
NEW FEATURES IN THE DESIGN CODE TLIE *

Johannes van Zeijts

Continuous Electron Beam Accelerator Facility

12000 Jefferson Avenue, Newport News, VA 23606

ABSTRACT

We present features recently installed in the arbitrary-order accelerator de
sign code TLIE. The code uses the MAD input language, and implements pro
grammable extensions modelled after the C language that make it a powerful tool
in a wide range of applications: from basic beamline design to high precision
high order design and even control room applications.

The basic quantities important in accelerator design are easily accessible from
inside the control language. Entities like parameters in elements (strength, cur
rent), transfer maps (either in Taylor series or in Lie algebraic form), lines, and
beams (either as sets of particles or as distributions) are among the type of vari
ables available. These variables can be set, used as arguments in subroutines, or
just typed out. The code is easily extensible with new datatypes.

INTRODUCTION

Here we give a short introduction to the physics and algorithms used in the
program. We use the Hamiltonian formalism and canonical variables introduced
in the map code field in the program MARyLIE 3.01. The Hamiltonian describes
in a compact way the dynamics of the particles in the full 6 dimensional phase
space.

H = _ PT _ Ai _ ./1 _ 2PT + p2 _ (P _ AX)2 _ (P _ AY)2 (1)
J3 G V J3 X G Y G 'T

G is the magnetic rigidity'B p' of particles on the design orbit. It is given by the
relation

G -- Po , (2)
q

and has units of tesla meters. Also, J3 and, are the standard relativistic factors
for the design orbit. They are related to Po (the design momentum) and p~ =
-Hldesign orbit by the equations

Po = J3,mc ,
(3)

p~ = -,mc2
•

Ax, A y , and Az are the vector potentials; for example, the vector potential for a
normal quadrupole with a gradient of b2 tesla/meter is

(4)

*Work supported by Department of Energy contract #DE-AC05-84ER40150

New physics is added by substituting more complex vector potentials. We provide
vector potentials for all the simple elements and for realistic multipole magnets. In
some of our multi-particle-effect applications the vector potential actually depends
on the transported beam. However, the algorithms described below do not change
no matter how complicated the vector potential becomes. The transfer maps for
the 'time ..\' flow are generated in a variety of ways from the Hamiltonian:

• 	 Transfer map generation for the case where the Hamiltonian H does not
depend on the independent variable is most readily done by direct exponen
tiation of the formal solution

T(z) = e->':H:(z) = z '\[H, z] ;, ,\2[H, [H, z]] + ... , (5)

where [,] is the Poisson bracket operator. This algorithm will eventually
converge due to the n! term in the denominator of the expansion of the
exponential operator .

• Transfer map generation for the case where H does depend on the indepen
dent variable is implemented as:

(6)

This algorithm is implemented in a particularly efficient way, which is the
main reason we are able to generate high-order transfer maps for realistic
systems in a time period practical for use in an optimization process (minutes
for order 10). In practice we use a forward integration and calculate the
inverse map I = T-l

(7)

The resulting Taylor series are converted into Lie algebraic form. This is
necessary for the "concatenation" process and gives us a compact representation
of the aberration coefficients. By default we split the Lie algebraic map up in
homogeneous parts with the following standard 'Dragt-Finn' ordering

(8)

where il describes the misalignment part, i3 the second order part, etc. The
linear part M of the transfer map is carried as a symplectic matrix.

A number of other orderings of the Lie algebraic exponents are available and
used in the program. The algorithms to translate between these different repre
sentations are most readily implemented to arbitrary order using Taylor series as
intermediate steps. For instance to concatenate two maps we use the algorithm:

(9)

r

where all steps in the process are uniquely determined as long as the matrix part
of the maps are symplectic.

EXTENSIONS TO THE PHYSICS

We have added the capability to calculate transfer maps for cylindrical current
sheet magnets, the current sheets may be stacked so as to produce overlapping
multipole fields. Together with the fast integration algorithm this allows us to
model realistic systems including fringe fields to high precision in a practical time
period.

The vector potential off axis, for a given multipole symmetry, is determined
from the appropriate magnetic field gradients and their longitudinal derivatives
on axis. In the following we will write expressions only for the normal multipoles
(for m =1= 0). Skew multipoles correspond to cos(mB) terms in Eq.l0. Given the
Fourier expansion of the scalar potential

00

V(r, B, z) = :E Um(r, z)sin(mB), (10)
m=l

a vector potential giving the same field is

_ ~ cos(mB) ~U ()
Az L ra m r,z

m=l m r (11)
~ cos(mB) ~U ()Ar - ~ ra m r,z .
m=l m z

Here we have chosen a gauge where Ao O. The scalar potential off-axis may
be written

. m 00 (_1)1 (m - I)! (r) 21 (a) 21 (12)Um(r, z) = r ~ l!(l + m)! 2" az gm(z),

where
. mUm(r, z)

gm ()Z = 11m (13)
T-O rm

represents the profile of the mth multipole. This is a general solution to Maxwell
equations order by order, for arbitrary gm(z). The problem is thus reduced to
computing the generalized field gradients on axis for realistic magnet models.
Subroutines to compute the required gradients are available for Halbach REC
quadrupoles and for general multipoles, with the current distribution on a cylin
drical surface specified by a shape function3

•

One particular powerful feature of the program is the ability to specify user
profiles for the field gradient as functions of the independent variable s in the
control language. These profiles can be arbitrarily constructed functions of s,
and the expressions are automatically differentiated to the order needed in the
integration process. We give several examples below and show how a user profile is
given interactively to specify the octupole component of one multipole. Remember
that any number of different multipoles can be layered on top of each other to
represent arbitrarily complicated profiles.

fl(s) = l/(l+E-(bl + b2*(s/d)+ b3*(s/d)-2»

f2(s) = 1/(1+(s/d)-2)-(3/2)

f3(s) = BO*(tanh(s/d)-tanh«s-lO)/d»

multl: multipole, fl(), L = 1.0, m = 4, radius = 0.22

This feature for instance, allows users to install arbitrary fringe field profiles if he
so chooses.

EXTENSIONS TO THE MAD LANGUAGE

We extend the MAD language in a variety of ways. First we introduce logic
for loops, conditionals, subroutines, and functions returning real numbers. The
control language is interpretive and fully programmable. It is based on a C like
interpreter and written in the compiler generating language YACC4.

Secondly we allow for element parameters to be easily accessible in the lan
guage; i.e., name[L] gives the length of a particular element, name[K] gives the
quadrupole strength, etc. These parameters can be read and set interactively.

Next we introduce a transfer map datatype; i.e., mapl = namedline.F creates
a new map variable from a given line element, in this case a Lie map variable. We
also have map2 = namedline.T, which returns the Taylor map. Entries in map
variables can be accessed as: mapl[x,x] for entries in the matrix part, mapl[x3],

mapl[x Pt2] for higher order entries in the Liemap variables, and map2[x,x2] etc.
for Taylor map variables. Since maps are checked for dependencies on element
parameters and brought up to date when they are used, it is easy to write a code
segment that studies the effect of changing a parameter on transfer map entries,

for(quadl[K] = 0; quadl[K] <= 3.0; quadl[K] += 0.1) {
type quadl[K]~ namedline.F[x,x]-mapl[x,x],nameline.F[x Pt-2]

}

where namedline is a line which is dependent on the strength of quadl.
Transfer maps are constructed by patching maps for single element bodies

together with coordinate rotations, fringe-fields, etc. We provide all the basic
elements in the program, but it is also possible to specify new constructions in
teractively by using operations on maps. These Lie map expressions (Fexpr) can
be:

• name.F

• Lie map variable

• Liemap(identity) , creates an identity liemap

• Fexpr + Fexpr

• Fexpr - Fexpr

• Fexpr / Fexpr, ignoring zero terms in denominator

• (Fexpr)

• Fexpr & Fexpr, result is the concatenated map.

• invert (Fexpr), returns the inverted Lie map.

• filter(Fexpr ,expr), filters out entries less than expr

• prot (expr), the map for longitudinal reference plane rotation

• arot(expr), the map for transverse reference plane rotation

• monomial (Fexpr), the map in monomial factorized form

• reverse(Fexpr), returns a Lie map in reverse order

• flend(Fexpr), put the efl term at the tail end of the map

• standard(Fexpr), to convert back to Dragt-Finn factorization;

i.e., to get the relative difference between two Lie maps we simple ask for

type (F1-F2)/F2

We allow for the evaluation of subroutines along any given line. These sub
routines expect several parameters as their arguments: the longitudinal distance,
coordinates and angles with respect to the floor, an element type, the transfer
map up to the particular point in the line, and the name of the element as a
string variable. An example of this can be as simple as typing the names and
coordinates of a line

proc typeName(real s1, real xi, real y1, real z1, real angxz, real angyz, real
angxy, real eltype, liemap lie1, string name)
{

type s1,name,z1,x1,y1
}

Since the transfer map is available we can evaluate any changing variable along the
beam line. A useful procedure is to calculate lattice functions and, for instance,
find the maximum value of a lattice function along a line:

proc findmaxBeta(liemap $9) {
bX = betaxF($9,bx1,ax1)
bY =betayF($9,by1,ay1)
if (bX > maxX) { maxX = bX; maxsX = $1}
if (bY> maxY) { maxY = bY; maxsY = $1}

}

layout(namedline) with findmaxBeta()

Here we see how Liemap variables can be used as arguments in functions. Ar
guments can be accessed by name or by the order they appear in. The layout
with procedure command can be used inside any procedure. Hence we can use
the optimizer to, for instance, minimize the maximum lattice functions

func maxBeta(line $1) {
maxX =maxY = -1.0
maxsX = maxsY = -1.0
layout($l) with findmaxBeta()
if(maxY > maxX) return(maxY) else return(maxX)

}

CONTROL ROOM APPLICATIONS

By the addition of a few new parameters and keywords we turn the code into
a package useful for control room applications. We add the ability to set and read
currents of magnets, and read the horizontal and vertical position from beam
position monitors. A suitable control logic library,5 and access to control room
computers has to be available to be able to make use of these features.

The full power of the language is available to program experiments and data
analysis. For instance, a particularly simple application, to measure an entry in
the transfer matrix between two points, is implemented as follows:

for(currentl = 0; currentl <= 3.0; currentl += 0.1) {

kickl[I] = currentl; sleep(l)

type kickl[I] , monitorl[x] , monitorl[y]

}

where the kick1 and monitor1 keywords are declared as type kick resp. monitor.
With suitable caution even the fitter and optimizer can be used for real-time
control. This connection between a design code and a control code allows for
measured data to be propagated using simulated transfer maps, which is useful
in tuning algorithms. The interpretive nature of the code allows for many more
applications to be implemented rapidly.

REFERENCES

1. 	 A. J. Dragt, MaryLie 3.0, A Program for Charged Particle Beam Transport
Based on Lie Algebraic Methods.

2. 	 J. B. J. van Zeijts and F. Neri, The Arbitrary Order Design Code THe,
presented at the Gosen High Order Optics Codes workshop, April 1992.

3. 	 P. Walstrom, Filippo Neri and Tom Mottershead, High Order Optics of
Multipole Magnets, LIN AC Meeting Albuquerque 1990.

4. 	 B.W. Kernighan and R. Pike, The Unix Programming Environment, (Prentice
Hall 1984).

5. 	 M. Bickley, Star Documentation, CEBAF, May 1992.

