1.. t,) fc(~,··~) 

Let us now introduce new variables, fli (r Si f' ) 
and 'f(ISi~A) as follows: 

tY 1+' ;:: ~. 'li·'" Ca' , 
Ut' 3ft =­ ai Q.i-tZ, li ~''''1 J (4. 6) 

7J2 ' ,'...,3 ~ (Ji {).1'.t, C'fi 

, I , 1::,.tcf 


(In these equations the cyclic identification of the vertices, viz. 

Ila:t.-t{ =- 'lAi' is implied.) We See now that 6 variables, 43' 
may be eliminated by a suitable redefinition of the reduced matrix 

element G. In fact. introducing new variables If~· by 

'(It is understood that the arguments of G( tI,,, 
I 

through the new variables, a. and c., by means of Eq. (4. 6~) In 
. J J 

obtaining the representation (4. 7) we have used the observation that 

the volume ele.men,t i's invariant under the change of variables, Eq .. 
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(4.6), viz. 

It is to be noticed that the reduced matrix eleITlent, K depends 

only on a set of six independent channel variables and the covariance 

conditions are automatically taken into account. 

Next we ITlultiply a factor 

to the repreF'entation (4. 7) and subsequently rescale the variables, 

ITl. by
J 

• 

Then we find an expres sion for Fe: 

r: (flO q JC· ( II' JA "t (I ·1
'C. (1.f, ", X.,) :::.> 7r c:# K(4, ",{If))o ~)\ )" fro'l; , 

'.,.,S ",,' '2.' 1. (4.8) 

· J~ ~( f - riiJ exr (~iA 1: ~ ~~.~{ Vile.) ,
J , 

where 't - 1: (",,'ott.t) and VJl ::: 113l (~~t) . 
(The quantities Va·'" defined above are functions of the c j alone. ) 

Let us now Fourier-transforITl Eq. (4.8): 

r, ') SC f -i. L .. !t.*{IOa. Je;'G,l-r", ...,ff:(::: rrJt-t' J~ ~11 11--: /(C4,···,Cct)· 
I ?' dOC., (4. 9) 

("'J" .. (1 , ~, ...1' / ~ )1., 
)" :;::~L.)o 1fJfi~; 6t1~rfi)~(-il\2.lA~il ~~t Va'{ ~~. 

We put ~6:=Q by using translational invariance, thereby one dependent 

momentum has been eliminated. (Note that we have an overall 

momentum-energy conservation, it f .,. ~ i" == 0 ) 
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We now define a real and symmetric 5 x 5 matrix 0 by 

(4. 10) 
J 

where xt = (~. 'Xz ... :;(.,) and X is a transpose of the matrix X. 
I ' I 

From the definition it is easily seen that the element Uk) of 0 is 

given by 

(4. 11) 

As the matrix 0 is real and symmetric by definition, there 

exists an orthogonal matrix which diagonaHzes O. Hence the ~-

integrations are easily carried out with the help of the standard 

Gaussian integration formula: 

5J+~ e"';,x L ::::.: 11' 1­

So we get: 

Fc (""'I&d ~ L1f'oS;J.t,,*-tr'l'S:1f ~~'1«4"", t',,) · 
(4. 12)

'f"Jfi~i1i~~J r(-1:~) (tktQJ~ (\2-Kf;(J-i 1<) J 

where 0 .... is the inverse matrix 	of 0 and Kt = ( ,.~. • •• ~, ). 
. 	 I'" • 

Substituting a new variable by 	JJ::: C ).")-1, 
J f ~'f;f: l~ ..,~):::. ;2,,,'r,'0 (()" ~ u-fo S 1f J~ .~ · S(' - 2:t;) · 

" I )6 ,l( r fJ a ~ · ,(4.13)r:rr J~' t<.(~, .. ,C1) (JltQj.1.#if((.'p kt(}~K) 

where fl::: 1- -t J 1:t:. (4r j 't-f G ) 
~ J 1. • 

Notice that all the momenta are entirely contained in the factor, 
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(Kil K. )". This allows one to obtain a scaling law and a parton-like 

structure of the inclusive cross sections as we will see in the next 

section. 

Evidently, the dynanlic s is enti rely contained in the gene rali zed 

reduced matrix element, K(c 1- •• c 9) which cannot be determined by con­

formal symmetry alone. Without having a dynamical model, we are un­

able to proceed further with Eq. (4.13). In the following, however, we 

will study two simple models for the matrix element K(c 1•.. c ); the
9

skeleton amplitude defined in DK and the independent correlation model. 

We may hop~ that at least some qualitative aspects of the results that 

we find by studying these models remain in a future more complete 

theory. 

4. 3 Some General Properties and the Skeleton Amplitude 

Let us begin with the kinematics of the single particle inclusive 

reaction 

I 

where X symbolize all the rest of the particles that we do not detect. 

We also denote incident particles (say, scalar nucleons) and an outcoming 

particle (say, n) by their momenta for the notational simplicity. It is 

not difficult to see that the inclusive cross section is proportional to 

the absorptive part of a six point forward scattering amplitude with 

momenta assigned as follows:

'. :=. f, ~+ ::­ ~" , 
- t , =- ~« (4. 14) 

~ ~ 
i, tfI,i, .. 1'1-- " ~Pf 

I 

On choosing the third component of PI different from zero in the center 
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of the mass system, the following asymptotic relations are easily 

shown to hold at high energies: 

f,~(",o"1 r) J 

r1. ..- (P, 0, ~r) III I (4. 15) 

~~ (~, ~ ,1,,-,,,) '~r' ::~~.
J 
The kinematical invariants, s, t, and u are defined as usual: 

s- (Ii"" ,-)1. ~ 4,,!. ­ J 

(4. 16)-t- (fr-t)1. ~ -life ~tt 

1l:::: (f,,- t) 'I. ~ -4ff. f.6S t ~ 


We also defil1e scale variables, x y: 

, (4.17) 

Note the following asymptotic relations: 

(4.18) 
I 

Thus we see that x + y ~ 1 at the boundary of the phase space. At e = 90° 

we have x = y. 

Turning our attention to the conformal amplitude (4. 13) again, 

we notice that the six-point function entering the expression of the inclu­

sive cross section can be written in the form with the above defined 

kinematics. 

Taking the absorp~ive part of the amplitude (4. 19) in s, we obtain a 

general scaling law for the inclusive cross section, 

(4.19) 
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, 
(4.20) 

provided we are allowed to let the external masses, m) go to zero. 

Whether this step is permissible or not depends on the function 

K(c I' .. c )· For the moment we assume that Eq. (4. 19) is free of such
9

infrared divergences. (However, as we will See shortly, this is not 

the case for the skeleton amplitude.) So we have, in some sense, 

demonstrated that the scaling law is a consequence of a rather general 

principle like an approximate conformal invariance of the theory. In 

order to get more specific information about the scaling function F(x, y), 

we need a model for K(c l' .. c ).
9

Before doing this, one more interesting consequence of the con­

formal invariance of the theory is to be mentioned. Namely, we notice 

that Eq. (4.13) may be rewritten in the form: 

F;(~'''i~) ·fTr~K("'''C1) fel~" ..~j '0 J (4.21) 

where the form of the amplitude Fe (~, .. 't' j t.j) can be read off by 

comparing Eq. (4.21) with Eq. (4.13). It is important to realize that 

the function ~",," k j Ci) itself is a plysically meaningful (SU(2,2) 

invariant) amplitude for any set of the real numbers, t" ., . , 'Ill . 
Equivalently, the function K is independent of all the kinematic variables. 

(From the geometrical point of view, this is a consequence of the fact 

that conformal transformations act transitively on Minkowski space. If 

we had required Poincar' invariance of the amplitude only, the reduced 

matrix elements would be functions of the invariant channel energies, 
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thus invalidating the whole argument.). Therefore, the discontinuity 

of F c with respect to the incident energy and hence the inclusive cross 

section may be written as follows: 

(4. 22) 


Thus, we may look at the measured inclusive cross section as an 

incoherent superposition of "elementary" cross sections, q,.~1o( 'i)
l( 

where the differential probability distribution of the channel correlation 

parameters, c. is given by
J 

J, ' 
JW(Ci) ~ TJ'~ J< C4,···,Cq) (4. 23) 

1 
(Strictly speaking, for this interpretation to be valid, one should prove 

that the elementary cross sections and the distribution dW are positive. 

At this moment, we do not know of the existence of such a proof; how­

ever, this question of interpretation has little effect on what follows. ) 

Eq. (4.22) shows us that the inclusive cross sections possess 

a structure strongly reminiscent of parton models. This structure 

is obtained without explicitly assuming that partons are "particle­

like constituents" of hadrons. In fact, our partons may be identified 

with the elementary two-point correlation functions which are building 

blocks of the conformal amplitudes. 

So far we have endeavored to obtain general consequences of the 

5U(2, 2) invariant amplitude Eq. (4.13) without being involved in a 

specific model. We now study simple models for the function K(c )j 

to be more practical. As a first try, we may say that the function 
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G(tj" · · · t 'Cr, ) is very smooth and slowly varying in i' so that it 

is approximated by a constant (say, G = 1 without loss of generality) 

as a zeroth order. It is easily seen that this implies 

(4.24) 

This, in turn, implies 

(4. 25) 

as can be seen from the definition Eq. (4. 7) by some straight-forward 

calculations. 

Therefore, the skeleton amplitude is given by 

~'(~/,/(.) :: zi.""()i~r{-fl) ~(J. JrJf3'~i1i·-t~· 
(4. 26) 

· ~(f- I:1j ) (JetQSl~( J(tCt,11<) (!. , 
where we define the matrix Q!.by 

QS =Q ''''::.f J 1'.1. Q ~a'{ := ~~ 13' -1i~' 
We have also carried out I..L integration in obtaining Eq. (4. 26). For­

tunatelyenough, it turns out that the 5 x 5 matrix, QS can be inverted 

(4.27) 

(As a technical point, it is worth m.entioning at this point that even 

though the matrix Q can be inverted in principle by a finite number of 

algebraic operations, this procedure becom.es quite laborious for 

matrices of the order. of five or higher. Therefore, in practice we 

are forced to make an approximation. We will encounter this situation 

http:becom.es
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in the next section. ) 

We also find the deterlninant of Q s: 

(4.28) 

Putting Eqs. (4.26), (4.27) and (4. 28) all tog.e~her, we get the following 

expression for the skeleton amplitude F 
S 

after some straight-forward
c 

manipulaHons : 

Fc t~, ·.,") ~ i}~1f'O r{-fl.) (4 'If J~ · ~ ~'-t t,S'tI- %.f;) ·). ,1 '/ 
t~t ,~ (l. (4.29) 

· (!;1-t ... -t.J)
~4 1,· 

Thus we learn that the skeleton amplitude is a constant, depend­

ing on the external masses, m., only. As a particular case, the for­
J 

ward scattering amplitude which is relevant to the inclusive cros s section 

has no discontinuity in the invariant energy. So the inclusive cross sec­

tion gets no contribution frorn the skeleton amplitude. We also see from 

Eq. (4. Z9) that the "infrared limit" ("'d~~O ) is finite or divergent de­

pending on the sign of ". It is reasonable to say that the scale dimen­

sions differ little from their canonical values in view of the arguments 
z:~ . 

we presented in the previous chapters. In that case ,,= 1 ~ '2,1 is 

approximately around -1. (Note that (!l = -1 if all the dimensions were 

canonical.) Thus the skeleton amplitude Eq. (4.29) is in fact infrared 

divergent. 

4. 4 Independent Correlation Model 

As we have previously stated, the model, which we describe 

in this section to obtain more specific information about the scaling 

function F(x, y) is out" "ersion of understanding of the hypothesis about 
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the "randomness" of the dynamics. The reduced matrix element 

I< (", , .. ,''') factori zes in thi s model: 

(4. 30)J 

where the functions K. dep~nd on a single variable only.
J 

Incorporating certain symmetry properties which follow from 

crossing relations and the statistics of the external particles to the 

present scalar model, we demand that all the meson-nucleon and 

nucleon-nucleon distributions be equal to each other I respectively. 

Hence we ha" e: 

K, :;:. K1 :::. Kit ::. kf' :: z) , 
(4. 31)

Ks - K, = K'l ::: Kif :a V 

(Note that K8 is a meson-meson distribution. ) 

Assuming the validity of the interpretation of dW as a differ­

entiai probability distribution, we obtain the foHowing conditions. 

(4. 32) 

Eq. (4. 32) implies that we may write in general 

V(G) =c';~(c) J (4. 33) 

near c =0 with positive powers A and B, where g (0), h(O) may be 

finite. This is always possible by choosing A and B appropriately. 

Let us now derive a useful approximation to Eq. (4. 13) which 

is essentially a first order perturbation formula around the skeleton. 

(Re1lle1llber that the function K had a for1ll 1f ((£1'-1) ill the 
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calculations of the skeleton amplitude.) We start by introducing new 

variables. 4)jk as follows: 

The variables Wjk are SInall parameters to make a power series ex­

pansion. It is also understood that W are to be expressed in terms
jk 

of the quantities t,- -f , e. g. to first order we have I 

~'1f' "~'-f J IA1liH= 'i-+c~!t-'-z., wii.... ~ =CH l-1 
The matrix Q can be separated into two pi.eces by substituting 

jk by Eq. (4.34): 

(4. 35) 

where QS is the skeleton matrix given previousiy and 

lC = Q (til' -".Ji'­
Now Q -1 can be found by a series expansion: 

(4.34) 

. . . 
(4. 36) 

Since we have already found (Qs) -1 in the previous section, Eq. (4.36) 

gives a-I up to first order in W after some straight-forward cal­
jk 

culations: 

Q~'{ ~ {. S"i{ ( r ..,. f i.fJjJ. ~i) + {40 ( , + ~£Jd ~f) 
. , . . (4.37) 

+ kJ'i -+W,t -cJi' · 
In what follows, we also put 

whereas we retain terms of Of"'jk) in the-rapidly varying-exponential 

(4. 38) 
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function. 

From Eqs. (4. 13), (4. 3]) and (4. 38) we obtain an approximate 

expression for the amplitude Fc (k" ... ,~) : 
f:j+2~(~,··,lr) ~.2,.,,'D f"'~p-f!. S~ 1TJf.1~· .(cr-r~).

D ~ ~ , a
de. '. , ,1:~ (4. 39) 

• { Yr ~ Ka". llf) ~t;c (r-/.... ~ ~·14J1I • 'j. ~ r ~A uJ~ ., •.) 
~ 1 .. ~ 1/:If "I 1,. r. -z1 a • 
Let us pause for a moment to discuss the validity of the approx­

imate formula Eq. (4. 39). Were all the momenta large and non-

exceptional (L e. no finite sum of the external momenta would vanish), 

we would expert Eq. (4. 39) to give a good approximation to the physical 

(SU(2, 2) invariant) amplitude. This is due to the fact that in the region 

just mentioned, all scalar products of the momenta i,:"j are very large. 

Hence, the exponential in Eq. (4. 39) oscillates very rapidly unless 

LcJ jk <.. 1. (This justifies the assertion that Wjk are small parameters. ) 

Unfortunately, however, the region just described is also highly un­

physical. (The "deep Euclidean region".) In the physically relevant 

Minkowskian region of momenta, with k~ fixed, we have no reliable 
J 

way of estimating the accuracy of our approximation. However, by 

putting k~ =' 0, and working out the respective formulae, we arrive at 
J 

an approximate amplitude w~Jh no evidently unphysical properties. 

Thus we believe that the approxima~ion considered here gives at 

least a reasonable qualitative picture of the behaviour of the amplitude. 

We immediately notice that the approximation method just 

derived preserves the scaling property in every order. By consistently 
," 

neglecting mass terms, the exponent of Eq. (4. 39) may be simplified 

drastically. (For instance., 'j dependence drops out completely. ) 

Hence we obtain: 
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Exponent ~ z: ,Ji' 'i~l. -:! s ( c, +Cz. t 4 - 'r - _elf)C1 

-"'t(t-C,) -zu (l-eJ) 
(4. 40) 

~ s.1- ("/~; e{) 

To obtain Eq. (4.40) we havf' used the first order expression of the 

variables jk in terms of ~. -, • Now the scaling law follows from 

Eq. (4. 39) just by redefining the variable fJ.: 

(4.41) 

where tis gi Yen by: J. 
<-fi (f. ~) =- t In 10 (0100 ~M -/:l SI "t .~. 'C~ '., 1. ~ ( 1- r t i ) · 

I 6 )0 /A ~ ~ t 

, S.,,~' K(~," ',('4) ~,',u L. (~~ j Ca) ,
( L (~/~ j 'i) is kiven trivially by Eq. (4. 40). ). 

The f. integral i., easily carried out to give a pol~eta function 

1> CC,+2. , ..J. 1:, +z..) , 
1T r ('l1'f'l.)

8(tffz" · ", t:61 z) = (4. 42). r ( Z; ( Z-f -&,) ) 
Next, the independent correlation model (4.30) tells uS that 

the function c..rcan be written in a form ­

'" ( ~c ~)::: t.t'1f'. c;-13( 'If -tt, · ··f Zi, ....'Z) i"o1; ).A- p. 
J4' (;I (4.43)

JnK/'i) c. .,., ~jJ L(%,~j c.,) , 

where, on notici~ggthe ahlisfncg of C in the exponent L , a parameters 
G has been introduced by the integral, 

If ::: LtP~Kt ('I) . 
Furthermore, let us change variables as follows: 
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2,JJ. ( r - ~-'1) ---\ 
II (.-:::11 _JC.__ C, ~1J, ' C, -:= 1J~ (4. 44),-x--,/ f ~ 

J ,-f.... ~ , .let -x:~) d~ -:t ~.' ) 
We now obtain the following forlll for 0/ frolll Eq. (4.43) using 

further assulllptions about the distribution of correlations. However, 

if g(O) and h(O) are indeed finite, the behaviour of the distribution 

near the boundary of the phase space ( x+y ~ 1) should be dOlllinated 

by the pO'wer (l-x-y) ,,+qtll..,.s) . Silllilarly, if the functions g and h 

are reasonably smooth over a substantial range of their argulllents, one 

expects the factor (xy) -B to dOlllinate over the region of Slllall x and y. 

Therefore it is not unreasonable to aSSUllle that H is a slowly varying 

function in x and y. In fact, we are able to fit the experilllental data 

quite satisfactorily with the assulllption of H being a constant. (see 

Fig. 7) 

Finally, calculating the discontinuity of the alllplitude F c in the 

invariant energy s, we arrive at the following expression of the single 

p3.rticle dis tribution: 

(4. 46) 
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where we have absorbed sorne constant factors into the function H. 

It is inlerestj ng to note tha t the power be haviour, (xy) -B , 

in Eq. (4. 46) is of the' sanh~ ty pc a s obtained in l he pa rton n)odc I cal­

culations. Our formula Eq. (4. 46) also contains a factor, 

(,,%,~ ) ~"'q. {A-t '? which suppress the cross section at the bound­

ary of the phase space (x+y~l) when p,+4 (/J....,.g ) .> 0 

On combining the scaling law Eq. (4.46) with the dimensional 

rule (e. g. JK-,)." ,.., -kit. (fr'1f.1. - P'fi"). typically'" "" r Cpv) obtained 

in the previous chapter, we find a rather surprising prediction on the 

inclusive distributions of mesons (1j,K/~ ) at fixed x and y: 

J'lod<) "'" C sfi... ( II" -111/) 
(4.47)d!o(1T) 

J 

where C, in general, depends on x and y. Similarly for 1(.. However, 

under the ad ~ as surrption tbat the constants A, B and the function H 

are approximately independent of the nature of the particle produced, 

we obtain the following expression for C by using the fact that 

for spinless particles: 

) T' (-z.ttfj) 

1-0(.", (4. 48)
J 

where "'J':::. f .". ,;~. · We have assumed that the nucleons have a 

canonical dimension i. e .. VIII :: --r . 
In order to test our result, in Fig. 7, we have plotted recent 

CERN -ISR data on pp ~ 'ITO anything in three different incident energies, 

Vs = 30.6, 44.8 and 52.7 Gev. Clearly, the scaling law Eq. (4.46) is 

in good agreement with the data.· Our fit is obtained by assuming 
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H(x y) :: const and A :15 B =2. 7. We have also given our predictions on 


K and ~ productions based on Eqs. (4.47), (4.48) in the same figure. 


At present there are no reliable data available to check these predictions. 


(Preliminary data obtained by the CERN -Saclay group at the ISR seem to 

indicate that a) the rate of "heavy particle" production grows with the 

transverse momentum and Inay saturate at a ratio around """"'1. 5. 

b) Comparison with the 24 Gev data indicates a slow increase of heavy 

particle production with energy. This would be at least qualitatively 

consistent with our theoretical prediction. However, the data are pre­

liminary and they have been contested by the British-Scandinavian 

collaboration. At present, no final conclusion can be drawn concerning 

the validity of this theoretical prediction.) It should be noted that our 

Eq. (4.47) suggests that at sufficiently high energies and large momen­

tum transfers, one should see an increasing number of low spin, heavy 

particles produced in any reaction. While this prediction is somewhat 

surprising in view of the overwhelming dominance of pions at low qT 

as we mentioned in Sec. 4. I, it does not seem to contradict any known 

physical principle or experimental result. 
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Chapter 5 

Discussion 

In the last two chapters we have studied conformal symmetry with 

an emphasis on its broken character and its physical predictions. 

Due to the lack of knowledge of the fundamental dynamics of had­

rons, we were forced to take a purely phenomenological approach 

to the problem. Thereby we have developed an effective action 

theory of studying broken conformal symmetry through a spon­

taneously broken symmetry mechanism. Assigning hadrons to 

infinite dimensional representations of SU (2,2), we were able to 

recover some essential features of the hadron spectrum. More­

over we predict the ratio f-c:.t:/M to be a universal constant 

which seems to agree with present experimental data at least in 

a qualitative sense. Throughout the calculations, only the quali­

tative aspects have been emphasized. This is partly because we 

are not able to provide exact quantitative results within the frame­

work of the present model, and partly because in our present state 

of knowledge about strong interactions any quantitative estimates 

are necessarily bound to change before not too long. The main 

justification of our approximations (based on physical intuition 

rather than on a logically consistent procedure) would be the consis­

tency of the emerging physical picture with experimental facts. In 

--~--.•. -~-----------.------
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fact, the physical picture seems to be quite attractive. Should 

the qualitative aspects of the hadron spectrum be correctly des­

cribed by present theory, we would conclude that it is nct physi­

cally meaningful to inquire about properties of individual hadron 

levels in the high mass region. This is because the widths of 

massive hadron states are predicted to be comparable with their 

rest masses in such a region. Therefore we should rather con­

centrate on the investigation of the properties of an "average 

excited hadron." This is a familiar concept in nuclear physics, 

however its accommodation may require substantial changes in 

the methods and outlook of present day hadron spectroscopy. 

Broken conformal symmetry also appears to have a considerable 

predictive power in high energy.. large momentum transfer 

hadronic processes. In particular we have considered inclu­

sive reactions in this framework. The predicted scaling law seems 

to be in reasonable agreement with the data. A far reaching conse­

quence has been obtained from dimensional rules (dilatational tra­

jectories) and the scaling law, predicting more frequent occurence 

of heavy particles (as opposed to pions) at large transverse momenta. 

Should this be borne out at least qualitatively by future experiments, 

it would lend substantial support to our scheme. On the other hand, 

a deeper understanding of such phenomena would be quite welcome. 

Recalling that the dimensional rule appears to be quite a new con­

cept in this field and particularly, its appearance in connection 

with duality, such a theoretical investigation may lead us to a 
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completely new domain of strong interactions. Clearly our ap­

proach - purely phenomenological in its spirit - is far from be­

ing a consistent theory. Yet, the present considerations lead 

one to conj ecture that fine details of the dynamics of complicated 

relativistic systems - as hadrons appear to be - may be relatively 

unimportant as far as practically observable properties are con­

cerned. One may recall in this respect that some non-relativis­

tic many-body systems (e. g. an infinite ferromagnet near the 

Curie-temperature) do occasionally exhibit such a surprising in­

sensitivity to the details of the dynamics. While there are certain 

formal analogies between a non-relativistic system near the criti­

cal point and a conformally invariant relativistic theory, the phy­

sical meaning (if there is any) of such analogies is far from being 

clear at present. Should it happen that the dynamics of hadrons 

somehow "conspires" to disguise the true nature of the "funda­

mental" constituents of hadrons (if there are any), the present 

phenomenological approach may be the only effective starting 

point towards a dynamical theory of hadrons - perhaps until a 

radically different type of experimental data will be available. 
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