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Abstract: There are three methods for accurately inverting extended gravitational lenses: the rung 
Cycle algorithln, LensClean, and MEM for lenses. I outline the issues in inverting extended lenses 
and show an application to the radio ring MG1654+134. Isothermal models adequately fit the X 
band lnap of MG1654+134, while Inore centrally concentrated models, such as the Plummer model, 
cannot. The upper limit on the core radius of the isothermallnodel is s ~ O~/15, or 370h-1 pc in an 
Einstein-DeSitter cosmology. 

1 Introduction 

There are three objectives in modeling gravitational lenses. The first is to produce a model 
for the mass distribution of the lens, the second is to produce a model of the intrinsic source 
structure, and the third is to do the modeling with a procedure that provides an objective 
estimate for how well the model fits the data and allows estimates of errors in the model. A 
model without objective measures of how well it fits the data leaves no means for outsiders to 
judge the quality of the inversion and makes it difficult to compare different inversions. In the 
absence of error bars, there is no way to estimate the significance of the estimated parameters 
or the uniqueness of the model. 

The inversions of multiply imaged quasars are greatly simplified by the simple structure of 
the source and the small number of constraints that must be satisfied. However, most of the 
observed lens systems are formed by multiply iinaging either extended radio sources (discussed 
by Patnaik) or distant galaxies (discussed by Hammer and Soucail). Unlike the point image 
systeins formed by multiply inIaging quasars, it is sometimes difficult to recognize the parts of 
the inIage that originate fro In the sanIe source point. Yet most of the constraints on the lens 
model in these systems come from the extended structure rather than the compact emission. 
Inverting these systeins requires nIethods that correctly weight the importance of the various 
parts of the image. There are three systematic approaches to inverting these systems: the Ring 
Cycle algorithm (Kochanek et al 1987), LensClean (Kochanek & Narayan 1992), and MEM for 
lenses (discussed by Wallington). 

In the extended lenses, the only objective measure of whether a model is consistent with 
the lens data is the degree to which the model is consistent with the observed image. All three 
nlethods work on the same principle. For any lens model, there is a well defined best fit source 
structure defined by back-projecting the observed image through the existing model. The error 
in the model is the difference between the observed iInage and the model image of the best fit 
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source. This defines a X2 measure for the goodness of fit as the mean square difference between 
the observed image and the Iuodel image of the best fit source nornlalized by the estiInated 
noise level in the data. A good fit is found when the differences between the observed ilnage 
and the model image are compatible with the noise. 

2 LensClean 

LensClean (Kochanek & Narayan 1992) builds on the Clean algorithm of radio astronomy 
(Hogbom 1974, Clark 1980) by using the ansatz that all radio sources can be minimally de­
composed into a pattern of point sources. Clean is an iterative process in which you find the 
peak of the image (the "dirty" map), subtract an image of the telescope point spread function 
(the "dirty" beam) with a fraction, (the "gain") of the flux at that point, and add a point 
component with the same flux to a new "clean" map. The procedure is repeated until the dirty 
map is reduced to the noise level of the observation. The clean map is then convolved with a 
clean beam that has the same resolution as the observation but lacks the complicated sidelobe 
pattern of the dirty beam and the residuals are added to produce the final map. 

Where Clean places the point components in the image plane of the lens, LensClean places 
them in the source plane of the lens. Thus, in regions that are singly imaged, the two methods 
are identical, but in multiply imaged regions, LensClean can subtract all the flux from the dirty 
map only if it has the correct lens model. This defines the error measure in LensClean to be 
the residuals in the dirty map compared to the residuals from a normal Clean. Once we can 
estimate the error for any given lens model, we then adjust the parameters of the model to 
minimize the error. A model is compatible with the data when the X2 residual is compatible 
with the number of degrees of freedom in the map. The variations in the X2 for small changes 
in the parameters allow us to estimate errors on the parameters near the best fit model. 

3 An Example: MG1654+134 

The radio ring M G 1654+ 134 was the second ring discovered (Langston et al 1989). We dis­
cuss an inversion of M G 1654+ 134 using an elliptical singular isothermal sphere truncated at 
quadrupole order, 

corresponding to surface density 

where b is the unperturbed critical radius, 3€ is the ellipticity of the surface density, and O( is the 
orientation angle of the minor axis of the surface density measured West to North. The peak 
and rms noise levels in the original map are 130j.lJy and CTo = 30j.lJy respectively compared 
to the peak of the Iuap of 4700j.lJy. We estimate that the number of degrees of freedom 
in the inversion is v ~ 400. If the LensClean inversion has rms residuals CT the estimated 
X2 = V{CT/ CTo)2. The best fit model has rms residuals of 24j.lJy and peak residuals of 190j.lJy, 
slightly better and worse respectively than the noise levels. The X band image, the LensClean 
reconstruction, the inferred source, and the residuals are shown in figure 1. 

The model has five parameters Pi. = {b, Xl, Yl, € cos 200 € sin 20(} when we include the lens 
position (Xl, Yd. The values at the minimum of the X2 are b = 1~'OOO, € cos 20( = -0.058, and 
€ sin 20( = -0.027, and the lens position is marked in the figure. If we fit the error surface n~ar 
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Figure 1: Original X band map, reconstructed map, reconstructed source, and residuals for 
the radio ring M G 1654+ 134. In a perfect reconstruction the original and reconstructed maps 
would be identical up to a residual pattern at the level of the noise in the observations. The 
+ marks the position of the lens. The contours are logarithmically spaced at -100 and -50 
p,.Jy (dashed lines) and 50, 100, 200, 400, 800, 1600, and 3200 p,Jy (solid lines). The quasar 
producing the jets that power the lensed lobe lies to the North-East. Only the 50 and 100 p,Jy 
contours appear in the residuals map. 
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Figure 2b 
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Figure 2: The dependence of the residuals on the core radius s and shape exponent a for the 
potential </> = (bJa)(r2 + s2y42 in an external shear field. Figure 2a shows the increase in the 
residuals as a function of the core radius for several fixed lens positions near the optimal singular 
isothermal (a = 1) model. Figure 2b shows the changes ,in the residuals as the exponent a is 
varied for a fixed core radius s = 0~/06 and lens position near the optimal singular isothermal 
model. The best fit Plummer models (a = 0) have residuals 0' ~ 45JlJy. 

the lninimum with a quadratic function of the five parameters, X2 = X~ +piCijPj where X~ is 
the value at the minimum, then the inverse of Cij is the covariance matrix 

8.0 140 140 -1.0 -1.6 
140 831 454 -2.9 -3.3 

C-::1 = 10-5 140 454 851 -4.5 -6.8
'3 

-1.0 -2.9 -4.5 0.031 0.028 
-1.6 -3.3 -6.8 0.028 0.047 

froln which we can estimate the errors. The error bar on one parameter Pi (after varying all 
other paralneters to optimize the model) is O'pi = (CiiD.xiP/2 where the change in the X2 for 
a 99% confidence interval is D.xi = 15.1. Thus the estimated 99% confidence intervals on the 
individual parameters are O'b = 1.0 mas, O'x = 10.6 mas, O'y = 10.8 mas, 0'(cos2e~ = 0.0022 and 
0'(Si1l2e~ = 0.0027. Note the large off-diagonal terms in the covariance matrix coupling the lens 
position to the other three parameters at a fixed lens position the errors in the other three 
parameters are small, and most of the variance comes from changes in the parameters as the 
lens position shifts. 

We are currently examining models with a variable core radius and radial profile in an 
external shear field 

to estilnate the core radius s and shape exponent a of the lens. The singular isothermal version 
of this lnodel (a = 1, s = 0) fits the data as well as the truncated elliptical model discussed 
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above. If we vary the core radius of the isothennal Inodel, we find that the best fit model has 
no core radius and that the 99% confidence level upper linlit on the core radius of s ;:;; 0~115, 
or s ;:;; 370h- I pc in an Einstein-DeSitter universe (see figure 2a). We are in the process of 
examining the effects of varying a and the initial results suggest that we can rule out nlore 
centrally concentrated density profiles, such as a Plulnluer nlodel (a = 0), with a high degree of 
confidence. As an example, figure 2b shows the variation of the residuals with a for a fixed core 
radius and lens position. The position is near the optimal isothermal model so it exaggerates 
the rise in the residuals as a changes, but even the best fit Plummer models (a = 0) have 
residuals of a ~ 45JLJy (X2Iv ~ 2.3). Lens positions along the "bridge" that appears to cross 
the center of the ring just above the cross in figure 1 catastrophically fail to fit the ring for all 
values of the paralneters. 

Future Issues 

Using LensClean on a cleaned map with the clean beam leads to two ambiguities in estinlating 
the X2. The first difficulty is that the residuals left from the original clean can be reduced if the 
map is recleaned with the compact, Gaussian clean beam the termination of the original clean 
only guaranteed that the residuals have little or no correlation with the original, spread-out, 
dirty beam. This leads to too great a reduction in the residuals in singly imaged regions of the 
lllap. The second difficulty, is that the original clean did not interpolate in the missing visibility 
data consistent with the fact that the object was lensed. When we LensClean the image, we 
compare not only the true, measured visibilities but also the visibilities interpolated in by Clean. 
While it is a real requirement that the measured visibilities must be made consistent with the 
lens model, there is no such requirement on the interpolated visibilities. This means that using 
the clean map increases the residuals in the multiply itnaged regions. We can see an example of 
this effect in the residual map for MG1654+134 in figure 1. Clean tends to decompose regions 
of uniform surface brightness into "stripes" of clean components that are then smoothed by 
the restoring beam. The residual pattern shows exactly this pattern, probably due to how the 
"stripes" on one side of the ring are being subtracted from the "stripes" on the other side of 
the ring. 

These two effects make the definition of the nonnalizing residual ao somewhat ambiguous. 
We also Inonitor the peak residuals in the inversion, which are insensitive to the over-cleaning 
of the noise residuals in the singly illlaged region. Models with significantly larger rms residuals 
always have significantly larger peak residuals so the diluting effect of overcleaning the singly 
imaged region does not seem to affect the results. A temporary solution to this problem is 
to use the Clean map without the residuals added into it. This prevents LensClean from over 
subtracting in the singly imaged region without introducing significant errors in the multiply 
hnaged region if the Clean was sufficiently deep and the residuals are dominated by noise. The 
true solution is to use the raw visibility data produced by the radio arrays rather than the 
processed Clean maps, and we are slowly developing this approach. 

One unpleasant technical issue is that it is hard to simultaneously invert maps made by 
different interferometer arrays or at different frequencies. The error is sensitive to changes in 
the position of the lens at the level of 1% of the critical radius or smaller, which is only 10 
mas in many of these sources. Misalignments of two maps of the same source at this level can 
Inake it impossible to correctly invert both lllaps sitnultaneously. This may mean that a small 
freedolll lllUSt be left for LensClean to adjust the registration of maps. 
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