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ABSTRACT

We investigate the dependence of holomorphicity of the gauge coupling constant
function on the mass matrix at one- and two-loop levels in supersymmetric theories. Gauge
invariance puts constraints on the mass matrix. These constraints at one-loop level lead us to
three cases of mass matrix that require different ways of regulating the infrared contributions:
massive, pseudo massive and intrinsically massless. The first two give rise to 2 holomorphic
gauge coupling constant function whereas the last one does not. Two-loop contributions
to super QED and super Yang-Mills theory are calculated using the super background field
method and their dependence on the mass matrix is found to fall under the same three cases

as at the one-loop level. Remarks concerning the general nature of this result to all orders

in perturbation theory are included.
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% : I. INTRODUCTION

Recently Dixon et al [1] have calculated one-loop threshold correction to 1 /9%, g be-
ing the gauge coupling constant, in orbifold vacua of the heterotic string and in a particular
class of renormalizable N = 1 supersymmetric (SUSY) theories. They find that this correc-
tion is non-holomorphic in its field dependence. Shifman and Vainshtein {2] have discussed
case of super QED and show that non-holomorphicity of gauge couplings arises at two-loop
level. To make this more explicit and to show what entails for the definition of the effective
gauge vacuum angle, consider the action for N = | supergravity coupled matter and gauge

fields [3]:

A= /d‘zd“l) E[#(5,3¢) + Re(%P(S).)]

(L1)
+ /d‘::d‘o E Re( fu(S)WWH).

Indices a and b, in general, indicate different group sectors. E is the superspace determinant.
R is the super curvature. § = 4 Ox + 80z is the chiral superfield, where ¢ is the bosonic
component, x is the fermionic component and z is an auxiliary field. V is the super gauge
field of the group G and one of its bosonic components is the normal gauge field A,. W =
A+ Fuot 8 4 DO is the the super field strength, where ) is the gaugino field, F,, is the
normal gauge field strength and D is an auxiliary field. P(S) i3 the superpotential. ® is an
arbitrary real function. f,,(S) are the gauge coupling functions. Here the coupling functions
Jab(5) are chiral and hence are analytic function of S (but not S). In other words, fab(S) are
holomorphic functions of S. As the fermionic part of the action is uniquely determined by

its bosonic part, we concentrate on the latter. The bosonic part of the Lagrangian density
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is given by
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+ '21'5'.'3(% P)D*9 Dy’ + V(p, ). *
Here, R is the canonical gravitational curvature, ¢ is the determinant of the space-time
metric, D is the covariant derivative, G’,-; (s, ) is the metric for the scalar fields ¢, V(ip,3)
is the potential for them, F is the gauge field strength and F is its dual. 9as(0,p) are the
gauge coupling functions, which can be wriften as

(5—=:) ., = Refus(®) (1.3)

9%(pp)/ ab

Oap(p,¥) are the so-called gauge vacuum angles the derivatives of which give the couplings
of axions to gauge field; they are given by

Ouly.?
Oebes?) _ ). (14

.Considering the global super gauge theory (SGT) as a derivative of this local supergravity,

the couplings in the SGT should also be holomorphic functions of ('), where (¢*) stand for
the vacuum expectation values of scalar fields ¢'. When loop corrections are included, O,
cannot be obtained directly from Feynman diagrams, because Fg, F#¥ is a total derivative.
But one can obtain O, fron"n %. We need the following integrability conditions

a { 00,

aJ 06,
5% {5

8y }eﬂecﬁve = a(lpi) Byt }eﬁcctive’ (15)
at all loop levels to have well-defineded ©,;. These conditions are only true if holomorphicity
holds at all loop levels. Hence it is desirable to have holomorphic f () at all loops in order

to define the effective B,s.

We note that if the gauge coupling function 1/¢%(ip, @) is the real part of a holomor-
phic function, then O(p, $)/8x? is the imaginary part of the same holomorphic function, the

function being f = ;‘; + ii%* So it is sufficient to study only the dependence of 1/¢* on

the mass matrix in order to determine the holomorphic property of the f-function. But it
is found in Ref. [1] that the one-loop threshold correction to 1/¢* in SUSY theories is not
the real part of a holomorphic function. They attribute this to the presence of thg infrared
divergence. Motivated by this Derendinger et al. [4] have constructed a new supergravity
theory in which the coupling functions are non-holomorphic even at tree level; this theory is

non-local at tree level.

Our analysis shows that the holomorphicity of 1/g? at one-loop and two-loop levels
depends on the structure of the mass matrix, M = M({p)), which in turn is representation
dependent. In Sec.II, we study the holomorphic property at one-loop level and emphasize
the role of the representation of the mass matrix. Sec. III concentrates on the two-loop
holomorphicity for the super QED. We investigate the two-loop holomorphicity for the super
Yang-Mills theory in Sec.1V. Sec. V contains concluding remarks. A brief report of the result
is contained in Ref. [5] and many details can be found in Ref. [6].

II. HOLOMORPHICITY AT THE ONE-LOOP LEVEL
AND THE MASS MATRIX

A. One-loop calculation

In this section we study the holoﬁorphic property of the gauge coupling constant at
the one-loop level in a supersymmetric gauge theory (SGT) coupled to matter. To do this,
we need to have an explicit expression for the dependence of the gauge coupling constant
on the mass matrix. Previously, the one-loop correction to the gauge coupling constant has
been calculated in many places [7]. However, the purpose of all these calculations is to find
the B-function, and they are performed in the dimensional regularization scheme or in the

zero mass matrix case. For our holomorphicity study, the whole f-function calculation is



not necessary; we need only the part that depends on the mass matrix. Furthermore, all
calculations have to be carried out in four dimensional space-time since holomorphicity is a
four dimensional property. (There is no definition of the ©-angle in any other space-time
dimension.) Therefore, it is necessary for us to redo the one-loop calculation and demonstrate
how the holomorphic or non-holomorphic dependence arises.

Super Feynman propagators can be derived from action. Let us start with the

general action [7]
- Z;_,Tr dzd*0](e™Y D*e¥) D* (™ Dye”))]

(2.1)
+ /mma e+ /d"x[d’o P(¢) + hcl.

Here the trace “Tr" is taken on the gauge group; @ is the spinor coordinate, and d*@ is the
integra.tioh in the full spinor space while %8 is in the chiral spinor space; V is the gauge
vector super field; ¢ is the matter chiral super field; P(¢) is the super potential; and D,
and D are covariant spinor derivatlives. A renormalizable super potential can have up to
the fourth order in ¢, but since we are only concerned about the mass matrix dependence,
we focus on the second order term in P(¢) , the mass term —%¢TM¢, where M is the mass
matrix and superscript “T” is the symbol for the “transpose” of a matrix. The mass matrix

cannot be arbitrary. A gauge invariant mass term in action (2.1) must satisfy the constraints
T°™M + MT? =0, (2.2)

where T are the generators of the gauge group. The consequences of these constraints are

given in the next subsection. The needed Faddeev-Popov ghost action [8] is
1
Aghost = Tr/d‘zd‘v[é'c ~de+ i(c' +&)V,e+d+ ]

Here ghosts ¢ and ¢ are chiral (Dgc = Dgd = 0), while é and & are antichiral (Dyé =

Do& = 0). The gauge fixing term is
1 -
Ayt = —5—5 Tr[d'zd*0D?V D?V,
2ag

a being the gauge parameter. For simplicity, we choose the Feynman gauge, a = 1. The

quadratic part of the action in V is given by (see Appendix A)
Ay = —-% Tr/d‘::d‘GV(?’V,
49
from which the propagator for the gauge field follows (see Appendix B):
- i o
(VOMVAR)) = ~—5 818", (2.3)

where we define é-function 8y = §*(0) — 0,)6%(z; — z3). The propagators for super matter

fields ¢ and @ are given by (see Appendix C):

(8(1)47(2)) M’—-—-;,—M—, D35y,

(6(1)87(2)) = =57 MM*M D6y 24
<¢(l)¢1(2)) az M'M D] D]612

The ghosts cannot contribute a dependence on the mass matrix as indicated later and hence
we do not need to write their propagators explicitly. Feynman rules for vertex operators can
be read off from the action (2.1) in a straightforward manner. We denote by Zy and Z4y the
renormalization constants for V-wave function and for gauge coupling g, respectively. As

shown in Ref.[7], Z, is obtained by the relation
1
ZeZ} = 1.

Therefore, it is sufficient to calculate Zy in order to get Zg.
There are eight diagrams that contribute to the self-energy of V at the one-loop

level, as shown in Fig. 1.
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FIG. 1. Self-energy of the gauge field
The dashed line stands for the ghost propagator and we use symbol * scuaxa” to indicate that
it can be a super.matter, super gauge or super ghost propagator. The tadpole contribution
from Fig. 1(d), can be shown to be zero, and the contributions from Figs. 1(e), 1(f), (g)
and 1(h) do not concern us, since they do not have a dependence on the mass matrix. So
only Figs. 1{a), 1(b) and 1(c) need be considered. In thé calculation, we use the constraints

T°TM + MT? = 0. Then these three diagrams together give

A.AV- ZTI‘ —67—)4"

D2 D?D,, Voo
(2 + MIM)[(g + p)? + MIM]"!

Ve (-p)T°T?

The trace here is taken on both' the matrix of group generators and the mass matrix. How-
ever, we can decompose this trace into a product of two: the trace on the matrix of group
generators and the trace on the mass matrix. This is achieved by adopting the result given

in Appendix D:
Te(T°T*M'M - M M) = di Te (T°T?) x Tr (MM M' M)
R

dg being the dimension of representation R. Now, the expression for AAy can be rewritten
as
AAy = Z—;;T:/d"ﬂ,V,’(-—p)T"T"D? DDy, VE(p)

diq 1

T )i (@ + MIM{(q + p)? + MTM]

By comparing the coefficient of the V2 term in the above equation with the coefficient of the

V2 term in Eq. (2.1), we identify wave-function renormalization constant for V:

2 Tr d'q 1

2y =1—19°——
V= T G (a2 4 MTMIGq 4 )7 + MM

where the trace Tr(I'7T?) = Tré%? has been used. Now recalling the relation Z‘%,Z, =1, we

obtain the one-loop correction to 1/¢?, up to terms independent of M,

ad oI [de :
g’ 2dg  J (2x)' (¢* + MM)|(qg + p)? + M M)’

For our holomorphic study, we can take external momentum p — 0 for simplicity.
To regularize the ultraviolet divergence, we need to have a regulator to deal with ultravio-
let divergences. Usually the dimensional regularization scheme is used to accomplish this.
However, since we are here studying the holomorphic property, which is a four dimensional
phenomenon, we have to limit ourselves to four dimensional space-time. Hence the dimen-
sional regularization scheme does not serve our purpose. In fact, the natural choice in this
situation is to use the Pauli-Villars [9] regularization scheme for matter fields. (The ultra-
violet regulator for other fields are not needed, since the regulator for matter fields curbs
all ultraviolet divergences as far as this study is concerned.) This regularization scheme is

performed by the propagator replacement

1 1 i
I MM (kz TMM T A'A)’ (235)

where A is the matrix of ultraviolet momentum cutoff. Implementing this in Eq. (2.5), we
get
1 Tr dq (AtA)?

A = "2y " @) (@ ¥ MM+ ATAY

(2.6)

This is an expression in Minkowski space. This integral is ultravioletly finite, but its infrared
property depends on the mass matrix M and also on the regulator A." The gauge invari-
ance gives constraints on both mass matrix and ultraviolet cutoff: T7°TM + MT® = 0 and

T°TA 4+ AT? = 0. We need to know the consequences of these constraints. For different
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representations of the gauge group, we have different representations of the mass matrix.
We discuss the representations of the mass matrix in the next section before we integrate

Eq.(2.6) and study its holomorphic property.

B. The mass matrix

The holomorphicity of the gauge coupling is dependent on the representation of the
mass matrix. In the following discussion, we focus on non-Abelian groups. But as we see,
results for Abelian groups can be found trivially.

It follows from Eq.(2.2) (sce Appendix D) that if the representation R of the gauge
group is irreducible, then the mass matrix M is either trivially zero or all its modes are
massive {detM # 0). Thus, to have a general mass matrix containing both massive and
massless modes, we have to go to a reducible representation. In general, although a reducible
representation can contain real, pseudo-real and complex types of irreducible representations,
as shown in Appendix D, different types of representations are trivially decoupled. Therefore,
we can stndy each type of representation separately without loss of generality.

A real or pseudo-real representation R of the gauge group can be simplified to have

the form (see Appendix D)
i
e Nt
G(R) = diag{G,, G,, ..., G.}, (27

where the submatrix G, is an irreducible i x n real or pseudo-real representation. We assume
that we have a total of { G,’s. The conditions (2.2) put constraints on the mass matrix, and

the solution Lo the constraints takes the following form

ay ayp ... ay
a a2 ... au

M= . . 1 eJ
an 4Gz ... ay

Here n x n dimensional matrix J is given by G, = JG;J™!, and a,;’s could be arbitrary

complex numbers. For the real representation, we have J = I, the unit matrix, and a,; = a,,

10

so that the whole mass matrix is symmetric. For the pseudo-real representation, we have
JZ = —1 and J* = —J. The matrix elements ai; = —a;; so that we have an overall
symmetric mass matrix.
A complex representation R of the gaﬁge group can be transformed to have the form
] I
G(R) = diag{Ce, Co, -, Goy G G, o GO), (28)
where G is an irreducible n x n complex representation and G? is its complex conjugate. We
assume that we have a total of I G.>s and [ G}'s, and we call | as the number of n-dimensional
families of chiral fields and I as the number of fi-dimensional antifamilies of chiral fields. [
and [ are not necessarily equal to each uther. For this complex representation, the gauge
invariant constraints require Lhe mass matrix taking the form

b"+] ces b1'+l

0

. b" 1 P b I
M= . + il e g,
L TSTI bi+u‘

”m: o b:+u

where the matrix elements b,; are arbitrary complex numbers with biy = bji, and I is an
n X n unit matrix.

Massive case: For all the three cases of real, pseudo-real and complex representa-
tions, the mass matrix M may have zero eigenvalues, or massless modes. Depending on
whether the mass matrix has massless modes or not, the integral in Eq. (2.6) behaves differ-
ently. A mass matrix is called massive if all its eigenvalues are non-zero. For the massive
mass matrix, since M~} exists, M naturally serves as an infrared regulator in the calculation
of the one-loop correction to 1/¢2.

Psendo massive and intrinsically massless cases: For a mass matrix with at least
one zero mode (MMW?Z), we have to distinguish different cases. For a real or pseudo-real

representation, we may have a mass matrix with massless modes. But due to Lhe arbitrariness




of the matrix elements a,; (except for the symmetric conditions), we can always perturb them
(i.e., change them by infinitesimal amounts) so that all the modes in the perturbed matrix
My are massive. Since we can manage to have the perturbed mass term gauge invariant,
this perturbed mass matrix can be used as the infrared regulator for the matter sector. We
call this type of mass matrix pseudo massive. For a complex representation, there are two
different types of MMWZ: (i) The type when the number ! of G, in G(R) is equal to the
number 7 of G¢ in G(R), or in other words, the numbers of families and antifamilies are
balanced. We can easily see that this case is similar to the real case discu‘ssed above, and we
can perturb the mass matrix such that M, is massive. This is, again, the so-called pscudo
massive case. (ii) The type when | # I, i.e., the numbers of families and antifamilies are
unbalanced. In this case, we can sce that the rank of the matrix (i.e., the number of non-zero
modes) is smaller than the dimension of the matrix, (I +1)-n. Thus, we have some massless
nodes no matter how we perturb the matrix elements b;,. Since in this case, the perturbed
mass matrix can never be massive, we call the mass matrix intrinsically massless. This
only happens for the complex representa.t;ion. For the pseudo massive case, we can perturb
matrix clements a;; or b;j, so that M, has no zero modes and we can adopt it as the infrared
regulator. Since M;‘ exists, we can pick the ultraviolet cutoff A so that A~! exists. On
the other hand, in the intrinsically massless case, Mp" does not exist and cannot be used as
an infrared regulator; hence we have to deal with the infrared divergence with a momentum

cutoff.
C. Holomorphicity of 1/4?

Now we perform the integration in Eq.(2.6). For a massive matrix M, M~ exists
and so does A~!'. Rescale ¢? by

»

R
ATAT
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Eq. (2.6) becomes

2.2
AI Tr /q dq 1

" 2dg 162 (g2 + ata)?(q? + 1)2’ (29)

where we have moved into Euclidean space by replacing go with igq, and defined a = —‘A’-

The integration gives

1 Tx 1 '
A= = 2“{R'I‘r(wwz)ln(aa)

g
t
=~ 52 ™ (i58) 0 (37) ~ 2 ™ () ™ (7)

where higher order terms in (a'a) and contributions independent of (a'a) have been ignored.

(2.10)

The r.h.s. of Eq.(2.10) is the real part of

which is holomorphic in M (= M({p))).

For the pseudo massive case, we add a perturbative matrix ¢ to M by defining
M, = M +¢, and adopt M, as the infrared regulator while keeping the perturbeé mass term
gauge invariant. We get

{
A.Eli = - %Tx’ ('1'61;5) In (%ﬁ&)_
This is, again, the real part of a holomorphic function as long as ¢ # 0. Hence, the holo-
morphic dependence on the mass is still true for the pseudo massive case. Therefore, we
conclude that, at one-loop level, MMWZ does not necessarily mean non-holomorphicity for
1/4%; and holomorphicity holds for both the massive and pseudo massive cases.

Finally, we discuss the intrinsically massless mass matrix case. In this case, we
have a complex representation-with | # [, in other words, the number of the families for
chiral fields, is not equal to the number of the antifamilies. We know that, because of the
unbalanced numbers of families and antifamilies, we cannot perturb the mass matrix M so

that it becomes massive while the mass ierm is still gauge invariant. This means that the
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perturbed mass matrix cannot be used as the infrared regulator. Therefore, to integrate Eq.

(2.6), we have to put in an infrared momentum cutoff, pg. This results in

1 _ 7‘]{ . 1 2 1
A;i ——-mpln_xI\oTr(w)[ln (pE+ M M)+const.]. (2.11)

where “const.” stands for terms that are independent of M. Since we cannot factorize
pé+ MM, the above expression is not the real part of a holomorphic function. An example
of this is the SGT based on the Eg group with two 27-dimensional families of chiral fermions

and one 27-dimensional antifamily considered in ref. |1]. Here the mass matrix is

0 0 (¢)
0 0 (p2) ]. (2.12)
(1) (w2) O
The calculated one-loop correction to 1/¢% is given by [1]
! 6 "2 2y 2 2

Since this A;‘-, cannot be expressed as the sum of a holomorphic function of (‘,91) and (z,a?)
and its complex conjugate, one-loop correction is not holomorphic.

Thus the above analysis shows that the one-loop correction to 1/¢% is holomorphic
for the massive and pseudo massive mass matrix cases and it is non-holomorphic for the
intrinsically massless mass matrix case. The latter case arises for a complex group represen-

tation with unbalanced numbers of families and antifamilies.

I, TWO-LOOP HOLOMORPHICITY IN SUPER QED

We first study the two-loop corrections to 1/g? for the simple Abelian case of super
QED with a reducible representation for ¢ having [ = I = 1, and then consider a general
representation. This would facilitate the general discussion for a non-Abelian group given in
the next section. The usc of the super background ficld method (SBFM) simplifies two-loop

calculations. We first briefly review SBIFM.

A. Super background field method

In the background field method (BFM) each field is split into a background part
and a quantum part, and then all the quantum fields are functionally integrated out. The
background fields are kept untouched; and we obtain an effective action for the background
fields. The gauge field is split up in such a way that the action is both background and
quantum gauge invariant. The gauge fixing term is chosen to be background gauge invariant.
Therefore, the final effective action for the background fields is guaranteed to be background
gauge invariant. Furthermore, to maintain both the initial action and the final effective
action to be background gauge invariant, the following condition has to be satisfied {10]:

232, =1.
This means that in BFM, one only needs to calculate Zy in order to get the correction to
1/g%. This makes things much simpler.

In the super background field method (SBFM) [8], we, again, split fields into back-
ground parts and quantum parts and then integrate out the quantum parts. The differ- -
ence of SBFM from the regular BFM is that the former method is supersymmetric and its
background-quantum splitting is, as we will show, nonlinear. For convenience, we use sub-
script “t” for the “total” field, to distinguish it from the background and quantum fields.
We split the vector super field V, into the quantum part V and the background part @,
according to

e% = efle¥e .

This is the only way to maintain the action to be both background and quantum gauge
invariant [11]. Accordingly, the background covariant derivatives are given by

D" =" p°ef, DY = e-nbden‘
with the super background strengths defined as

W = —-[0°, {Ds, Do}l W = —%{D“.{D,,,‘D(,}].

1
2



The background chiral super field ¢ and antichiral super field ¢ are defined by

respectively. They can be related with the original “total” fields by
p=c, d=c.
After the splittings, the action in Eq.(2.1) can be rewritten as [8}
A= 4—;2 Te [d2d0 (7 DY) [0, {Ds, eV Duc” }]
(3.1)

+/d‘xd‘o eV - % d*z[d%0 ¢"™M¢ + hcl),

in terms of background covariant derivatives and commutators. This action has both quan-
tum and background gauge invariance. The background invariant gauge fixing term (in

Feynman gauge) is given by [§]
Ag = 7;‘;?, dzdo (V[D?, [D%,V]] + V[D?, [D2.V])).

This term is background gauge invariant, but not quantum gauge invariant. By taking the
background fields to be zero, we come back to the expressions for the regular action and
regular gauge fixing term, which have been given in the previous section. Now the Feynman

rules for the quantum fields V and ¢ follow.
B. Super QED in the simplest representation

Before we go to the general representation of the mass matrix in super QED, we first

discuss the simplest case where { = I = 1. This is the representation of super QED that has

18

been frequently used since it is simple and physical. The representation of the U(1) group

is of the form [8]:

0 c—tO

e 0
on-(; 1)
Then the representation of the mass matrix has to take the form of
M /70 m) 19
“Am o) (3.2)
in order to make the mass term gauge invariant. The matter field is denoted as
6= ( b4 ) ‘
o

The super gauge field, Vg, has the form

The action can be easily simplified as
A= —lgjd‘xd‘o D°VD*D,V
29
+/d‘:uf‘9 [B+0s + d_0_ +V(ds04 — é-¢-)+ %Vz(&wf’q» +é-4-)+ ] (3.3)

- [m / d'zd0¢.¢_ + h.c.].

The background invariant gauge fixing term is
A = - 4-;.5 Te [d*2d*0 (Va [D?, [D2, V)] + Va[B?, [D*, Va]}).

The covariant derivative D” can be written as D® —iI'®, where I'* are the super connections.



From the commuting property of the U(1) group we can easily prove that
! 272 4 HIP?
Ayt =~ ngfmwov(o D2 + DD}V,
Adding A and Ay together, we get
1
At Ay = - z?jd‘zd'o vOeV
- - - - ] - -
+/d“zd‘o (664 + 66+ V(drds —6-0-) + 5V (404 +9-6-) + -]
- [m/d‘xd20¢+¢_ + h.c.|.
(3.4)
From the quadratic part of the action, we can construct the Feynman propagators
for matter ficlds ¢4 and ¢4, and gauge field V. The super malter propagators are (see
Appendix C)
R . 1 2 A2
($£(Ne2(2)) = WQD;{M.
im* =2
= —— D 3.5
(¢+(1)0-(2)) o = m‘mD 12, (3.5)

m

- - y 2
(6+(1)$-(2)) = mD 12
The super gauge propagalor is

VVE) = “Di;“”' (3.6)

In the above equations
l' . o
0O, =0 -0, - ;i(a“r,,) - %I‘“[‘a - E:(D"Wo) —iWoD,,
1 1o a s
O_ =00 — T8, — ;;e(a°r,,) - %I"’I‘, - -_it(D“W,-,) — WD,

wherc the super background connections [* are defined by D* = D®* — i, with a = ao.

The background ficld strengths in super QED are

_ . _ - - 1 _ -
W, = _%IDD»{Dd,Dn]I = Dzrav W = WEI'DQ'{'DM'D"'}] = Dzrd'
1]

For loop calculations in the SBEM, the first step is to find all possible vacuum

diagrams for quantum fields, and then expand the quantum propagators for V and ¢ ficlds

18

around their external background fields. Any two-loop vacuum diagrams that do not have

" a dependence on the mass matrix will not concern us. There are four relevant diagrams

as shown in Fig. 2. We use the symbol “ «uwas” to indicate the propagator of a qu;antum
matter field, quantum gauge field or quantum ghost field. The wavy lines stand for the
propagators of the quantum gauge fields. The straight solid lines stand for the propagators

of the quantum matter fields.

$}. ‘b:l: 64- a"
. b, b ¢.

() (b)
3 b b
(c) (d)

FIG. 2. Fout two-loop vacuum Feynman diagrams
For each diagram, we write down quantum matter fields, ¢ and é, explicitly to indicate their

locations in the diagram. Each of the solid line in Fig.2 stands for a propagator proportional

to either py L or C]_—]m'm' Since the external fields T', T, W and W are hidden in the
1

-m*m

propagators r; and pp- _‘m.m, we need to expand the propagators to get the explicit

dependence on the external fields. To do the expansion for m, we need to use the
expression for [

O, = O - 170, - %i(a"l‘,.) - %r"r. - %i(D"Wa) —iweD,,
and its commutation with D,

(Do, 0] = W¥Dog + %D,,,;W — i(DaWP)Dy + ,-‘,D”w,..

The expansion of D_—'m—"; is straightforward but tedious. By keeping terms up to second
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orderin ', T, W and W, we have the following result
] [
D+ - m*m -
] + 1 [T‘“?) [ 1
E]o—nlz’m Do m*m ! +E(aﬂra)}ljo——m’m
+ = - (D" W, ! Y pap !
Do—lm‘ [ 1)] -m'm Do—m‘m2r ["Dg—-m‘m
- ‘We o R o 1
Oy —m* o [:lowm’m[w Dos +(DasW )JDo—m'm
1 .
[0 + 2(8°Ta) | ——— [ iT*3, + L (8*
A ,m —[ ( )}Do_m, [zF %+ 5(9 rb)]Do»m'm
. 1
+ = F°0,+~ 3°T,
D"".”'""[' el sorwa gt
o N I
Do-—-——m mZ(D W )"——m[lr‘aa + E(yr,)]m (37)

1 1

(D°w, )~———-—1(D”w3)

1

mz ] m* Do~m'm+E]0—m‘miwaDo-—m‘mD°
+miw [ g—— mom (D, W? )D0 -lm'mDB
+W[ir"a. + 5(a“r,,)]Do _'m.msw"u’ ——

m2(DOW°)DD —lm‘miWﬂDo lm *‘m Ds
+Do—_1m7’;iw"ﬁ [P0, + 50T | 5———p,
*aile;-;"W rlm*;z“)"wﬂ’ﬁ':%rn”"

1
Do . Do lm —i Do _lm.ngDa,
where we have used the relation (D*W,) = —i(DaaW?®). We can see that this expansion

only depends on W®, W9 and I'%, and their derivatives, but not on I'* and ['0 [8] (notice that

e _ fa " . . T

I’ = I'* = I'*%). The expansion for U'_‘-IW*T; is similar, except that we need to replace D?
- s . ] .

by D% and W? by W But as we will see, 1t 1s not necessary to write down the expansion

terms for U-—lnﬁ
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We now argue that Figs.2(b) and 2(c) give zero contribution. For Flg 2(b), the form

of derivatives acting on ;2 can be one of the following three:

612D}612D1%612,
612010 D}812D1%612,
612D10 D1 g D2 612D1 %612

Using the following properties for é-function and commutator of D and D,

61203 Dy%613 = 812D, D612 = 612, (3-8)
612[)]"'[);'512 =0, for n4+m <4, (3.9)
{DO! Da} = iDaé; (310)

we can see that there are not enough number of D's and D’s (~there need to be eight) to
make Fig. 2(b) non-zero. Similarly, for Fig.2(c), the form of derivatives acting on §;; can be

one of the following three:

81 DID 6y,
61D1a D} D\ 261y,
611010 D15 DI Dy 261y

Here, we denote &y for linn—) ;2. Again, there are not enough number of D’s and D’s to
make the diagram non-vanishing.

Now we show that Fig.2(d) gives no contribution. Second order terms in I', W and
W, give two kinds of contributions: (i) one of the two loops has two external legs, but the
other one has none; (ii) each of the two loops has one external leg. Case (i) represents a
tadpole diagram, and on the loop without external leg, the trace over the group generator,
Tr(T?), gives a vanishing result; case (ii) represents a non-1P1 diagram, which does not

contribute to two-loop Zy.
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The only non-zero contribution is due to Fig. 2(a). Its contribution is
I = 2 V(I)V (2)) ($+(1)8+(2)) (8+(2)84(1))
HVV(2)) ($-(1)9-(2)) (6-(2)6-(1)) .

Plugging the expressions for the matter and gauge propagators, we obtain

! =i |d*z,d"0, d‘rzd‘02-———~——DzDz6n( )512

a0 6;—»ﬁnznm (3.11)

What we need to do now is to expand the quantum matter propagator O =m+m Using Eq.

-m*'m

(3.7) in the integral. Graphically, there are three different types of terms in the expansion of
Eq. (3.11)as shown in Fig.3. Here the curled lines stand for the external background fields

and the arrows in the propagators stand fo: the direction of momentum flow.

FIG.3. The three diagrams represent three types expansions of Eq.(3.11)

Many individual terms in Eq. (3.7) may give a non-zero contribution upon their use in Eq.

(3.11), but the sum of the terms with “naked” derivatives is zero. This is proved as follows.

The terms with naked derivatives can contribute to Eq. (3.11) a term of the form
512030[)?1)125:25%02?5:2,

or

812014 D1 D2 D\ 2612 D3 D262

By using the commutation in Eq. (3.10), and the é-function properties in Egs. (3.8) and
(3.9), we can see that thesc two types of contributions do not survive. Hence, the non-

vanishing contribution to Fig. 2(a) comes from those terms in Eq. (3.7) that do not have
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naked derivatives. Collecting all contributions of terms pf the type represented by Fig. 3(a),
and integrating the spinor coordinate over one vertex, we obtain

1 1 1
Do m*'m Do O —m*'m
[ i3, + (3"1‘.)4— (D”W )]

1

lo=— /d‘zd’z'd""

1

' 1 1 o 1
—/dqrd‘zd‘oljo m* _( - O — mmeo m*m
& & 1
% [W2Das + (DosW )]m,

where the factor 2 comes from two symmetric situations. Similarly, all contributions of the

terms represented by Fig. 3(b) can be expressed as

1 1 1 1. i
Do—m‘m.ﬁ’Db—m’m'Zr I""!'_‘Iu~m'm' (3.13)

Iy = — /d‘xcf’z'd‘ﬂ

and those represented by Fig. 3(c) as

: 1 1

Io= - /d'zd‘xd‘oﬁ G T =
x [iT%0, + £(0°T) + '(D°W°)]Do _ m_m = _‘m_m (3.14)

x i, + 5(0'T0) + 5( D”W,,)]Du_lm.m.

The above Ig, I and [. are in Minkowski space. As usual, we transform to momentum
space by using the momentum assignments given in Fig.3. We work in Euclidean space, by
replacing gp with igs and kg with iky. If the original mass matrix has a massless mode, then
we must have m = m*® = 0. For this massless case, the dependence of 1/¢? on the mass
matrix is trivially holomorphic, although we have to deal with the infrared divergence. If the
original mass matrix contains no massless mode at all, then m and m* must be non-zero. In

this case, we have to do the integrations to get the actual m-dependence of 1/¢%



23

As in the one-loop case, we work in four dimensional space-time and use the Pauli-

Villars regularization scheme to deal with the ultraviolet divergence of the matter fields:
(k24 m'm) ™" = (K 4+ m'm)” = (K24 A%
where the ultraviolet cutoff A — 0o. The integrals are done by rescaling the momenta
g qh, k— kA, p—pA,

and are expressed in terms of parameter a = m/A. As

1 1 1
(k? Tmm K2 A2) T AR+ ata)(k 4 1)
some integrals have a prefactor 1/A or 1/A? and hence can be eliminated right away. The
non-zero integrals have I'T external fields. Since we are only concerned about holomorphicity,
in these integrals we take external momentum p — 0 for simplicity.
The sum of contributions terms I, Iy and I, is given by 16]

2

2
I=le+hh+ 1= %F“(O)Fa(ﬂ)(;g?) [In(a‘a) 14 %} (3.15)

Examining the result, we find that the second order logarithmically divergent term {In(a*a)}?
cancels out leaving only the first order In(a*a) term. This is crucial for the holomorphicity

of the gauge coupling constant as we will see later.
C. General representations in super QED

In a general representation in which I and I are arbitrary, the mass matrix does not
" take the simple form as in Eq. (3.2). The calculations are similar to those of previous subsec-

tion. Here also the second order logarithmic divergence cancels out, and only the first order
" logarithmic divergence is left. The final integrational resull depends on the representation

of the mass matrix:
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a) if the representation of the mass matrix is massive or pseudo massive, we have

I= a;—RTr[I‘“(U)T'.(O)](l - 2) Tr [ln M A +Z ] (3.16)

which is of the same form as Eq.(3.15).
b} if the representation of the mass matrix is intrinsically massless, we need to use

the momentum cutoff to regulate the infrared divergence. Hence
1
TN mee— a ’
I i Te[l (0)!“,(0)](l6 2) Tr [ln(po+ MYMY) + const. (3.17)

where “const.” stands for the terms that do not depend on the mass matrix M. In Egs.
(3.16) and (3.17) “Tr” stands for the trace over both mass matrix M and A, and group
generators 7. But as indicated earlier this trace can be decomposed into a product of two,

the trace over the mass matrix and the trace over the matrix of group generators.
D. Holomorphicity of 1/¢*

The expressions (3.16) and (3.17) give the two-loop corrections to the gauge action

in respective cases. We write it in the standard form
1
o7 Tr [ d*zd’0 WOW,, (3.18)
in order to get the correction to 1/g%. For this purpose, we use the following identity
/d“xd‘ﬂ rr, = -2 /d‘zd’e WW, + total derivative. (3.19)
From this we immediately obtain A;‘y. a) For the massive and pseudo massive cases, the
two-loop correction to 1/¢° is
2
1 1 g MM
A= =-—r- | =] T [l
2 "2y (wxz) (AR ) 1+ 5 }
up to terms that do not depend on Mt and M, or negligible. This correction is the real part

of the holomorphic function

l(lszz)T’['“( )+3 *:;]

Therelore, we conclude that the two-loop correction to the gauge coupling constant is holo-

morphic for the cases of massive and pseudo massive mass matrices. The simplest represen-
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tation with { = { = 1 and m # 0 is a special case of this. b) For the intrinsically massless
case (representation with unbalanced numbers of families and antifamilies), we have

2
o 1(e 24 Mt
Ag2 = ZJR(Ian) Tr[ln(po+M M)+const.]‘

Since the infrared momentum cutoff is nonzero, 1/¢% is clearly not the real part of any

holomorphic function of M.

IV. TWO-LOOP HOLOMORPHICITY IN SUPER YANG-MILLS THEORY

In super Yang-Mills theory, the action has the same form as that for the super QED
in the previous section, Eq. (3.1), except that the gauge group is now non-Abelian. The
mass term again can be written as T M@, where, in general, the mass matrix M can always
be chosen to be symmetric. Again we impose the constraint 7°TM + MT" = 0 in order
to have the action gauge invariant. Here the T”'s are the gauge group generators in the
representation . In the rest of the section, we calculate explicitly the two-loop dependence
of 1/¢% on the mass matrix, by using the SBFM. The basic calculational procedure is very
similar to that in the super QED case, but because of the non-commuting nature of the
gauge group, the calculations are more complicated. But as at one-loop level, here also a
representation of the mass matrix can give rise to massive, pseudo massive or intrinsically
massless cases.

The background gauge covariant space-time derivative is denoted by Dyg (= D,,o::d),

and the spinor derivatives are denoted by D, and Ds. They are related by

1Dy = {'Do,'bg,}.
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In this background invariant representation, we write the action as [8}

A=~ 7:1—2 Tr [d*zd*0 (;""’D"ev){ﬁ"", {’D;,,e’v’DaeV }} w

+/d‘xd‘0 ¢TeVs - %/d‘x[d’ﬂ $TMé+hcl. '
Here, V is the quantum gauge field and 4 is the quantum matter field. The background
gauge fields are hidden in the covariant derivatives. More specifically, the background spinor
connection terms I'® and I® are given by D® = D® — il® and D% = D% — il'%, respectively,
where D° and D% are the regular non-background covariant derivatives. A similar relation
exists for the space-time connection [®%. The background field strengths W, and W; are

defined by

1. .
WG = _Z[Do, {DévDo}]s

Wi =~ [07, (D0 Dl

To get the Feynman propagators for ¢ (¢) and V fields, we should find, from action (4.1),
terms quadratic in ¢ (@) and V, respectively. For the gauge field V, we need to expand e
in the action and keep only the terms that are in the second order of V. This yields

Ay = —4—;2 Tr/d‘zd‘o V(-D"D'D, + D°W, V.
For simplicity, we have used D for the commutator [D, }, D for [D, }, W for [W, }, and
Ofor [[J, }. Here, we define the commutator “| , }” by [A, B} = AB — BA, if at least one
of the two variables, A and B, is bosonic, or [A, B} = AB + BA, if both of the two variables
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are fermionic. The background invariant gauge fixing term is given by
Agg = -E;—z Tr [d'zd0 V(D*D’ + D'DY)V.
Now adding this to Ay, we can show that
Ay + Ag = 7:‘,5 T [d' e OV(O — iW"D, — iW*D,)V. (4.2)

We define
B=0-iw"D, - iWD;,,
where the operator O is defined by

Dad Do

O
i
D Rl

and
O=0-iw°D, -iW’D,.

Then, we obtain the propagator for the gauge field V (see Appendix B)
A
Vevg) = _,-(:_) bia,
( P2 ) DA

where the subscript “A” indicates that the group generators are in the adjoint representation.

The action involving ¢ and  fields is given by
A, = /d‘xd‘() 5o+ ].rnro Fves, /d‘xd‘l) Ve
(4.3)
- %/m (420 6™Mé + h.c),

up to second order in V. From this action, we can derive the following propagators for ¢
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and ¢ fields (sce Appendix C for details)

($(1)87@)) =M' = Dby,

O, - MM!
($(DF (D) ==L M D1,
) 0- —iMM’ ) l (4.9)
(#(1)¢7(2)) “B, MM DID}612,
{3(1)47(2)) =6_—ZiT4W D¥D26y,,

where Oy and O_ are defined by (see Appendix A)

DD =0, DD =0.4.
The solutions for (04 and O are given by

O, =D-iw°D, — %s{vﬂ,w,},

and
0. =0~ WD, - 5i{DF Wi},

At two-loop level, the ghost action does not contribute any dependence on the mass
matrix to the gauge coupling constant. Since we are studying holomorphicity, and our major
concern is the dependence of the gauge coupling constant on the mass matrix, we can ignore
the contribution from ghosts. Also notice that, although the mass matrix M here is actually
a background covariant one, as proved in Appendix A, it equals the original “ bare” mass
matrix M. So we can use the same symbol M for both. We now look for all non-vanishing
two-loop contributions to the gauge action. Up to second order in V, we have two vertices

that contain matter fields: 147V, ¢, and %&S}'me. From these vertices, we have the following
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quantum correction in the order of ¢?

! =% ((i8]V181)(i83V262)) cqmnectea + 2l ((i8TVi241))

H connecled
=L [(VEVE) T (i6183) T2 (i626T)
2 ; o (4.5)
4o e (VWVEYTT (i4:163) T? (id2d1 )]
F AT LT )],

where we have only included the connected graphs. Graphically, I can be represented by

three Feynman diagrams as shown in Fig. 4.
$
* %, 4 ¢, %,
(a) () (©)

FIG.4. Two-loop vacuum Feynman diagrams in non-Abelian gauge theory
The dependence on background ficlds W, W and T is contained in the quantum propagators.

Now plugging in the super matter and gauge propagators, we have

1y’ " 1 A2192 " ] 222
I =- E(EJ—A) 812 Tr [T o MM (DiD1612)T 0, - MM (D;D3612)

1/ 1Y’ | 2 TM Mt
4= T T "MM
+2(|ﬁ,,) b [T 5z Pl

1/1Y* o
+ - = 6||Tl' T I"’
Oa

O, — MM (Dgén)] (4.6)

(DiD}én)|,

2 O, - MM

where the first, second and -third terms of the equation correspond to Figs. 4(a), 4(b) and

4(c), respectively. To get contributions from each of the diagrams, we nced to expand

propagators m and a’— in Eq. (4.6). In the non-Abelian super gauge theory, the
A

expansion of ﬁ'ﬁ is very much like the one in the super QED case, Eqg. (3.7), except
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that we need to replace m by M, m* by M', D by D and D by D. Also, we need to expand

operator a'j using
Op = 04 — iWDa, — iWiDag,
and
~ 1 L
[Dao,04] = §[DAo&vW:] — i{Daa, WaP YDy

Similar to the é-function properties in the super QED, we have

6:12D°D26)3 = 61,D* D)z = by, ' (4.7)

512D™ D613 =0, for m+n < 4. (4.8)

Using the D-properties we can show that Figs.4(b) and 4(c) give zero contribution, and only

Figs.4(a) gives non-zero contribution. Fig. 4(a) represents

1/ 1 Y"* , 1 - | N
=-s5\7 — (DD \TP—— (D2D? )
! 2(0) 6'2Tr[T o, —mim (PP 5wy (DaDabn)

The expansion of of propagators m and 5'7 in I gives rise to different types of terms
represented by Fig. 5. The curled lines stand for the external gauge fields. Compared with
the the expansion in the Abelian case (Fig. 3), we can see that there are three more diagrams
in the Abelian case. Since each external leg can be ', W or W, or their derivative, we have
many combinations. Most of them could be shown to give rise to zero contribution because

of the D-properties in Eqgs. (4.7) and (4.8).
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q
q+k
P 4
(d) (e )

FIG.5. Feynman diagrams in non-Abelian gauge theory
The integrals are evaluated using the Pauli-Villars regularization procedure for mat-
ter fields as in the case of super QED. Similarly we can identify their contribution to 1/g%.

For massive and pseudo massive cases, for a representation with dimension dg, we get

1 1

2
1__1(s M M
Agz = dR(lﬁrz) {(CR+C,1)Trln (Xt—?\—) +const.], (4.9)

This is the real part of the holomorphic function

2 g ’ M

~a(ﬁ;§) [(CR+C,4)Trln (T) +const.], (4.10)tytwo
where Cg is given by 3. T°T? = Cgl, and C is Cr for the adjoint representation. Notice
that the coefficient in front of the logarithmic function differs from that of the two-loop
B-function the reason being that we have omitted the pure gauge or ghost contributions,

which are not necessary for our purpose.
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For the intrinsically massless case, we have
1 1({gV 2 gt
A? = .-E;(—l—é—;i) [(CR +Ca)Trin (pg + M'M) + const..}. (4.11)

This has the same dependence on the mass matrix as Eq.(2.11) indicating that it is not the

real part of a holomorphic function of M.

V. CONCLUSIONS

The form of the mass dependent corrections to 1/¢? in the one-loop and two-loop
cases are identical. The reason is in the two-loop calculation, for all cases, the second order
logarithmic terms, [In{M*M)]? or [In(pZ + M!M)]?, cancel out leaving only the first order
In(MtM) or In(pz + M'M) terms. We expect this to be true for the higher loops. The
work to prove this using Slavnov-Taylor-like identities is in progress. In conclusion, we have
explicitly shown that, up to two-loops, the holomorphicity of the gauge coupling function
depends on the representation of the mass matrix M constrained by Eq. (2.2), and in the
massive and pseudo massive cases it is holomorphic and in the intrinsically massless case
it is not. This is because in the first two cases one can use the mass matrix or perturbed
mass matrix as a regulator for the infrared divergence whereas the intrinsically massless case
requires an infrared momentum cutoff.

We thank S.P. de Alwis for discussions. This research was supported, in part, by

the U.S. Department of Energy, Grant No. DEFG-ER91-40672.
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APPENDIX A SUPERSYMMETRY ALGEBRA

In this appendix, some useful aspects of supersymmetry algebra are given. We use

the convention in Rel.[11], with the exception of the covariant derivative which is denoted

by D instead of V.

A. Super Algebra in the Regular SUSY Theory

The covariant spinor derivatives D, and Dg are given by

a1 R
Da = W + 1500006, D& = BW + 150 ’)o(,,

where the upper and lower spinor indices can be mutually converted to cach other by using

Cap, the SL(2,C) metric. The commutator of Do and Dg is

{Da,Ds} =iDysq,

where D, is the space-time derivative (Do = 6%, D). Now denoting %I)" Do by D? and

%Dd Dg by D?, we record the following properties for the covariant derivatives [11]:

%D“D,,-, =0=2a,
[Da, D*] = =iDagD°, [Ds, D) = ~iDyi D",
D°Dg = 85D*, D°D; = .sgi)’, D*D?p? =an?,
D°D?D, = DS D*D,,

D*D%* 4+ D*D? - D°D?D., =0,

{P? D¥ =0+iD3D,D* = ——iD, D4 D",

20D +iD,D,D°% = D DD,
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Defining 02 = }C,40°0%, 02 = ;c‘.ﬂ,éééﬁ and &2 = (8, — 6,)%(0) — 02)?, we have
the following identities
D?0* = D*0* = -1, - Dy612 = —~D§ b1z,
6|2Dan6]2 =0, form+4nc< 4,

812D?D%6y3 = 6,,D2D?6,3 = &2

B. Super Algebra in the Background Field Method

In the super background field theory, the background covariant derivatives D® =
e D% = D7 — i, and D% = e~ NPoel = Po - i, where Q is the background gauge
field and I's are the super connections. Like in the case of regular super algebra, we use the

following definitions
7 = lpsp,, v =loep,,
2 2
and
1 . .
Dm', = ;{Da,Dd} = Dm', —:l‘,,,-,.

The background field strengths are defined by

Wa= —5 (D% {Da,Da}]. Wa =~ [0°, (D1, D).

For future simplicity, we also define

where the bracket [, } can be either bosonic or fermionic. In these symbols
Das = (D, Ds) = (D3 Da),

and

| P - _
Wo = =3 (D*(DiD,)), W = ~5:(2%(D,D4).

Some propertics given below are very important for the propagator expansions in
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Appendices C and B:
(0P, W, ) + (D5 Wa) = (D°Wa) + (D°Wa) =0,
[Da. Dyg) = CapW;,  [DaDyy) = C, W,
and
[Da,D?] = ~iDas D + iWq = —iD D,y — iW,.
The background chiral and antichiral matter fields are denoted by ¢ and ¢, respec-
tively. We define the operators [y by
DD =00,4, DD =0_¢.
These operators can then be expressed as
0, =0-iWeD, - %i{'D", Wa).
up to a term in the form of f- D, and
L= 0= WD, — i D5, W),
up to a term in the form of /- D. Here f is an arbitrary function, and O denotes 1D Dy
It is obvious that
D*f(04)D? = f(O-)D*D?, D*j(O.)D* = f(0,)D°T°,
and
[Da,C] = 5W¥Dag + 3 DosW*.
The covariant derivative on M has to be defined as
(DM) = DM — MD.
This is the consequence of the chain rule for the covariant derivative D
(D§) Mo + 7(DM)¢ + §"M(Dg) = D(¢" M) = D($T M ).
Then from the constraints T°TM 4+ MT? = 0, it is easy to sec that (DAf) = 0. Similarly,

we have (DM1) = 0, (DM) = 0 and (DMY) = 0.

36

APPENDIX B SUPER GAUGE PROPAGATOR

In this appendix, we will derive the expression for the propagator of the super gauge
field in the background field theory. The canonical supergauée field propagator is obtained

by putting the background ficld equal to zero in the final result.
A. Propagator for the Gauge Field

As given in Eq. (4.2), the quadratic part of the gauge action plus gauge fixing term

Ay + Ay = —4—1—2 Te[d*zd* OV(Q - iW"D, — iW°D,)V, (B.1)
g
where we have denoted D for commutator [D, }, and W for [W, },and Ofor {0, }. In
these notations, we have

(DV)=|D,V|=|D-ilV]= (bV) —{[T} T|TAV = (DV) - if*PTor Ve,

where f2?? are the group structure constants and T? are the group generalors in the repre-
sentation R. Meanwhile, since in the adjoint representation, the po component of the group

generators T* can be writlen as (Tj)"" = fA% we have
(DV) = (DV) —iT T V? = T?(6° D - il )V°.

Now defining D, as the background covariant derivative in the adjoint representation and

defining
v T!

<
i
~3
it

vd T4
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in the column matrix form, where d is the rank of the group, we can write
(DV) = TT(DaV).
It is straightforward to gen’eralize this to
(DD---DV) = TT(DpD4 -+ - DaV).

Therefore, we have
Te(VDD---DV) = T(VT?)(DaDa - DaV)*
=2[VT(DaDa---DaV)].
and
T (V(@- WoD, - WoD,)V)
=2[VT((Oa — iW, " Dpo — iWAdDAd)Z)]’
where we have used Tr(T?T?) = Tré°? with the trace factor T'g = 2.

Now adding the real source
1
3 Tr/d‘zd‘tuv =/d‘:d‘0fz,

Jl
to action (B.1), where J = , we obtain the logarithm of the partition function

\J4
W Z2(J) = z‘,i)/d‘zd‘of((],, —iW, Dy - iW, Dpa)

Obviously, the gauge propagator is

w4
(wvh) = - o - 0 OF
0, - IWAGDA" — Wy Das

(K]

-
@

Il
|
|

>.
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APPENDIX C SUPER MATTER PROPAGATORS

In this appendix, we derive the expressions for the propagators of the super matter
fields in super background field theory. This is done in Minkowski space. All the results can
be applied to the regular SUSY theory by simply taking the background fields to be zero

and replacing the background covariant derivatives with regular covariant derivatives.
A. Super Propagator for the Matter Fields

The quadratic action for the matter fields is given by
As = /d‘zd‘l) ¢ — % d‘:t[dzﬂ S"TMo+ h.c],

where ¢ and é are the background chiral and antichiral fields, respectively, and M is the
mass matrix in the background field method. We dencte the regul'ar chiral and antichiral

fields by ¢, and ¢, respectively, then

b=, =%,
where 2 and § are the background fields, and

M= eﬂ'r Moen,

“where Mg is the mass matrix with no background field. We claim that M has to equal M.

This is because the mass term has to be invariant under a gauge transformation and the

right hand side of the above expression is just a special gauge transformation.
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Converting the action into the full spinor space, we get

Ay = [tadt0 (6 - 67D - 36 M' 5-1),

by using properties in the previous appendix. The spinor covariant derivatives are given by
D* = e~ D% and D = e~ P%N. Now adding background chiral source j and antichiral
source J to this action {7], we have

Cay < 2, g g 1o
Ag(5,7) —/d‘z:d‘v (¢* ¢TM|_J_’D é- —2-¢TM [LD ¢)

+/d‘zd’o %5 + |z d? 675
D_

+ ¢TE}1—-'D'J + ¢T )

=/d‘zd‘0 [%MT JF)A(D + (¢ 5 ‘DZJ+d>TD---D2 )]

where A is the matrix
(—Mt,‘j?)2 1 )
LMDt

Now functionally integrating out the background chiral and antichiral fields, we have the

_ UL SV P U B S s
_/d‘z«I‘O(quS RS Mg Do~ 58T M' 5D

logarithm of the partition function in the matrix product form

nrt) = -3 feato((50%) (g:29) ) o (Sge). o

where the inverse of the matrix A can be shown to be

t 1 ___f 1 732 12
P ( M e D? L+ MY\ G-D*M g—yrv D )
_ A .
L+ Mg DM g D° Ma—li D
After simplifying Eq. (C.1), we have
InZ(3.7)

‘ Mt 1 D? | ]
- __/([41’,40(11 jr)( e (s ey 740} O=WH ) ()
2 rer oo mMD? )\
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By using the facts that
= ﬁz&‘?v '{{_l' = Dz&l?)
612
where 83 = §%(z) — 22)6%(0) — 8;), we obtain

?InZ(,j) _

T - —

($(1)67(2)) = Fr e D+ M M,vza.z,

4 A —_ &In Z(]).;) —

($087(2) = ~—5=r= = - M s M Db,
. _@InZ2(j,5) _

(7)) = —~ger5e= = F— M, 7 DiDib,

2 -
(B)e7() = -LIn26.J) _ D%,

9705,  O- MM'

These are the four matter propagators in the super background field method.

APPENDIX D MASS MATRIX

A. Constraints on the Mass Matrix

In this appendix, we discuss the general representation of the mass matrix M, which
is subjéct. to the constraints from gauge invariance. We mainly discuss the mass matrix in
the super Yang-Mills gauge theory, but the discussion is applicable to the super Abelian
gauge theory as well.

R labels the representation of the gauge group G, and M denotes the mass matrix.

The invariance of the mass term
/ d?0 ¢"Mé + h.c.
under gauge transformation requires

G(RTMG(R) = M



1]

Because finite representations of simple groups are unitary, we have
G(R)™' =G(R)!, MG(R)=G(R)'M.
Indicating the group generators in this representation as 7%, we have
T™M + MT® =0, T°M'+M'T*T =0.

From Schur’s lemmas [12], we know that if R is an irreducible representation, we must have
either M = 0, or det M # 0. This means that for an irreducible representation, the mass
matrix is either trivially zero, or all of its modes are massive.

To have a mass matrix with both massless modes and massive modes, the represen-

tation has to be reducible. The reducible representation R can be written as

G, 0 .- 0
0 G, --- O
G(R) = : : .. : ’

0 0 - G
where G, (1 = 1,---,1) are irreducible representations. Assuming the mass matrix in this
representation has the form

My - My

M= N I
My - My

where M;; is a matrix with dimension dimG; xdimG,, and using the relation G(R)"MG(R) =
M, we have GT M;;G; = M.,x From Schur’s lemmas {12}, we know that, if dim(G,) #
dim(G,), then M;;, = 0. This means that M can be decomposed into diagonal blocks, and
for each block the corresponding G; all have the same dimension. Since different blocks are
trivially decoupled, we can assume the whole mass matrix M is one of such blocks, without
loss of generality. In other words, we can assume that all G,’s (i = 1,---,{) have the same
dimension, n x n. Furthermore, though different types of rcpresentations (like real, pseudo-
real or complex) might have same dimension, they cannot mix. That is, the coupling between
type 1 and type j, M,,, is zero. Hence, we can investigate different types of representations

separately.
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B. Real and Pseudo-Real Representation
For a real or pseudo-real irreducible representation, G, we have
Gi = J';G:J. (D.1)

For a real representation, the matrix J equals 7, the n x n unit matrix; and for a pseudo-real
representation J = —JT with J2 = —~1. For both cases, J=! = J!. If M;; is nonzero, we

have
G; = M;'Gi M;;. (D.2)

Comparing this with Eq. (D.1), we see that representations G; and G, are equivalent. By
rotating sector 7 or j of the super matter field ¢, we can have G; = G, and M;; = a;;J,
where a;, are nonzero complex constants. Since this is true for all i and j, we can define
G; = G, for all 1, where subscript “r” stands for “real” or “pseudo-real”. The representation
of the group then becomes

t
e e
G(R) = diag{G., G., ..., G'}y (D.3)

and the mass matrix becomes

and - ayJ
M= FE :
and - ayd
ay - ay
= : led
ay - ap

Furthermore, since we can always choose a symmetric mass matrix, we have a;, = aj; for

the real representation, and a,; = —a;; for the pseudo-real representation.
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C. Complex Representation

For a complex irreducible representation G,, we must have M,; = 0, otherwise, we

will have
G = M;‘G;M.'i,

which conflicts with the complex condition. For j # i, we have either M;, = 0, or
G; = M3'GI M;.

This means that, if M;, # 0, then representation G; is equivalent to the complex conjugate
of representation G;. As in the case of a real or pseudo-real representation, we can rotate
the sector 7 or ; of the super matter field ¢, so that we have exactly 5, = G} This implies
M;, = b,;1, where I is an n x n unit matrix. Since this is true for all ¢ and ), we can define
G, = G, for all i, where subscript “¢” stands for “complex™. The representation of the group

then becomes
! i
G(R) = diag{G, G., ..., G, G:, Ge, ..., GI},

Notice that the number of irreducible complex representations is not necessarily equal to the
number of their conjugates. Assuming the former number is [ and the latter number is I, we

have the following form for the mass matrix

busil o byl
bupil . byl
bl oo Mgul
bl ... bpl
which can be reexpressed in terms of matrix product
bier - byl
M= buvy o b

byt oo byu

bun - bun
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Since the whole matrix M is chosen to be symmetric, we have b;; = b,,.
D. Trace Calculations
We now calculate the following typical trace:
Te(T°T*M'M .- M M).

We show that the trace over mass matrix can be separated from the trace over the group
generators.

For a real or pseudo-real representation, we have shown that

M=A®J
where
ayy ay
A= I
ay - e

is an { x I dimensional matrix, and J, as we know, is an n x n dimensional matrix. From

this we have
M= Ate U,
and therefore,
MM = (A'A) ® Inxn,

where I,xpn is an n x n dimensional unit matrix. Meanwhile, the group generator T in
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In this representation, the group gencrator T9 can be written as

La®T? 0
T":( Ixt® T )‘
0 I g ®(T7)T

therefore,

Te(T°T*MIM - MIM)

o ( (B™B") @ (T°T?) 0 )
0 (B'B)® ((T?)"(T2)T)

= [Tr(B'B) + Tr (BT B™)] - T+ (T7T?).

Also, since we have

Te (T°T?) = (1 + ) Tr (T7T?),

Tr (M'M .- M'M) = n[Tr (B'B) + Tr (B"'B)],

we obtain

Tr(T"T"M'M---M’M)

1
= — oY . tar.. .t
..dRTr('I"T) Tr(MM MM),

where dg = (I 4 1) - n is the dimension of the complex representation. This is of the same

form as that for the real or pseudo-real representation.
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