
&$11'" 
rr 


;;azz "" 


f\J us N CERN-TH.6623/92::r 
0. flU ~ v...., ~ 

liliiii
C 
C 

C 

.JJ 


~/) - ~ ~ 
C('J 

=
'~ 

--------<'--~---
": ~ QCD and Experiment: Status of as , 

" 

~ 
\', G. Altarelli 
~ CERN - Geneva \t 
\~ 

~.---1 


I 
Content 

1. Introduction 
2. Deep Inelastic Scattering 
3. Total Hadronic Production in e+e- Annihilation and Z Decay 
4. ~ Decay 
5. Quarkonium Decay 
6. Jets at LEP 
7. Other Determinations of as 
8. Summary and Conclusion 

Rapporteur talk given at the Conference 

QCD - 20 Years Later 


Aachen, Germany 

June 1992 


CERN-TH.6623/92 

August 1992 




1. Introduction 

This is a concise review of the present status of the experimental determination of 
the QCD coupling <Is [11. In 1989 I summarised the situation at that time [21. Since then 
many imponant developments have taken place, both in theory and experiment. In 
particular, LEP was commissioned and LEP experiments have much contributed to precise 
QCD tests [31. In other experimental areas, the picture has become considerably clearer, for 
example in deep inelastic scattering. Many relevant theoretical calculations, often of 
unprecedented complexity, have been completed. Some eITOneous results were corrected. 
As an outcome of 3 years of really remarkable progress, our confidence in QCD has been 
further consolidated and the detemination of <Is is now more precise and a lot of additional 
checks from many different processes have become possible. In this presentation I win 
mostly concentrate on new developments and much of the general material of ref.2 is not 
repeated here. 

Because of the asymptotic freedom property of QCD a penurbative approach to 
hard processes is possible and consequently the expansion parameter, i.e. the running 
coupling <Is(Q), can be measured, Q being of the order of the typical energy scale of the 
measured hard process. The experimental results on <Is(Q) are often expressed in terms of 

AMS which is useful in order to compare (ls(Q) at different values of Q. However. it is 
important to keep in mind that what is directly measured is <ls(Q). For example, for a given 

precision in <ls(Q), the accuracy on AMS decreases with Q. Thus, sometimes experiments 
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at small Q may erroneously appear to be more sensitive to AMS or to (ls(mz), i.e. the value 
of <Is at a much larger value of Q. But. of course, at small values of Q, the relation between 
(ls(Q) and what is actually measured is in general much less clear. In most cases, this 
apparent sensitivity is abundantly overcompensated if theoretical ambiguities are correctly 
evaluated. For measuring (ls. the real good exper1ments are those that directly lead to 
precise values of <Is(Q) at large Q. 

At the present level of accuracy, when a value of AMS is quoted it is extremely 
important to completely specify its relation with <Is(Q). In the following we shall always 
refer to the expression (11: 

. 2 2
(ls(Q) = [ 1- bC 10glogQ fA 1 (1)

brlogQ2fA2 bc logQ2fA2 

. '33-2f . 153-19f
with A = AMS and bc = -_. , b c = where f is the number of light 

12x 2x(33-2f) 

(approximately massless) quarks with m<<Q. Note that in order to relate <Is at different 
values of the scale one can also use the direct solution of the renonnalisation group 
equation. To the same accuracy as in (1) one has (see ref. 1. eq.3-27): 

<Is(IJ.) = 1+ bc <Is(IJ.) t + be <ls(IJ.)log[ 1+ bc <ls(IJ.) t 1 (2) 
<ls(Q) 

where t= 10gQ2f1J.2 . Small numerical differences between (1) and (2) are due to truncation 
of the penurbative series and are pan of the theoretical uncertainties. A more substancial 
source of theoretical error is encountered when comparing <ls(Q) at values of Q where 
different numbers for f are to be taken. For example. on the one hand, the results of 
experiments on deep inelastic scattering, on r -decays etc. are usually expressed giving the 
value of A(4), defined by eq.l written in terms of b4 and b4. On the other hand, 
experiments at PEP, Petra, Tristan and LEP naturally express their results by using A(5), 
defined by eq.l written in tems of b5 and bS. In the threshold region the running of <ls(Q) 
is deformed by non penurbative effects. As the physical running coupling is continuous, 
the matching between the penurbative domains below and above threshold is obtained by 
assuming a smooth extrapolation of the beta function. In practice, one relates A(4) and A(5) 

by imposing continuity of <ls(Q) at some threshold value of Q, Qtb iii' o(mb): <ls(Qth)C=4 = 
(ls(Qth)c=s. Slightly different procedures can also be envisaged ( for an example, see 
ref.2). The resulting difference between A (4) and A (5) is quite imponant. Indeed, for 
realistic values of A, it amounts to approximately 

A(S) g 0.65 A(4) (3) 
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Clearly. some theoretical error is involved when the results at low energy, for, say, 
Q=3-5 GeY, are compared with LEP results at Q=mZ. By varying Qtb in the range (0.75
2.5) mb. with mb=4.8 GeY and using eq.l or eq.2. we estimate an error 

Aas(mz) E! ± 0.0015 (4) 

associated with translating a value of as(Q) measured below the beauty threshold (but 
above charm) into a corresponding figure for as(mz). A larger error on Aas(mz) would be 
implied ifone would tty to go from Q f!! 1 GeY, i.e. below charm threshol~ up to Q=mz . 

We now consider the various methods to determine as(Q), starting from the totally 
inclusive processes. 

2. Deep Inelastic Scattering 

Leptoproduction at large momentum transfer is in principle a very solid and 
powerful method. It is completely inclusive and the theory of scaling violations via the 
renormalisation group and the light cone operator expansion is particularly rigorous and 
clear [1]. Moreover several structure functions can be measure~ with different beams and 
targets. The Q2 dependence can be tested at each value of x. Thus deep inelastic scattering 
provides a whole laboratory for quantitative tests of QCD, for determining as and for 
measuring the quark and gluon densities in nucleons. 

For each structure function F(x,Q2), perturbative QCD predicts the Q2 evolution 
but not the x shape. However, the structure of the evolution equations is such that Q2 
evolution and x shape are interrelated. The maximum of emphasis on specifically testing the 
pattern of scaling violations predicted by QCD is obtained by focusing on the logarithmic 
slopes. For each x-bin, one derives the best fit for the slope of a straigth line through the 
data on logF(x,Q2) plotted versus logQ2. The Q2 span and precision of the data are not 
sensitive to the curvature, so that for each x-bin one has one number for 
d1ogF(x,Q2)/dlogQ2. The QCD evolution equations relate, for each given x. the slopes to 
a.s(Q). In the simplest non singlet case one has: 

1 

d1ogF(x.Q2) =a.s(Q) f~F(Y.Q~) [P (!) + two-loops] (5)
dlogQ2 2x y F(x,Q) qq y 

x 

A single value of A should fit the slopes at all values of x. The x shape of the structure 
function is obtained in terms of a suitable pararnctrisation by fitting the whole of the data. 

As already mentioned. now after about 25 years of experimental work on scaling 
violations in deep inelastic scattering a clear pattern is,finally emerging. In shon, the 
important progress over the situation of a couple of years ago is listed in the following. On 
leptoproduction from muon (or electron) beams. the famous discrepancy between the 
results of BCDMS and EMC on H and D targets at low x has been to a great extent clarified 

by a reanalysis of the EMC data, by comparison with the SLAC data and by new data from 
the NMC collaboration. The results obtained on H, D, C and Fe targets by the various 
experiments are quite consistent among them. On neutrino experiments, the new data on the 
structure function F3 on Fe by CCFR contradict previous results by CDHSW, which 
showed poor agreement with the QCD predictions at low x. The analysis of scaling 
violations in the CCFR data lead to values of as(Q) in perfect agreement with those 
obtained from charged lepton bearns. Also, the discussion of theoretical errors in the 
determination of as(Q) from deep inelastic scattering has been considerably improved. 

The BCDMS collaboration [4] has measured F2 with muon beams on C. H and D 
targets. This experiment has the largest statistics at large Q2. The C data are for Q2>25 
Gey2 in the range 0.275<x<O.75, while for Hand D, Q2>8 Gey2 for 0.06<x<0.16, 
Q2>14 Gey2 for 0.16<x<O.25 and Q2>20 GeV2 for 0.25<x<O.80. The QCD analysis of 
the BCDMS data is very solid and consistent results are obtained from singlet and non 
singlet structure functions on C, H and D targets. 

There are no news on the BCDMS analysis ofC data [4]. These data, at x>O.275 
where the gluon density is negligible, were analysed in the non singlet approximation. The 
results obtained for a.s(Q) are reported in Table 1 (only experimental errors are included in 
Table I), 

More recently a combined analysis of the BCDMS [4] and the SLAC [5] data on H 
and D targets has been performed [6] . The SLAC data were collected in the period 1970
85. They were recently reanalysed with a better set of radiative corrections and a more 
refmed measurement of R (the ratio of longitudinal to transverse structure functions).The 
Q2 and x range of the SLAC data is Q2=0.5-30 GeV2 for x=O.07-O.75. The SLAC data are 
important to check the normalisation and to model higher twist effects that cause the main 
systematic error at large x. The minimum value of Q2 is too low but, for the determination 
of as(Q). only the data at Q2>5-20 GeV2 were used. The average value of Q2 is 75 Gey2 
for the BCDMS sample and 50 GeV2 for the combined SLAC·BCDMS set of data used for 
as(Q). The higher twist contribution is sizeable at low values of Q2. The higher twist effect 

on F2 is parametrised according to F2(X,Q2)=F~T(x,Q2) [1 + C(x)lQ2], where ~T is the 

lower twist structure function (with target mass corrections included) and C(x) is a function 
fitted to the data. The measured pattern of higher twist corrections is reasonable [6]. C(x) 
is of order 1 in Gey2 at x>O.6 and c~mpatible with zero within errors at small x. The result 
of the QCD analysis of the measured logarithmic slopes, combined for Hand D data 
(which lead to quite consistent results), is shown in fig. 1 [6]. The data extend down to 
very low values of x, so that a singlet analysis was performed, with a gluon density also 
fitted to the data. The uncertainties associated with varying .the gluon density within errors 
and the effect of the higher twist correction are also shown in fig.l.The corresponding 
results on as(Q) are displayed in Table 1. As seen, the determinations of as(Q) from C and 
H,D targets agree very well. 

J., 

http:x=O.07-O.75
http:0.25<x<O.80
http:0.16<x<O.25
http:0.06<x<0.16
http:0.275<x<O.75
http:d1ogF(x.Q2
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Fig. 1: Logarithmic slopes from the combined SLAC·BCDMS data on Hand D [6]. The 
QCD fit, corresponding to the value of A(4) shown in Table 1, is also displayed. The 
uncertainties from varying the fitted gluon density within the errors (at small x) and the 
effect of higher twist terms (at large x) are also presented. 

Iab.IL1 

Il-beams 
Experiment A(4) (MeV) «s(mz) 

BCDMS C 230±63 0.110 ± 0.005 
SLAC-BCDMS 
EMC H 

H,D 263±42 
117 

211± 108 

0.113 ± 0.003 
0.108 ± 0.009 

NMCD 307 ±72 0.117 ± 0.005 

v-beams 
CCFR Fe 210 ± 50 0.111 ± 0.004 
CHARM C8C<» 310 ± 157 0.114 ± 0.009 

Table 1. Results on AMS for f=4 and the corresponding values of «s(mz) obtained by the 
various experiments. The indicated errors are purely experimental, with statistical and 
systematic errors added in qUadrature. 
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The famous discrepancy between the BCDMS and the EMC [7] data on H has now 
been clarified to a large extent. First. the EMC data were recently reanalysed[8]. One 
important difference is in the treatment of R = CJfJOT. In the original analysis the position 
R=O was made, while in the new analysis R=RQco was taken (as was done by BCDMS as 
well) and the normalisation was consequently recomputed. The logarithmic slopes 
obtained by the new EMC analysis and their QCD fit are shown in fig.2 [8]. The 
corresponding results for «s(Q) are shown in Table 1. Second, the new NMC (New Muon 
Collaboration) [9] data on Hand D targets are in good agreement with the BCDMS results 
but still show some disagreement with the reanalysed EMC data (see fig.3). A similar 
indication in favour of BCDMS had already been obtained by comparison with the SLAC 
data. However in that case the comparison was only based on an extrapolation, because 
there is no overlap in x and Q2 between the SLAC and the BCDMS data. 

The new NMC data cover a wide kinematic range. which extends down to very 
small values of x: 0.008<x<O.7 and 0.8<Q2<50 GeV2. The preliminary analysis of the 
logarithmic slopes is presented in figA [9]. We see that the gluon density effect is quite 
substancial, because the data are at particularly low values of x. The results on «s(Q) are 
reported in Table 1. 

We now consider deep inelastic scattering from neutrino or antineutrino beams. 
Here the news are represented by the measurement of xF3 on Fe by the CCFR 
collaboration [10] at <Q2>=25 GeV2. At low x, the CCFR data are in disagreement with 
the previous measurements of the same structure function on the same target by CDHSW 
[11]. The logarithmic slopes measured by CCFR are in good agreement with the QeD 
predictions (which was not the case for the CDHSW results), as can be seen from fig.5, 
with results on «s(Q) in perfect agreement with those obtained from muon beams and 
also.but with larger errors, with the old CHARM data [12] (see Table 1). 

We now consider the important issue of estimating the theoretical error associated 
with the measurements of «s(mz) in Table 1Fl . There are many possible sources of errors 
in the relation between what is actually measured and. «s(Q). 

First, there are terms down by powers of Q2 (e.g. ambiguities on target mass 
corrections and from higher twist terms). and uncertainties on the gluon density and on the 
x-parametrisation of structure functions. In ref.[6] these sources of errors are included in 
the quoted experimental error. We have already discussed the treatment of 1IQ2 corrections 
in ref. 6, which was precisely aimed at obtaining an estimate of the corresponding error 
directly from the combined SLAC·BCDMS data. The resulting effects are presented in 
fig.I. The error from the gluon parametrisation is also shown in fig.I. For the other 
experiments mentioned in our previous summary. the discussion of such errors is less 
transparent. 

Fl For theoretical errors we must decide what we mean: a maximum error, similar to 3a for 
experimental errors, or a 68., c.l. error similar to la. In !he following we talk of la errors, although 
there is no real way ofquantifying a confidence level for theoreUcaI mors. 

http:SLAC+8C0t.4S
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Second, there are theoretical errors associated with neglected higher order terms in 
«s(Q) in the QCD evolution equations. The most usual way to obtain an estimate of these 
higher order terms is by varying the renonnalisation scale J.l (i.e. express the penurbative 

expansion in terms of CXs(J.l» in some fiducial interval around the natural scale of the hard 
process (Q in deep inelastic scattering) and observe the change in the value of A or of 
«Xs(mz). More in general some other reparametrisation of the penurbative series can be 
tried, for example a change of the factorisation scale (the scale of patton densities). When 
the scale is changed in the leading term in «s(Q) the subleading terms are correspondingly 
modified in order to lead to the same result, whithin the accuracy of the known terms in the 
expansion. The compensation is not exact because the series is truncated. This is a 
reasonable method, provided that it is correctly interpreted. Of course, the result depends 
on the range of J.l which is chosen, so that some subjective element is immediately evident. 
In general, J.l can be varied in a range such that «s(Q)10gQ2/J.l2 remains a small quantity (so 
that no new large logs are generated). In principle, J.l could depend on the parameters which 
are fixed when Ql varies, e.g. on x in deep inelastic scattering, but it is usually taken as a 
constant. The method only provides an indication of a lower bound on the error from 
higher order terms; such error cannot be smaller than what is obtained in this way because 
otherwise a contradiction would be manifest. One obvious remark on this method is that it 
extrapolates the behaviour of the unknown terms in the series from those that are known: 
the scale dependence is considered small if the first corrective term is small. But, clearly 
there is no theorem that guarantees that higher order terms are small when the first 
correction is small. The scale dependence in the determination of «s(mz) from the actual 
experiments of deep inelastic scattering was studied in refs.[6, 13]. The result is something 
like A«s(mz)=± 0.004. The total theoretical error which is usually quoted is close to this 
estimate [3,6,13]: A«Xs(mz)=± 0.005, when the error from translating «Xs(Q) measured at 
Q=5-10 GeV into as(mz) is also included (see eq.4). 

In my opinion, the real theoretical error is probably somewhat larger, not only 
because of the previous words of caution about the scale dependence, or because of similar 
reservations on the estimate of higher twist terms, but also because other sources of errors 
can be imagined. For example, at realistic energies, when moving Q2 at fixed x, one often 
goes through the threshold for production of heavy quarks in the final state, either charm or 
beauty, depending on the experiment and the Q2 dependence of the structure function is 

altered in a non perturbative way. Thus I would be a little bit more conservative and asSign 
a theoretical error Aas(mz)=± 0.007 to CXs(mz) measured in deep inelastic scattering. 

In conclusion, the situation of deep inelastic scattering is much clearer now. The 
very fundamental test of QCD based on measuring the small logarithmic deviations from 
scaling and comparing them with the quantitative theoretical predictions has been finally 
accomplished by several experiments to a reasonable degree of accuracy. The measured 
values of «s(Q) can be expressed in the form: 

10 

«Xs(mz) = 0.112 ± 0.002 (exp) ± 0.OO7(th) = 

= 0.112 ± 0.007 (6) 

where the central value and the experimental error.are obtained by combining the data in 
Tablel. Note that the theoretical error is dominant 

3. Total Hadronic Production in e+e- Annihilation and Z Decay 

The total hadronic cross section in e+e- annihilation, and its modem variant, the Z 
total hadronic width, are processes with the same gold-plated standing as deep inelastic 
scattering, as far as QCD tests and the measurement of «Xs(Q) are concerned. Both are 
totally inclusive, both can be treated by the light-cone operator expansion plus 
renormalisation group approach. As already observed, deep inelastic scattering is wider in 
scope (many structure functions with Q2 and x depedence), and the QCD scaling violations 
are relatively prominent (enhanced by logs). The total hadronic cross section in e+e
annihilation is just one function of Q2 and the QCD effect is a small correction. But there 
are some advantages. This process is experimentally simpler and the theoretical calculations 
were possible up to the order as(Q)3. Actually an error in the first computation of the next
next to leading correction has now been corrected[14J. The new result for the third order 
coefficient is numerically moderate so that the expansion looks quite reassuring. For f=5 
and pure photon exchange one has, at Q=-JS: 

Re+e- = 131 {I + (1+ il J.l)«s(Q) + 1.411 (<<s(Q»2 -12.76 (<<s(Q»3 + ..... ) (7) 
1t 1t 1t 

with J.l=4m~Q2 describing, in linear approximation, the effect of the finite b-quark mass 

[15]. 

The corresponding formula for the ratio rwrl measured at LEP is given by (16]: 

rh = th )EW (I + 1.05 CXs(mz) + (0.9± 0.1) (<<s(mz) )2 -13 (<<s(mz»3 + ..... ) (8)
rl r. 1t 1t 1t 

where the b-quark mass correction (which is panicularly large on the axial contribution) 
was taken into account in the first order coefficient. The second order coefficient is 
different for the vector and axial contributions to the width due to the effect on the axial part 
of the top-bottom mass splitting from diagrams as the one in fig.6 [17J. The corresponding 
error is induced by our ignorance of mt. 

By now the LEP measurement of rwrl is the best experiment of this kind for the 
determination of «s(mz): the energy is largest. the LEP detectors, being aimed at the very 

http:s(Q)10gQ2/J.l2
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precise electroweak: physics, have a better control of the systematics (acceptance, 
efficiency ... ) in comparison to previous e+e- experiments. Also a better treatment of 
radiative corrections has been implemented in the LEP esperiments. The most recent 
experimental value of fh/'fh combined over the four LEP experiments, is given by [18]: 

fh 
Rexp = (fl )exp = 20.86 ± 0.08 (9) 

where a common systematic error is also taken into account Combining this experimental 
result with the theoretical prediction for CXs(mz)=O [16]: 

REW= 19.97 ±0.03 (10) 

where the error is due to our ignorance of mt and mH, one obtains: 

CXs(mz) = 0.132 ± 0.012 (11) 

The separate results of the four LEP experiments are: 

CXs(mz) = 0.118 ± 0.020 ALEPH 
= 0.160 ±0.027 DELPHI 
= 0.135 ± 0.026 L3 
= 0.127 ± 0.026 OPAL 

= 0.132 ± 0.012 Average (12) 

J 


f 

Fig. 6: A typical diagram that makes the difference between the QCD corrections for 
vector and axial couplings. 
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In this case the theoretical error is negligible with respect to the experimental error. 
In fact, first, the experimental eITOr is large. Second. the contribution of terms down by 
powers of 1/Q? is quite small and the scale dependence is also very limited because <ls(mz) 
is small and the perturbative series extends up to the third order term. The statistical error is 
still a sizeable component of the error so that further improvement of this measurement is 
possible. 

Staning with the works of refs.[19] all available e+e- data at high energies have 
been analysed in order to extract values of <ls(Q). We consider a recent study by Branchina 
et al [20]. These authors use an updated set of data from Spear up to Tristan energies, fit 
<ls(Q) using the LEP values for mz, sin2Sw and so on and make use of the new corrected 
formula eq.7 for the QCD correction. The results are given in Table 2 for two different fits, 
one for..JS >5 GeV and one for ..JS >14 GeV. 

Table 2 

..JS range (GeV) 5-61.4 14·61.4 
A(5) (MeV) 256 

397 ± 193 
608 

990± 485 
0.129 ± 0.0l3 0.151 ±0.017as(mz) 

Table 2. Values of A(5) or, equivalently Us(mz), obtained from the fits of ref.[20] in the 
two indicated ranges of energy. 

I think that the errors that appear in Table 2, and in other similar analyses, is not 
the whole eITOr. To me is in fact a bit surprising that an error almost as small as the one 
from the combined LEP measurement of Us(mz). given in eq.ll, could be obtained from a 
compilation of low energy experiments. In fact the errors in Table 2 are obtained by 
assuming uncorrelated systematic errors among the various experiments. But it is not 
difficult to imagine important correlated systematics. For example, most old experiments 
used first order electromagnetic radiative corrections for initial state photon emission. Since 
the effect of initial state radiation is large. the contribution of multiphoton radiation is still 
sizeable. By neglecting multiphoton initial state radiation the value of Re+e- is 
overestimated. In fact when a hard photon is emitted, the invariant mass of the hadronic 
system can fall below the corresponding cut. The second order correction reduces the 
probability for hard photon emission. Thus correcting for the cut on the basis of the lowest 
order estimate leads to a larger value of ~-. The magnitude of this effect was studied in 
ref.[21]. It was found that it can lead to a I'll change in Re+e- . Similarly many 
corrections are implemented using the same methods and. often, the same computer codes. 
We also see that the central value of as(mz) depends sensitively on the range of energies 
which are included in the fit 

In conclusion. I think that the low energy experiments are less reliable and precise 
than the LEP experiments. With the further progression of LEP this statement will become 
more and more true. The errors on <Xs(Q) obtained from the assumption of uncorrelated 
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systematics are probably optimistic. From Re..e- at energies below LEP I would quote as a 
result something like: 

as(mz) = 0.14 ±0.02 (13) 

4. t Decay 

The possibility of measuring as from t-decay has been extensively studied in a 
series of interesting papers [22]. in particular by Braaten. Narison and Pich. The relevant 
quantity is Rt = f(t ->Vt+ hadrons)tr(t ->Vt+ Iv). with 1=e.!J.. It is claimed [23] that the 
present experimental value 

(Rt ) exp = 3.53 ± 0.04 (14) 

implies «s(mt) = 0.32 ±0.04 and, based on this result it is argued that «s(mz) = 0.118 ± 
0.004 

0.006' 


Given that mt is so small this dctennination of «s(mz) appears a bit 100 precise! In 
defence of this method one can certainly point out that Rt has several combined 
advantages. First. Rt is even more inclusive than Re+e- (s). Dropping some inessential 
complications Rt is an integral over a spectral function, analogue to Re+e- (s): 

the following form (schematically) [22]: 

Rt = R~ {I + as + 5.202 ( «S)2 + 26.37 ( 
x x x 

m2 <m q q> 
+ c 2 + d 4 + .... + g 

m m 
t t 

14 

other curve in the complex plane with Isl>m~ except at the tip where Re s =m~ . But, as 

observed in ref.[24], one would not obtain an advantage because the integrand at large lsi 
becomes much larger than the result. so that there must be important cancellations and the 
precision of any asymptotic approximation on the leftover would not improve. This 
argument is used in ref.[24] to show that the choice of the circle is actually not conclusive 
on what the effective energy scale is, and that it can well be smaller than mt. Third, nt(s) 

can be evaluated at lsi - m~ by controlling non perturbative corrections by using the 

operator product expansion and some estimate (either experimental or by some model) of 
the dominant condensates. in the spirit of the QeD sum rules[25]. Finally the perturbative 
component of nt(s) is known up to tenns of .order «s(mt)3. 

This series of virtues of Rt is indeed real but would not be sufficient in itself to 
justify the precision on «s(mt) which is claimed The real point is another one which I now 
discuss. By applying the previous strategy eventually one arrives at an expression for Rt of

w, 
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eai 
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de 

The: 

le~e 

muc 
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«s(m 

)3 + ... 

<06> 
6 +.... ) (17) 

m 
t 

2m
t 

dsRt - 2 
~J 


s 2
(1- 2) 1m nt(s) (15) 

mt 

One expects that the asymptotic regime is more precocious for more inclusive quantities. 

Second, one can use analyticity in order to transform the above integral into an integral over 


the circle lsi = m;: 

1 d~ (1- ~)2 nt(s) (16)
Rt - 2m m m

t tI 
lsi =m; 

This not only gives some confidence that the relevant scale of energy for the evaluation of 
lItes) is of order mt. but also shows that the integration over the low energy domain helps 
very much in smearing out the complicated behaviour in the resonance region. Also 
important is the. phase space factor in front of nt(s) in eqs.15. 16 that kills the sensitivity 

near Re s = m~ , where there is a gap. Note that one could naively think of gaining even 

more (in tenns of increasing the effective energy scale) by going from the circle to some 

where the perturbative coefficients are appropriate for f=3 and CXs= CXs(mt). c,d and g are' 
known coefficients. m is indicative of light quark masses and <0> stands for the 
condensate (i.e. the vacuum expectation value) of the operator O. The crucial ingredient that 
allows a precise detennination of «s(mt) is that one replaces m by the current masses of u 
and d quarks (s quarks are essentially irrelevant. because the corresponding final state is 

Cabibbo suppressed in t decay). With m - 5-10 MeV it is clear that the dangerous l/m~ 

corrections are completely negligible. This replacement of m by the current masses is based 
on the assumption. usually made in the QCD sum rule approach [251. that all non 
penurbative effects are in operator matrix elements. According to this assumption the 
Wilson coefficients are detennined by perturbation theory also at the non leading level in 
lIfil. where they are not protected by scale invariance against effects of order A2f([l. with 

A some non perturbarive scale. typically the confinement scale AMS. What is special about 
the t-decay channel is that operators of dimension 2 are absent in the expansion of two 
electroweak currents. If not for this gap the above assumption would not play such a 
dramatic role. because in presence of an operator of dimension 2 what is non leading c
number coefficient and what is operator matrix element is largely conventional. If one 
accepts this assumption there are no llQl corrections in the massless quark limit neither in t 
decay nor in e+e- annihilation (in the totally inclusive rates). To appreciate the impact of this 
assumtion in the case of t decay, note that as(mt)/x - 0.10 - (500 MeV/mt)2 and that 
«s<mt)=O.32 corresponds to A(3) =378 MeV. 

http:s<mt)=O.32
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with Ai and Bi computed. Recently. for some of the observables. an improvement has 
been implemented. Near the boundary of phase space logarithmic terms like <Xslog(l-n and 

a;log(1-n at leading or next to leading level become large (here T is thrust and T=l 

corresponds to the 2-jellimiO. Leading and next to leading logs of this type have been 
computed and resummed for energy-energy correlations [371. thrust [381 • heavy-jet mass 
[391. and the multiplicity of jets [40]. The advantage is to increase the fiducial domain 
where the penurbative calculations can be trusted. In some cases the apparent preference 
for surprisingly low fitted values of fJ.. the scale parameter, is eliminated when the 
resummation is included. 

The problem of hadronisation corrections appears when the theoretical calculations 
in terms of partons have to be compared with the experimental observations in terms of 
hadrons.!n general the effect of hadronisation is simulated by Monte Carlo generators. For 
each observable the fit range is restricted to an interval of values where the impact of 
hadronisation is relatively small (fig.7). The magnitude at LEP of the hadronisation 
corrections is of order 5-15% . The error on the correction is estimated by comparing the 3 
or 4 sufficiently sophisticated and updated generators which are available. In general the 
performance of these generators in reproducing the observed distributions is really good. In 
spite of this. since many of the ingredients of these codes are similar, I think that the errors 
on hadronisation corrections estimated by this comparison could be optimistic. 

The theoretical error from our ignorance of higher order terms in the penurbative 
expansion is estimated, as usual, from the scale dependence of the fitted value of <Xs(mz) 
(figs.8.9) or in other similar ways.The observed scale dependence is in most cases less 
pronounced when resummed formulae are used. Without resummation the best fit is 

usually obtained for very small values of fJ., often so small that aslogJJ.2/roi becomes rather 

large. In fact the points that drive the fit toward small values of fJ. sit in a region where 
perturbation theory is of marginal validity. Since small values of IJ. in general lead to 
relatively small values of <Xs(mz). there has been some tendency to argue that values of 
<Xs(mz) on the low side are preferred by the data. With the advent of resummed formulae it 
has been convincingly shown that the preference for small values of IJ. disappears. In the 
region near the boundary of phase space, where the preference for small values of IJ. was 
originated. the corrective terms are non negligible and their effect removes the need for 
small IJ.. As a result the fits with resummed formulae indicate a larger central value for 
CXs(mz)· 

The results obtained by the four LEP collaborations and by SLD on <Xs(mz) from 
second order penurbative formulae are summarised in Table 3, while the results from 
expressions including the resummation of logs, which are only available for a subset of 
observables (see, for example, fig. 10), are displayed in Table 4. The split up of the total 
error into experimental and theoretical. when possible. is also shown. 
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Fig. 7: Experimental distributions (statistical errors only) together with bands covering 
the predictions using three hadronisation models. The curves refer to the same values of as 
but without hadronisation corrections (from ref.41). 



• Data 

- QCD + Jetset (Us - 0.(22) 

>- QCD + Herwig (us - 0.126) 

·1 

- QCD + Herwig (Us - 0.132) 

21 

0.1' r 
I\" T a w:tE'!., DELPHI 

0.15 

0.14 

0.13 -:i 
I 

0.1% 

0.11 

0.1 

L 
10-J 10-2 10-' 

",J/tA!, 
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measured by DELPHI and fitted with second order QeD predictions. i.e. with no 
resummation (from ref.42). 
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Table 3 

Experiment Exp. Error Theor.Error«s(mz) 

ALEPH [41] O.llS± 0.009 
DELPHI [42] 0.113± 0.007 ± 0.002 ± 0.007 
L3 [43] O.lIS± 0.010 
OPAL [44] ± 0.001 0.0060.122±g:~ ±0.005 
SLD [45] 0.121± 0.014 ± 0.009 0.012 

±0.009 

Table 3. Values of «s(mz) from second order penurbative formulae. 

Table 4 

Experiment Exp. Error Theor.Erroras(mz) 

ALEPH [41] 0.125± 0.005 ± 0.002 ±0.004 
DELPHI [42] 0.125± 0.006 ± 0.002 ±0.006 
L3 [43] 0.125± 0.009 ± 0.003 ±O.ooS 
OPAL [44] ± 0.001 + 0.003 

0.122± g:gg~ -0.006 

Table 3. Values of «s(mz) from resummed formulae. 

The "official" averages presented [46] at the winter conferences are: 

o(a~: «s(mz) = 0.119± 0.006 

2
0(as) + resumm.: «s(mz) = 0.123± 0.005 (26) 

As seen from Tables 3 and 4 the theoretical error is by far the dominant uncertainty. 
I think that a realistic error is somewhat larger. Fmt, the uncertainty on the hadronisation 
corrections, which was estimated from the differences among a few Monte Carlo 
generators could well be larger, due to common biases, in spite of the good overall fitting. 
Second, the error from higher order penurbative tenDS, as estimated from scale dependence 
and other similar methods, should be taken as a lower bound on the error (as already 
discussed, the error cannot be smaller than that, otherwise one would be confronted with a 
contradiction among apriori equally reliable determinations of «s(mz». In conclusion I 
would replace eqs.26 with something like: 

«s(mz)= 0.122± 0.009 (27) 
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7. Other Determinations of as 

We now list a number of additional determinations of as which. for reasons either 
of precision or of reliability or simply because they are still in a rather exploratory phase. 
are not as imponant as the ones discussed in the previous sections. 

p,p ->W+ietsf47}.The UA2 Collaboration has measured r= o(W+ljet)/o(W+Ojets) 
=(3.91± 0.40)%, with a specified jet-counting criterium. The value of «s can be obtained 
from this quantity by taking advantage of some recent theoretical calculations, i.e. the 2

loop Orell-Yan QCD correction [4S], the PT distribution ofWs at order a; [49] (see also 

[50]). which enters because there is a minimum PT for the jet to be identified. plus a good 
deal of Monte Carlo simulation in order to properly correct for the underlying event. 
fragmentation effects and so on. The result. expressed in terms of «s(mz). is given by: 

«s(mz) = O.l21± 0.024 (2S) 

p,p ->b6x [511. The value of «s is extracted from the b6 production cross section 

with PT>PTmin. measured by UAL The sample of b6 events is subdivided into 2-body or 
3-body, according to their azimuthal distribution. The 2-body are nearly back to back: 

641>1500. while for 3-body 641<1500. The 2-body cross section 02 stans at order a; and 

the theoretical calculations are available [52] up to order a; .The 3-body cross section 03 

starts at order a; and the next to leading corrections are not known. Two main methods are 

described. One uses the ratio 03/02. in order to reduce the dependence on the structure 
functions. the other is directly from 02. Clearly only the second method is acceptable. 
because 03 is not known beyond leading accuracy. The second method leads to: 

0.016 
«s(mz) = 0.109± 0.012 (29) 

02 is sensitive to «s because of its quadratic dependence. The error allegedly includes the 
ambiguities from the poor knowledge of the gluon structure function. the scale dependence 
etc. There are some words of caution to be spelled because it is well known that 
conventional gluon structure functions fit the UA 1 data but fail to fit the CDF data [53] on b 
production at large PT. To reconcile the theory with the CDF data, that probe the gluon 
density at smaller values of x. the gluon density has to be modified [54]. It would be 
interesting to check that the resulting change on the present determination of «s is still 
within the quoted error. 

.. 
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Scalin& Violations in Fragmentation Functions. In principle the scaling violations 
for fragmentation functions are predicted by QCD in close analogy with the case of 
structure functions. An interesting first attempt at the measurement of «s from the 
fragmentation function into the sum of all charged tracks has been presented very recently 
[55]. The necessary lever ann in Q2 is obtained by combining LEP data with the results of 
PEP, Petra and Tristan. The error quoted in the determination of «s(mZ), which is ± 
0.006, is in my opinion not plausible. One problem is that the value of as is not derived by 
measuring the logarithmic slopes and then comparing them with the QCD evolution 
equations, which relate the slopes (i.e. the derivatives of the fragmentation functions) with 
as. Rather the observed behaviour in Q2 is directly compared with a Monte Carlo of the 
matrix element type, i.e. one that contain the exact QCD matrix element squared at the next 
to leading level. The Monte Carlo makes the analysis simpler because it also provides a 
built in model for the non perturbative component of the fragmentation functions, for the 
effect of the change of composition of the final state (for example, takes into account that 
one goes from photon exchange at low energies to Z dominance at LEP) and so on. But 
one has to trust the Monte Carlo. Among other things, the QCD resummation of logs is 
truncated at the second order. which is what is contained in the Monte Carlo. As for all 
cases where a Monte Carlo is crucial. it is difficult to understand what the real error can be. 
Thus I quote the result of ref.[55] with a big question mark added to the error: 

as(mz) = 0.119± 0.OO6± ? (30) 

Photon Structure Function There are no great news on this front. Apparently a 
small bug in the existing non leading corrections to the evolution equations was found and 
corrected [56]. The existing data sets and analyses [57] are not homogeneous and it is often 
difficult to understand what has been done and even what the precise result is (e.g. A(3) or 
A(4)1). Also the uncertainties on the hadronic part remain [58]. It would be great if the data 
could be reanalysed with the present knowledge and experience. I will repeat here the 
tentative conclusion that I have proposed in ref.[2] , i.e. that A(4)-50-300 GeV, or : 

as(mz) = O.l03± 0.013 (31) 

Channonium Splittine:s and Lattice Calculations In a recent paper [59] it is claimed 
that lattice calculations are by now sufficiently accurate that a precise determination of as is 
possible from the observed IP-lS splitting in channonium. The experimental input is the 
value mbe - (3mJJ'I'+ml1c)/4 = 458.6± 0.4 MeV, where he is the spin singlet 1 P state. This 
splitting can be computed on the lattice in the quenched approximation. This is equivalent to 
determining a discrete version of A for zero flavours. Then one must apply corrections to 

go from the lattice to the continuum limit in the ~S defmition and from 0 to 3 or 4 flavours 
of quarks. The claim is that one obtains a result equivalent to «s(mz) = 0.105± 0.004. I 
think that there are too many technical assumptions and it is difficult to assess the actual 
size of the error.Certainly I find the error by far too optimistic, but the result is interesting, 
as a promise for the future. 

S. Summary and Conclusion 

In the following I collect those which I consider the main methods of determining 
as with my subjective estimate of the theoretical errors (while. of course, the experimental 
errors were in all cases left intact!). For each process the label (Exp) or (Th) qualifies 
whether the dominant source of error is experimental Or theoretical. respectively. We have: 

0.010
R"C as(mz) = 0.117 ± 0.016 (Th) 

Deep Inelastic Scattering 0.112± 0.007 (Th) 

TDecays 0.11± 0.01 (Th) 

Re+e- Ns<62 GeV) 0.14±0.02 (Exp) 


pp ->W+jets 0.121± 0.024 (Exp-Th) 

nz.>hadrons)Jr(Z->If) 0.132± 0.012 (Exp) 
Jets at LEP 0.122± 0.009 (Th) 

Average O.llS.:!" 0.007 (32) 

The error on the average was set close to the typical size of the theoretical error 
involved in each of the best experiments, because I do not like to average theoretical errors 
(a naive average would give ± 0.004). The corresponding range of A(5) is: 

A(5)=(240 ±90) MeV (33) 

We see that in spite of the fact that I was extremely conservative at each step in this 
review, the resulting determination of as is very precise, with a 6% relative error on 
«s(mz). While, on the one hand, I am supporting conservative estimates of theoretical 
errors, on the other hand I warn skeptical people that the value of «s(mZ) and the error 
given by eq.32 appear by now quite solid, and the error cannot be much larger than that 
(for example larger than 0.01). The consistency of the results on as from all the available 
experiments provides a remarkable quantitative test of the theory. The list of results on 
as(mz) in eq.(32) are reproduced in fig. 11, while in fig. 12 the corresponding value of as 
at the scale ofeach experiment was plotted. 

In conclusion, the overall picture looks very favourably for QCD. The 
determination of as from many different experiments coincide within errors. The value of 
as found at LEP energies is small enough to correspond to a very mild interaction. This is 
the best evidence for asymptotic freedom and the running of as, because such a weak force 
could not explain the observed binding of hadrons. To me this is a better argument than the 
consistency with the running of as predicted by QCD which is visible in fig.12. 

http:0.14�0.02
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