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1. INTRODUCTION 

Our understanding of elementary interactions is mainly based on the 

observation that they obey a number of symmetry laws. Some of these laws 

seem to be exact. Such are Poincare (Lorentz + translational) or CPT inva­

riances. Also, in the field theoretical formulation of the interactions, 

exact local gauge symmetries are realized, such as the U (1) symmetry
e.m. 

which generates electromagnetic phenomena (QED), or as far as we know, the 

SU(3)c colour symmetry, responsible for strong interactions (QCD). Such 

symmetries, when exact, imply the existence of massless, spin 1, gauge bosons. 

Particles can then be classified according to representations of the corres­

ponding (Lie) groups, their quantum numbers being the eigenvalues of the com­

muting generators. For example, the QED Lagrangian is invariant under the 

local transformations ~ + U ~ 
e.m. 

U (x) = exp {-i e a(x)Q} (1 .1)
e.m. 

of the fermion fields. The charge operator Q is the generator of the transfor­

mation, a(x) an arbitrary real function of space time. Local invariance implies 

the existence of a massless gauge boson, the photon. Clearly only the product 

eQ is physically relevant. If Q is normalised so that its eigenvalue in the 
? 

electron state Q is -1 t then e is the usual electron charge (e-/ (4rr) = a. is e 
the fine structure constant). But at this level, nothing guarantees that another 

particle has, in units of e, a charge equal to a fraction or to a multiple of 

Q , as we think it is the case. It is so because U(I), being abelian, contains 
e 

only I-dimensional irreducible representations, so that different particles, 

belonging to different irreducible representations of U(I), have unrelated 

quantum numbers (here charges). Here is the first question which any unification 

aims to answer : 

Q.u.e.-6UOYl 1 : Why Me. a£.t c.haJt.ge.-6 c.omme..uwz.a..te. ? 

In order to go ahead, we need to classify particles in representations of 

some larger group g, in such a way that non-trivial commutation relations between 

the generators imply relations between the Q.N. of the particles(even if these 

particles belong to different representations). SU(3) is another, apparently
c 

exact, symmetry of nature. The elementary fermions appear either as members 

of the fundamental representation (quarks q., i=1,2,3) or as singlets of SU(3) 
~ c 

(leptons, e, 'J ,11, \) etc •.• ). Therefore, U (1) cannot be identified to a U(1 ) 
e U e.ID. 

subgroup of SU(3) . Rather, we have as a symmetry group the direct product
c 

http:c.omme..uwz.a..te
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9 = SU (3) 8 IT (1 ) (1 .2)o c e.m. 

From this example, we see that the needed group 9 should not contain U (1)
e .m. 

as a factor, if we are to explain that charges are commensurate, but of course 

it should contain 9 as a (non invariant) subgroup in order to accomodate in 
o 

particular the colour and charge quantum numbers of the known elementary fields. 

Weak interactions (W.I.) are also considered as deriving from a gauge sym­

metry group, namely SU(2). But this symmetry cannot be an exact symmetry: at 

present energies, W.I. appear as short range interactions, (Fermi type interac­

tions), which cannot be described by zero mass vector boson exchange. Both their 

smallness and their short range nature may be accounted for at the same time if 

the gauge fields associated with the SU(2) symmetry have masses M large as com­

pared to the relevant energy scale (the proton mass). Their exchange in a 

2 fermion ~ 2 fermion transition leads to an effective Fermi interaction of 

strength G of order g2/M2, where g is the dimensionless SU(2) coupling constant.
F 

9 

gouge
Q boson (M) 

9 


Both the range, M-1 ,and Gp are small for large M. However a mass term cannot 
"­

be put by hand in the Yang-Mills part L •M• of the Lagrangian. The trouble withy 

such a mass term for the gauge boson is that it spoils renormalizibility, the 

renormalizable theories being the only ones in which we know how to compute (in 

perturbation). Fortunately, symmetry breaking (mass generation) can be achieved 

without spoiling renormalizibilicy (spontaneously broken symmetry - Higgs 
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mechanism). The historical evolution of the ideas about the application of 

Y.M. theory to weak interactions may be fruitfully followed by consulting 

Veltman's lecture notes[ 1 ]. In the first part of these lectures, we describe 

the standard model of electroweak interactions known as the Salam-Weinberg 

modele 2]. We first examine the algebraic structure of the model for an 

exact SU(2) 8 U(I) symmetry (Section 2), then the Higgs mechanism in its 

simplest version (Section 3), and we finally discuss the problem of the so­

called Adler anomalies (Section 4). 
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2. THE ALGEBRAIC STRUCTURE OF THE SU(2) 8 U(l) MODEL 

We use f as a generic symbol for a Dirac spinor, f for its Dirac conjugate 

and fL,R its left (right) components. Throughout these notes, we adopt the con­

ventions of Bjorken and Drell[ 3] for the metric and y matrices 

(2.1) 

In the Fermi model of neutron B-decay, the 4-fermion interaction is described by 

IIGF - H L + h.c. (2.2)
12 II 

H 1S the hadronic charged weak current, and the leptonic charged weak current 
II 

is given by 

Iz
1 

e 

l-y5L11 =- v - yll --2- e (2.2') 

which can be written, using 2x2 matrix notations, as 

+
T- - IILll = (ve,e )LY (VI (2.3)T e-) 

L 
T +iT.,

+ 1Here t is the linear combination ~ of Pauli matrices acting on a two 
\12 

component spinor ~}L formed with the left handed neutrino and electron. The( 
hermitian conjugate of Lll, which is present in the complete interaction (2.2), 

contains T-. This structure is suggestive of an SU(2) structure of the weak 

currents where the charged ones behave as the ± components of a weak isospin 
.... 

object T . Hence one guesses the existence of a neutral component T
3

, and thus 

of a neutral current, represented by T3/2 in the space of 2 component (isospin 

1/2) spinors. In a Yang-Mills realisation of the SU(2) symmetry, one introduces 

3 vector fields wi , i=1,2,3 also noted W , which couple to fermions according
II II 

to an SU(2) invariant Lagrangian, which. can be written in general as 

--+­

-g FLYII Wll •T F L + (L ~ R) (2.4) 

F stands for a set of fermions. Its left (right) handed components FL (FR) belong 

to some representation of the SU(2) group. g is the dimensionless weak coupling 

constant. In the rele'rant fermion representation, T represents the 3 generators 

of SU(2) , whose commutation relations are 

. ' 
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(2.5) 


~ijk is the completely antisymmetric tensor (~1 2 3= 1) • We recover the standard 

form (2.2') of L~ if left (right) handed fermions transform like SU(2) doublets 
-+ -+

(singlets). The representation of T is L/2 in the former case (weak isospin 1/2) 

and 0 in the latter. 

The neutral boson W~ couples to the fermion current 

(2.6) 

-+Written in terms of the charge eigenstates of the W bosons, 

the piece (2.4) of the Lagrangian (with T = 0 for R-fermions) is 

(2.7) 

One could think of identifying this neutral current with the e.m. current. 

This is not possible for at least two reasons 

i) e.m. interactions conserve parity, while the current (2.6) distinguishes 

between left and right fermions. 

ii) the neutrino "charge" defined by the coupling of J~ 
3 to W~3 does not 

vanish, but is opposite to the electron charge since 

At least one other field B~ must be added. The simplest way to do so is to 

consider it as generated by a new U(l) local symmetry, characterized by a 

coupling g' and a generator Y. The symmetry (here taken to be exact) is thus 

SU(2) 3 D(l). Consider a pair (a,b) of fermions whose left handed components 

form an SU(2) doublet \( ba ') . The part L(a,b) of their Lagrangian corresponding
L N.C. 

to the total neutral current reads : 



- 8 ­

L(a,b) I { - - ~, ~ = - 2" (a,b)L Y [g W3T 3 + g B y]N.C. u (:)L 
+ g' - B11 Y aaR Y 

u R 

+ g' B11 Y bR } (2.8)bR Y
11 

This way of writing underlines the fact that the Land R components are in dif­

ferent representations (isospin 1/2 and 0 respectively) of SU(2). In the first 
. . (YL0) .term the generator Y ~s represented by a mult~ple of I, 0 Y ,s~nce ~,bL belong

L 
to the same representation of SU(2) , whereas the eigenvalues and Yb of YYa 
are different. We now want to identify in L(::~~ a piece which d!scribesRthe 

photon interaction with particles a and b, namely 

L(a,b) = - e (8:, b) Y A~ Q (:) (2.9)e.m. u 

with a given charge matrix, diagonal for the physical states, 

(Qa o \ Q(a,b) = (2.10)\0 Qb) 

This means that Q, the generator of IT (1) must be a linear combination of 
e .m. 3 

T, and Y. At the same time, we exchange the two fields W and B11 for two new
11 

fields, the electromagnetic field A and another one, ZO , to be identified
11 11 

with the field of the weak neutral boson. This transformation of fields must be 

orthogonal in order to leave unchanged the purely kinetic part of the Yang-Mills 

Lagrangian (while preserving the hermiticity of the fields) : 

(2.11) 

Here for any field G we use the notation 
11 

= a G - a G (2. 12)
11 v v 11 

Thus the most general field mixing we can perform is parametrized by a rotation 

of angle e (the Weinberg angle) 

ZO~\f3 = sine A + cose
11 11 11 (2. 13) 

B cose A - sine ZO 
11 11 11 

Inserting these expressions into the Lagrangian of Eq. (2.8) , we rewrite it as 
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L(a,b) = L(a,b) + L(a,b)
N.C. A ZO (2. 14) 

with 
L(a,b) = - {(a,b\ Y).J [g sine T3 +g'coSe YJ(alA 

2 b)L 

(2.15)+ (a,b)R Y [g sine T3 + g' cosB fJ(:)R} All
ll 

nd 
The 2 term is a short hand notation for the two distinct terms concerning a 

R
and bR· It is consistent with Eq. (2.8) if we recall that T3 is represented by 

T3/ 2 and 0 respectively in the left and right fermion spaces. Later on we shall 
(a b) ,11 ( b)come back to the part L Z' , proportLonal to Z . For now we express that L a, 

, 'd t' 1 'h L(a,b) 9 (2 9) , 0 ALS 1 en Lca WLt e.m. ln Eq. • • ThlS identity gives 

(2.16) 

Given the Lagrangian, the second equality determines the Weinberg angle in 

terms of g and g'. The first one connects the physical charges to the parameters 

and to the SU(2) 8 U(I) quantum numbers. Note that Eq. 2.16 is general whatever 

representations of SU(2) are used for the left and right fermions. It has to be 

always understood as a relation between (p x p) matrices in a p fermion space 

(a,b,c, ••• ) whose left and righ components are in two different p-dimensional 

representations of SU(2) 8 U(I). 

Conseguences 

i) The second equality in (2.16) has no solution for generic U(1) quantum 

numbers of the fermions under consideration. Consistency between the several 

scalar equations contained in this matrix equation implies strong constraints 

on the weak hypercharges. In the case where a pair (a,b)L form a doublet while 

aR, bR are singlets, the following relation must hold 

(2. 17) 


If there are several such "families" of particles, the corresponding hypercharges 

(y (n) yen) yen) 1 2 ) must satisfy Eq. (2.17) -6e.n aJtCttee.W_. There isL t a 'b ,n=, ,... /. 

another c~nstrai~t for the solution of Eq. (2.16) to exist. One has 

(y -Yb)
R 

= g sine g'cose 
aR 

2 
(2. 18) 
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so that for any n= 1,2, ••. 
y(n)_y(n)\ 

(g' b R }aR (2.19)
tge = ­g 2 

and hence 

:I ••• 

Remark 

At this point any SU(2) transformation on the fields leaves the physics 

invariant. The direction chosen for the third axis in SU(2), and thus for the 

electric charge, is still arbitrary. When the symmetry is broken (see next 

section), the charge generator is by definition that one which is left unbroken. 

ii) For a pair (a,b) fulfilling Eq. (2.17), let us consider the charge 

difference 6. = Qa- Qb· From Eqs. (2. 18,19), C1ab is universal for all pairs
ab 


classified in the standard way. Specializing to the particular pair (ve,e), 


we have 6. = 1 and hence
Ve 

y -y 
aR bRl 

e = g sine = g' cose ( 2 J (2.20) 

We may now use the fact that, as emphasized in Section 1, only the product g'Y 

is physically meaningful, and choose the normalisation of Y such that (y -Y )/2=1.
a b

R REqs. (2.16) are then replaced by the relations 

Q = T3 + Y/2

{ e = g sine (2.21) 

tge = g' /g 

In usual presentation of this model, the first of Eqs. (2.21) is imposed 


and the two others are derived from the requirements that qED conserves parity 


and that the model has the right charge content. Here these two requirements 


are first expressed through Eqs. (2.16) under their most general form. This 


approach allows us to emphasize that 


a) implementing QED in the SU(2) ~ U(l) original symmetry implies strong 


constraints on the charges and weak hypercharges of the fermions (Eqs. (2. 17- 1"9). 
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-g Z~ 
L(a,b) = 0 

Zo 2 cose 
(2.22) 

b) once these constraints are verified, Eqs. (2.21) result on one hand 

from the physical fact that ~ = 0, on the other from a proper choice of 
e -+ 

normalisations of the generators T (sI23= 1 in the commutation relation (2.5») 

and Y . Of course this choice, which is arbitrary, has no physical consequences. 

iii) It happens that fundamental fermions actually seem to appear in 

nature in pairs with Qa-Qb = 1, for example the quark pairs (u,d),(c,s),(t,b) , ••• 

(?) and the lepton pairs (v ,e),(v ,~),(v ,T), ••• (?). One may consider this 
e ~ T 

fact as predicted by the SU(2) 8 U(I) model. The prediction is that, in a given 

n-plet, the charges are Q, Q+l, ••• ,Q+n-l, if Q is the smallest one in this n-plet. 

But note that it is not a step towards the answer to question I of Section 1, 

"why are charges commensurate ?". For example, the model can accomodate a fermion 

pair (A,B) with Q =rr and QB=rr-l, that is charges which are neither commensurate
A 

between themselves, nor with the electron charge. 

iv) Coming back to the weak neutral current and making use of Eqs. (2.21), 

we obtain the following expression for L(a,b) as defined through Eqs. (2.8,13,14):
Zo 

We see that the weak N.C. contains two terms. The first one is the neutral coun­

terpart of the weak charged current, proportional to l-y S (V-A interaction), the 

second is proportional to the e.m. current, with a coefficient proportional to 
2

sin e, which is thus measurable for example by comparing the cross-sections for 
2neutral and charge currents. The present experimental value of sin e is 

. 2e [4J 
s lon = 0 • 229 ± 0.0 14 

g'
From equations (2.21), we know that tga = -- , but we have only one relation 

g 
between g and g', namely 

1 1 1 
+ -- (2.24)2=2 ,2

ae g <::I 

Hence the value of the Weinberg angle is not predicted. It is so because the 

symmetry group is not simple : each of its 2 invariant subgroups 5U(2) and U(1) 

comes with an independent coupling. As a consequence, we may ask a second 

question which a unified theory has to answer : 



- 12 ­

Let us now summarize the content of this section. The fermion world we 

know is compatible with a classification of fermions according to the symmetry 

group SU(2) 8 U(I) the aigeb~e ~tnu~e of weak and electromagnetic 

interactions is well described if all left handed fermions are classified 

into SU(2) doublets, the right handed fermions being singlets. The couplings 

characterizing the strength of both interactions are derived from the electron 

charge e and the Weinberg angle e whose values are not predicted by the theory. 

Question I about commensurability of charges remains unsolved. 

The model is not yet suitable for weak and electromagnetic phenomenology. 

As announced, SU(2) S U(I) is strongly broken, at least at present energies. 
+

On one hand the gauge vector bosons W-,Z must acquire masses (large as compared
o 

with the present energy scale) in order to reproduce both the weakness and the 

short range nature of weak interactions (Section 1) • On the other hand, fermions 

(but the neutrinos ?) have non zero masses, which break the symmetry of the 

Lagrangian. A fermion mass term is 

-m [~aR + aR ~] (2.25)a 

(We recall that a(I±YS) = (I+YS)a and that (l+y ) (l-y ) =0). Under an SU(2)S S
transformation, aR and aR remain unchanged whereas ~ and ~ are transformed 

into combinations of ~,bL' and ~,bL according to the representations n 1/ 2 and 

n*1/2 of SU(2). Thus the mass term of the pair (a,b) is not invariant. 

A last ingredient for weak interaction phenomenology ~s Cabibbo mixing. 

The quark pairs to be considered in weak doublets are not (u,d),(c,s) etc ••• 

but some linear combinations of them (respecting of course charge conservation). 

Neglecting heavier pairs, one has to replace (u,d),(c,s) by (u,d ), (c,s ) with 
c c 

d d cos e + s sin e 
c c c 

(2.26) 
s = -d sin e + s cos e c c c 

where e is the Cabibbo angle. Generalisations to more pairs lead to mixing
c 

matrices which are no more orthogonal, but unitary, allowing for phases 

between states and thus "natural" CP violations. This very important subject 

will be treated in Section (8c) below. In all the rest of these lectures, the 
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mixing matrix will be taken equal to unity. 

The next step to be achieved is to break Suez) 8 U(l) symmetry in such 

a way that 

a) the U (1) symmetry is preserved, that is the photon remains massless,e.m. 
+ 

b) the fermion and weak vector bosons W- Z acquire masses,, a 


c) the theory remains renormalizable. 


The last requirement is the most constraining. The standard model which 

fulfills all the above conditions is obtained by spontaneous symmetry breaking, 

or Higgs mechanism. Its description is the subject of the next section. 
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3. SPONTANEOUS SYMMETRY BREAKING AND THE HIGGS[S] MECHANISM IN SU(2) 8 U(l) 

Spontaneous symmetry breaking (SSB), also called "hidden symmetry", refers 

to the situation where, though the Lagrangian one starts with has some exact 

symmetry, the corresponding physical world has not. In quantum theory, this 

feature may occur when there are several (in fact infinitely many) degenerate 

possible groundstates : this set of degenerate groundstates is symmetric as 

a whole, but the particular one which is chosen by nature is not. It must be 

stressed that, once chosen, the vacuum is unique, as it is separated from the 

other possible ones by infinite potential barriers. The vacuum, however, may 

preserve part of the original symmetry. Since in general symmetry of the vacuum 

implies current conservation and symmetry of the physics, the study of the vacuum 

symmetry properties is of fundamental importance. 

a) SSB of a global U(l) symmetry 

The simplest field theory example of SSB is the following. Let us consider 

the Lagrangian for a complex scalar field <.p(x) = (<'!)1 (x)+iU>2 (x» lIZ, interacting 

through a potential V(<.p) 

L(x) = (dutP) (all4)*) - V(<.p) (3.1) 

V(<.p) ="2A (tiJ*q,) 
2 

- a t!'*t? (3.2) 

A is the coupling constant, a looks like a mass term (with an unspecified sign 

for the moment). A must be positive in order for the hamiltonian to be bounded 

from below. The Lagrangian (3.1) is invariant under the global phase transfor­

mation 

-ia<.p(x) -+ e (,0 (x) (3.3) 

-iawhere a is an arbitrary real constant. Thus, if <'p(x) is a ground state, e <.p(x) 

is another one, degenerate with it. We have a continuous set of degenerate ground 

states, parametrized by Ct. At the classical level (*), in order for (,O(x) to be 

a groundstate, it has to correspond to a minimum of the (classical) hamiltonian. 
o ioThe grounds tate l!)(X) is thus the constant in space time -- e (and therefore 
r'2 

(*) quantum corrections can be computed in a svstematic way using the generating 
functional of the one particle irreducible gra~hs[Sb] . 
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of zero kinetic energy), which minimizes the potential V(~). From Eq. (3.2) 

the potential is extremum for 

3
'dV A0
'do - -2- - a cr = 0 (3.4) 

For as 0, the minimum ~s obtained for cr = 0 : the classical vacuum is tp:: 0 ; 

it is U ( 1) invariant and there is no symmetry breaking. For a > 0, the minimum 

is obtained for ItO I = 0 
0 

= = 0 being a maximum of V (the "mass" squared4, cr 
'd 2V I! 

'dtp'dq,* is negative at tp = 0). As a function of Req>, lIIJO, the shape of V(tp) 

for a > 0 looks like the bottom of a bottle, as indicated on Fig. (3. 1) • 

Re'P 

Im'9 

F.i.q. 3. 1 - The nU.rUmwn 06 .~he po-ten.:U.a.e. .fA Jte.ac.hed 60Jt I<jJ 1= :; =If. <jJ = a .fA 
a. ma.x-Unwn. AU :the (!J =0 

0 
eA.-O, oE [0, ZIT] Me deg ene!ULte pO-6-6-i..b!.e va.c.ua. 

Am9~g all the possible degenerate vacua, nature chooses a particular one 
~o0 0

(P = - eO, say, and the U( 1) synnnetry, represented by the invariance of the 
/2

figure 3.1 under any rotation around the axis of the bottle, is broken. Now 
-io .

~<le can always redefine the field to by the U( 1) transformation <.P ~ e 0 tp ~n 

such a way that the new field (again noted ~) has the real vacuum expectation 

value cr /12.
o 
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In order to construct a perturbation theory around the classical solution, 

we must use a translated field 

(Jo
X(x) - = tp(x) - - (3.6)

12 

whose vacuum expectation value vanishes. In terms of X, the Lagrangian (3.1) 

reads (up to an unimportant constant) 

(3.7) 

where we have set 

(3.8) 

Let us now comment upon this new form of the original Lagrangian, in terms of 

the two fields Xl and X2 • 

i) Xl is a scalar ma¢~~ve field, with mass proportional to the non vanishing 

vacuum expectation value (J /12 of the original field ~(x)
o 


ii) X is a scalar ma¢~l~~ field
2 

iii) as a function of the new fields, the original Lagrangian is no more 

symmetric. However, the form (3.7) of the Lagrangian is noz the most general 

one for two real fields Xl and X with quartic interactions; not only because2 th rd . 
m2 = 0, but also because the mass m and the 4 and 3 degree coupl~ngs of the1 
fields are related to each other. The use of SSB is thus a way of restricting 

the number of parameters of a non symmetric theory. 

To summarize: starting with a Lagrangian for a complex field ~(x), with 

a global U(l) symmetry we end up with a Lagrangian for two interacting scalar 

fields X 1 and X2· m2 = 0, and m1 is related to the coupling constants. 

The fact that m2 = 0 is a direct consequence of the original symmetry. 

For small fluctuations of X (x) around its classical value 0, one may write2
the original field ~(x) as 
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<p(x) = 	 (3.9) 

Thus to the order XZ ' this field configuration 	leads to the same potentialz 
energy as the vacuum cr /1:2 does. If moreover we 	 choose Xz in (3.9) with no 

~ 0 	 ~ 
oscillations in x (long wave length limit), dX also is small (in Fourier 

kz 	
Z 

space kzXz ~ 0 as ~ 0), i.e. the kinetic energy associated with Xz vanishes, 

and we are left with another ground state. In other words, the energy wz asso­
~ 

ciated with the excitation (3.9) vanishes with 	 IkZI, hence mZ =0. 

The existence of a massless scalar field (Goldstone boson), associated 

with a global symmetry spontaneously broken by an asymmetric vacuum, is generic 

and is the object of the famous Goldstone theorem. The Goldstone boson survives 

and remains massless to all orders in perturbation theory. For non abelian 

global symmetries, one finds as many massless Goldstone bosons as there are 

group generators which do not leave the vacuum invariant. Neither such 
(*)particles are observed in nature ,nor the long range forces they would give 

rise to. Hence global symmetry breaking is not yet the mechanism we look for 

to break SU(Z) 8 U(l) down to U (1). As we shall see now, in the case of e.m. 
ioeal symmetry, the Goldstone degrees of freedom are used to give masses to 

the gauge fields, and associated massless bosons disappear. This is what is 

known as the Higgs mechanism. 

b) SSB for a ioeal SU(2) B U(l) gauge symmetry. 	 The Higgs mechanism 

One introduces a double.:t ~ of complex scalar fields 

* ~ = (~) ~I 
.J. 

= ('1' * <.p ) 	 (3.10) 

interacting through a potential 

V(~) = ~ (~t~)Z - a ~t~ 	 (3.11)Z 


A * * Z * * 

2 ('¥ If' -1- tp <.p) - a('¥ If' -1- (p tp)-

which is manifestly invariant under both SU(2) 	 and U(l) local transformations 

(*)In a completely different context, the pions 	are considered as the Goldstone 

.. U -1..Ys t.t I ubosons 0 f the spontaneously broken SU(2) chiral 	l.nvar1.ance d -+ e 2 \d(( ) -- )) 

of massless 0CD. The pion mass is not strictly zero, however, because of the 

non zero masses of the light quarks. 
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-+- -+- Y
~(x) -+- exp {-i a(x).T/2} exp {-i a'(x) I} ~ (3. 12) 

The kinetic part (3 ~t)(3~~) is not invariant because 3 a(x) and 3 a'(x) are 
~ ~ ~ 

not zero. As usual the symmetry is restored by introducing the gauge fields 
-+­
Wand B already considered in the previous chapter, replacing 3 by the 
~ ~ ~ 


covariant derivative D~ 


3 -+- D = 3 + ~2 is' •r + ig' B Y (3.13) 
~ ~ ~ ~ 2 ~ 

The part of the Lagrangian involving ~ then reads 

(3.14) 

L~ , as well as the pure Yang-Mills Lagrangian and the part containing fermions 


(see below), is locally gauge invariant. SSB occurs in a way very similar to 


that encountered in the previous example. The vacuum is obtained for 

+ 
W~(x) = B~(x) = 0 and ~(x) equal to a constant SU(2) spinor minimizing V(~) 

i) ~ = 0 for a > 0 
aoii) cp = --= x(arbitrary constant unit SU(2) spinor) for a < 0 
12 

The latter case is the one we are interested in. There is now a privileged 


direction in SU(2) space, which, after a global SU(2) transformation on the 


fields (a redefinition of the fields), allows one to write the ~ vacuum as 


(3.15) 

The symmetry associated with the transformations induced by T+ and T is now 

broken but one combination of T3 and Y is conserved. This combination coincides 

;. (*)


with the charge operator Q = T3 + Y/2, provided Y is taken to be Y~ = 1 • (The 

field which acquires a non vanishing expectation value has zero charge). With 

this choice for Y, SU(2) S U(l) correctly breaks down to U (1). Before e.m. 
investigating the physical content of our theory, we may use the SU(2) invariance 

to perform in each space time point 
+ 
x,t a particular SU(2) transformation which 

(*) _ (0'0\1
Had we defined the fields so that ~0 - 12 o) , we would obtain Y~ = -1 , 


the hypercharge of the complex conjugate Higgs field. 
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transforms the ~(x) components (not only its vacuum expectation value), into 

(0 \
~(x) 	 (3.16)- \,?(x») 

where ~(x) is a 4eat field. This prescription for ~ is also a way to fix the 

gauge of 'the W-
+ 

and Z fields. In this gauge, 3 out of the 4 real fields contained 

in ~, namely the complex ~ field and the imaginary part of ~ have been eliminated. 

However, their degrees of freedom have not disappeared, because as we shall see 
+ 

very soon, each of the W-,Z bosons becomes massive and has three degrees of o 
freedom (helicities A = ± 1 and 0) instead of two (A = ± 1 ). This particular gauge 

is called the unitary gauge as only the fields corresponding to physical fields 

explicitely appear in the Lagrangian. We will come back to this question of 

gauge fixing in Section 4 below. 

For the time being, we keep ~(x) under the form (3.16) and translate the 

field ~(x) by its vacuum value in order to do perturbation theory around small 

fields. We set 

x	(x) = tp(x) (3.17) 
12 

We next identify the spectrum of the theory by looking at the quadratic part 

L2 of L~ (Eq. 3.14). Apart from the kinetic term} (d X)2, L2 contains mass 
2 ~ 

terms which are the terms proportional to 0 after the replacement (3.17) in 
2 2 

L~. As before V(~) generates a mass term -
0 
'21 (AOo)X which tells us that the 

neutral Higgs boson X we are left with is massive, its mass being 

(3. 18) 


Let us collect the O~ term in (D~~)2. In order to do this it is convenient 

to remark that it amounts to calculate a quantity L of the form 
<.92 

1 2 
(O,~) M2 (0) 1. (!l2 Tr[(I-1'3)M ] 	 (3.19)L 2 =2' (9 

s 
4 

<.0 

. h 2Wl.t M being a 2x2 matrix given by 

...,.. T 
= [ + Y 	 (3.20)M g Wu· '2 + g' BlJ 2' r 

It is then straightforward to find 
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(3.21) 


+
From this expression, we immediatly see that WI and W2, and hence W-, the charged 

weak bosons, have acquired non zero masses, namely 

2 2 
cr g2 o 

m + = (3.22)
W- 4 

(X+cr )2g2 
The second term in Eq. (3.21) can be rewritten as flcOS6W3,,- ~g' coseB~ylJ2O2

8cos e ~ 

and we recognize inside the square bracket the combination 

- sin6B (3.23) 
~ 

which we had identified in section 2, as the neutral weak vector boson (Eq.(2.13). 

Eq. (3.23) is true provided g'Y/g = tg6, which, together with g'/g = tge (Eq. 

2.21) requires that the eigenvalue of Y for the Higgs doublet is 1. This is 

just a check as we had already obtained Y=I by noting above that the part 

of the Higgs doublet ~ which acquires a non vanishing vacuum expectation value 

must correspond to a neutral field, not to destroy exact U (1) invariance. e.m 
The orthogonal combination, the photon A =sineW +cos6B does not appear in3
L~2 and thus remains massless. This has ~o be so s~nce A ~is associated with the 

~ 
unbroken symmetry. A second consequence of this SSB scheme is the celebrated 

relation between the charged and neutral weak boson masses 

(3.24) 


As to the physical Higgs boson X, we note~qs. (3.11,16 and 17)) that it 

has cubic and quartic self couplings. It also couples to the gauge boson (Eq. 
0+­3.21) : one or two Higgs bosons couple to a pair of Z 's and to a pair WW 

with predicted strengths. 

A few numbers 

By comparison of the Salam-Weinberg model for 6 decay to the Fermi inter­

action (see Fig. 1.1), one gets 

2 2 1 
G //2 = g 1(8~) =--- (3.25)

F 2
20

oindependent of the gauge coupling g. 


From unification of weak and electromagnetic interactions 


http:Eq.(2.13
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From low energy weak interaction phenomenology 

G = 1.05 x 10-5 m-2 
F proton 

From high energy weak interaction phenomenology (charged and neutral weak 

currents, ed polarization experiments etc ••• ) 

2
sin e = 0.229 ± 0.014 

Eqs. (3.24,25) then allow to compute (with errors essentially due to that on 

sin2S) 
2 

g /4rr = 3.11.10-2 

= 81 • 1 GeV 

mzo 90.1 GeV (3.26) 

cr = 260 GeV 
o 

~iggs = 260 Ir GeV 

As A is undetermined, the Higgs mass is unknown. 

c) Couplings of Higgs to fermions. The fermion masses. 

Fermions have been left aside in the above description of the Higgs 5SB 

mechanism. We recall that in the unbroken theory, all fermions are massless 

since a mass term of the form 

is not invariant under 5U(2) when Land R fermions belong to different repre­

sentations of SU(2). For the standard model where L-fermions (Resp. R-fermions) 

are doublets (Resp. singlets), the above term transform under 5U(2) like a 

doublet. 

With a Higgs doublet ~ at our disposal we can build a new piece L~F' by 

coupling directly the ~ field to fLfR in an SU(2) invariant way. In fact, 

there are two independent singlet fermions associated with each SU(2) doublet, 

uR and dR for example for the (u,d) pair (with the possible exception of the 

(~,v) pairs if the v's are indeed massless - no right neutrino). In the unitary 
_( 0 \ gauge, 1) -\<!J(x)) and tj) may couple to a T3 =-1/2 fermion, while the charge 
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conjugate field (, 0 )* = (~6X») may independently couple to a
q>(x) 

T3=+1/2 fermion. As an example, a general Yukawa coupling of ~ to (u,d) quarks is 

(3 .. 27) 

with no relation between gd and gu (which can be complex). In the case of SSB, 
cr +X (x)o 

~(x) = and apart from the Yukawa interaction between X and the fermions, 

a mass term is generated independently for each fermion f of the theory which 

has a right component .. The mass term for f is 

By a phase transformation on fL (and/or fR), are can always make gf real positive, 

so that one finally gets 

(3 .. 28) 

For the general problem of fermion masses, see section Be. 

Fermion masses are thus "naturally" generated by the same SSB mechanism 

which gives the gauge bosons masses. However, there are no predictions for the 

fermion masses, as they are proportional to arbitrary Yukawa coupling constants .. 

That neutrino are massless in the present model has been put in by hand in 

deciding that there is no right handed neutrino(*). Nevertheless, Eq. (3.28) is 

interesting if read as g1v1ng gf as a function of m and CJ which are known expe­f o 
rimentally : the X field is predicted to couple to a fermion proportionally to 

the fermion mass. Higgs production in particle collisions is thus most probably 

accompanied by heavy quark production. The phenomenology, and references to 

the relevant literature, of the Higgs boson production and decay may be found 

in Ref.[ 7 ]. Various bounds on the Higgs and fermion masses have been discussed 

(see Ref.[ 8 ]). They will not be reproduced here. Let us just say that the 

general strategy for deriving them is to infer from the success of perturbative 

calculations in electroweak interactions that the various new couplings introduced 

(*)Using a Higgs triplet, the left handed neutrino by itself could be given 
a so-called Majorana mass [6 ]. A Majorana particle is a spin 1/2 particle (massive 
or not) of definite charge conjugation. Such a particle has no electromagnetic 
interaction at all. In the zero mass case, there is no difference between Majorana 
and Dirac particles. 
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in the model, (A for the self couplings of the Higgs and gf for its Yukawa 

coupling to the fermions)- are small enough. From Eqs. (3.18) and (3.28), bounds 

on these couplings imply bounds on the corresponding masses. 

d) The number of parameters in the standard SU(2) 0 U(l) model 

Restricting ourselves to the 6 quark model (3 quark pairs (u,d), (c,s), 

(t,b) and 3 lepton pairs (v ,e), (v ,~), (v ,T), with massless neutrinos), we 
e ~ l' 

have 9 fermion masses (or their 9 couplings to the Higgs boson). Then come the 

4 parameters (3 angles and one CP violating phase) of the unitary matrix which 

allows us to build the hadronic weak charged currents starting with the mass 

eigenstate quarks (generalisation of Cabibbo mixing (see section 8c». Associated 

with the gauge fields are the coupling a and the Weinberg mixing angle a, with 

the Higgs doublet the self coupling A and the vacuum expectation value cr , that o 
is 4 more parameters. The minimum scheme then with 1 Higgs doublet and 3 fermion 

families involves 17 free parameters. This number increases very fast with the 

number F of families. As we will see in section 8c, the unitary generalized 

Cabibbo matrix contains (F-l)2 physically relevant parameters. In addition there 

are 3F fermion masses, so that the total number of parameters depends on F as 

F(F+l) : 8 more parameters if F changes from 3 to 4 ! Here we might ask a third 

question. 

Qu.utio n 111 : how c.a.n 0 ne. Jte.duce. the. numbe/t 06 nJte.e. paltame..teJW ? 

We close this section with a comment about the possibility of introducing 

more than 1 Higgs doublet or larger SU(2) Higgs multiplets. First we observe that 

mUlti-Higgs systems cause some theoretical problems. 

(i) Ln order for charge to be conserved, all vacuum expectation values have 

to point in the same SU(2) direction, which impose constraints on the parameters 

of the Lagrangian. 

(ii) unless unnatural conditions are fulfilled[ 9 J, models with mUlti-Higgs 

systems 	involve flavour changing neutral interactions induced by Higgs exchange. 
+ ­This is in contradiction with experimental data on, say, ~ + ~ ~ • That a 

single Higgs doublet does not lead to such a disease is shown in section 8c 

the Higgs interaction becomes diagonal in flavour space at the same time as the 

mass matrix is diagonalized. 
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Assuming that these difficulties are overcome, let us examine the consequences 

of introducing an arbitrary number of arbitrary Higgs multiplets. In Eq. (3.13), 
+ + 
W.1" d Y B --2- an 2" are replaced respectively by 

(3.29) 


+
where T

h 
, Y are the representations of the SU(2) 8 U(l) generators for a Higgs h 

mUltiplet labelled by h. For each h, the charges inside the multiplet are given 

by 

where T3 runs from -~ to +~, ~ being the weak isospin of h. If Yh is such 
h 

that one of the charges Q is zero, the vacuum expectation value of the corres­h 
ponding field ~~ can be used to generate masses for the gauge bosons. For this 

field, Yh /2 = -T3 so that its contribution to the mass term is 
h 

where Tih' i=1,2,3 here represents the matrix element of T~ in the neutral state 
o 2 2 __2 ~h 

~h . The ratio MW/ (cos e MZ ) can be read off directly from this expression 
o 

p = 

2 
~ 
2 2 cos e mZ 

0 

= 
L 
h 

L 
h 

2 
O"h 

2 
O"h 

T2 
Ih 

T2 
3h 

(3.30) 

Given T3h the eigenvalue of T3 for cPo 
h whose vacuum expectation value is 

0h' one has 

T2 2 1 (+2= 1- (T2 
+ T2 ) = - Th T2 )

2 Ih 2Ih h 3h 

1 T2 )= - (~(Ih+l) ­2 3h 

The value predicted for p then is in general 

th 1
0=2" (3.31)

L O"~ T~ 
h h 
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The value of 0 can be experimentally measured by comparing the strength of the 

charged weak current relative to the neutral weak current. Indeed, in the same 

way as charged current interactions are measured by 

2 
...L.. 
8

Inw
2 

we get from Eq. (2.22) a Fermi like neutral interaction measured by 

2 
g 

-2­2 cos e 8mZ 
o 

so that 0 is given as well by 

o 


-The present experimental value determined by comparison of v,v induced charged 
. . [10].and neutra1 current ~nteract~ons ~s 

= 0.98 ± 0.05 (3.32) 

If there are several different values of ~ in the Higgs sector, Eqs. (3.31, 

32) . are not very constraining. In fact any a priori value of 0 can be reached. 

On the contrary an arbitrary number of replications of the same Higgs pattern 

with the same I and T3 leads to a simpler equation 

1(1+1) - T2
1 3 

= (3.33)2' 

independent of the continuous variables 0h. 

If we admit that experiment indicates 0=1, the equation becomes 

3T2 = 1(1+1)
3 

A little bit of arithmetics shows that the lowest solution for I,T integers
3 

is 

I = 3 ± 2 

(The next one is I = 48, T 3 =:: 28!). 
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It is a quite exotic configuration, not very attractive to accomodate the known 

fermions. For 1/2-integer isospin, the lowest solution is the standard one 

I = 1/2 T3 = ± 1/2 

(The next one is I = 25/2, T3 = ± 15/2 !). 

The conclusion is : there is a remarkable agreement between the standard theory 

with 1= 1/2 and the experimental value of p. What we have learnt here above 

is that an arbitrary number of Higgs doublets would work equally well, up to 

the above mentioned problems i) and ii). 
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4. ANOMALIES. 


Unitari'ty of the S-matrix and renormalization 


In the unitary gauge we have used to describe the Higgs mechanism, the 

particle content of the theory is made apparent at the very beginning since 3 

out of the 4 Higgs fields disappear from the Lagrangian, the corresponding 

degrees of freedom being carried by the helicity zero components of the weak 
+

bosons W-,Z • In particular, there are no unwanted Goldstone modes. However 
o 

the unitary gauge is not suited for the study of the renormalizability of the 

theory[ll]. In this gauge, the propagator of a massive gauge boson W is in 

momentum space 

-1 (4.1)
2 2

k -~ 

which is of order 1 for large k components, leading to badly behaved Feynman 

graph integrands. This fact makes the renormalization program difficult to 

pursue. It is better to come back to the original Lagrangian which involves 

the Goldstone bosons. The renormalization then is simpler to achieve,but in 

turn one has to show that the Goldstone bosons have no physical effects. This 

happens to be true only in the absence of the so-called anomalies, as we are 

to show now. 

For simplicity, we consider the case of 5SB for a U(1) gauge symmetry, 

where only one complex Higgs field ~(x) is introduced. The non-vanishing 

vacuum expectation value 0 /12 of ~ can be made real by a global (i.e.
o 

x-independent) phase transformation. 50 we can write 

(4 .. 2) 


as in section 3.a, but we do not ~et X = 0 by a toeal gauge transformation.2 
Proceeding next as in section 3.b, but with D~ = au + igW ' we get the Lagrangianu 

1 2 I 2 2
L = -2 (duXl) -2 AOo Xl 


1 2
+- (d )X22 Il

1 2 2 ll- 1. (3 W - d W ) 2 +2 g a W W
4 U v v U 0 U 

(4.3) 


+ terms of degrees 3 and 4 in the fields. 
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The first two lines are the same as in Eq. (3.7). The third one contains the 
1 llVusual - -4 F F and the W mass term generated by SSB. Lastly comes a term

llV 
which is new with respect to the case of the unitary gauge X2 =0, namely 

g 0 W dllX2' coming from (D ~)*(Dll~). This crossed term mixes the Wand X2 
o II II 

propagations. The action fd4x L(x) remains unchanged if this term is replaced 

by -g cro(a~ W~)X2 (integration by part), which can be eliminated by choosing 

the (Landau-'t Hooft) gauge 

d WiJ = ° 
ll 

The quadratic part of the Lagrangian is diagonalized and the W-propagator 

now is 

p(Landau)(k) (4.4)
llV 

2 -1 to be compared with Eq. (4.1) in the preceding case. It behaves like (k ) 
2at large k values, which leads to the dimensional counting of a renormalizable 

theory. 

As a slight disgression, wemention that the Landau gauge is a special 

case of the general 't Hooft gauge (or R~ gauge). In the R~ g~uge, one adds, 

to the Lagrangian (4.3), the "gauge fixing" term - t (dllwll_g t X2)2 , where 

~ is the gauge parameter. The Landau gauge is recovered in the limit ~ + ~. 

In all cases, the crossed term -g 0 diJ Wll X2 is exactly cancelled out. The 
0 

W-propagator is 

pE; (k) = ~-l--r' (1- -)1 
llV k2 2 ~ 

-~ 

and the X2 field has a ~ dependent mass 

It is actually massless in the Landau gauge. In the absence of anomalies, the 

theory will be gauge invariant in the sense that all ~-dependent quantities 

cancel in the S-matrix. Conversely, anomalies are manifested by poles at ~­

dependent positions in the S-matrix. 

We close the disgression on R~-gauges, and go on with ~ infinite (Landau). 
~ 
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The X2 field, which here is massless, is present in the Lagrangian. Is the 

unwanted Goldstone boson back? In fact, the comparison of Eqs. (4.1) and (4.4) 

leads to 

p(Landau) = p(Unit.) (4.5)
l1V l1V 

2 , p(Landau)which expresses that apart from the physical W pole at k =- ~ con­

tains a pole at k
2 

= 0 , with furthermore the wrong sign (ghost). There are thus 

2
two origins for poles at k = O. It has been shown that, in the absence of 

fermions, or if the fermions have no axial coupling to the gauge bosons, the 

poles coming from the X2 field and from the gauge field cancel each other, 

leading to an S-matrix without any Goldstone boson present[12 ](*) (hence the 

word unitary used to qualify the particular gauge where X2 is absent from the 

beginning). Let us remark that in the Landau gauge, the Higgs phenomenon is noz 

the absence of Goldstone boson - the Goldstone theorem remains valid in the pre­

sence of gauge fields, but rather the presence of a ghost pole, which precisely 

cancels the observable effects of the Goldstone boson. 

The anomaly problem 

The only exception to the above cancellation theorem is provided by the 
. f h 11 d . 1 1 [13] 1 .ex~stence 0 t e so-ca e tr~ang e anoma y • We present the prob em ~n the 

form it has been discussed (and solved) by Bouchiat, Iliopoulos, Meyer[14] • 

One considers a simplified model with a gauge symmetry U (1) 8 Uw(I). The e.m. 
model contains one fermion f which has usual E.M. interactions with the photon 

AJJ' and transforms under the "weak" gauge group Uw as 

f -+- e-ig6 (x)
L fL 

(4.6) 
-+- ig6(x)fR e 

The f-W interaction is thus described by 

ifL yJJ(d + ig W )fL +ifR yl1(d -ig Wu)f
JJ l1 l1 R 

= if(d +ig WY )yl1 f (4.7)
JJ 11 5 

(*)In the case of a non Abelian theory, the quantization procedure introduces 
additional fields (the Fadeev-Popov ghosts) which also participate in the 
cancellation of the unwanted Goldstone bosons and finally disappear from the 
S-matrix. 
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One next introduces a complex neutral Higgs field ~, coupled to f according to 

(4.8) 


This coupling is U invariant provided under Uw(1)w 

-2ige (x) (4.9)\p"~e 

UW(I) is subsequently broken as ~ acquires a non vanishing expectation value 

cr /IZ. We set 
o 

(4.10) 


and using the X fields as usual we get the couplings 

G - • G ­ (4.11)- 12 f f XI - ~ 12 f Y 5 f X2 

and the fermion mass is 

(J 
o m =- G • (4.12)rz 

Finally, according to the \p W interaction induced by (4.9) , the Wboson has 

the mass 

2 (4.13)av = 

In the Landau ~auge, the W propagator is given by Eq. (4.5), its residue at 

k2 =0 being - U~\J , while the X2 propagator -; has residue + 1. We are now 
Inw k 

to show that there is a pole at k2 =0 in the forward YY ~lastic amplitude, 

with a non vanishing residue, the cancellation between the Goldstone pole 

and that of the Wpropagator being incomplete. At the lowest order in e and 

g, these poles occur through the following Feynman graphs (the notations are 

indicated directly on the drawings, together with the residues at k2 =O of 

the Wand X2 propagators). The residues corresponding to each of the graphs 

are 

Rw 
4 2 
-~ 

2 
( ~ ]J\J\ ( a' ]J'\J'\ 
"k Ta ) "k T,:t ' ) (4.14) 

~ 

R.\(, 2 

4 2 
= !:....£. U]J'J 

2 
]J t·v ' 

U (4.15) 
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eyll- ey tL' 

a 

1 

G-'(5
V2 

b 

F~. 4.1 - Co~bution6 to the poie at ~z=O in the 6o~d yy 4catt~ng amplitude: 
W -<..n the cLi.JLea channel (~) ; Goid4.tone b040n Xz ,in the d1Jr.ec.t channel (~). 

Using the expressions (4.12) and (4.13) of the f and W masses, the total residue 

can be written as 

2
R:: l1.+ R =- :a4 

2 
{(kct.r~V) (k(l'T~:V') - 4m U

IlV ull'V'} .(4.16) 
X2 

o 

It is understood in these expressions that T~V, U~v represent the sum of the
Ci. 

two terms where the two photon lines have been exchanged. Hence they are sym­

metric in the change (k ++k2 , U ++v). It is clear on (4.16) that if kCi.T~V, the1
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divergence of the axial current carried by W, is equal to 2mUUV , then R::I O. 

One could expect that it is so : recall that the Noether theorem states that 

to any exact continuous symmetry of the Lagrangian is associated a conserved 

current, so that in the limit where the U (I) symmetry is restored, m::a 0 and
W

kCt.Tuv should vanish. In fact, the so-called "normal" tlard identity
Ct. 

(4. 1 7) 


can be derived, as is the Noether theorem, from the classical equations of 

motion. It can also be obtained from formal (but illegal) manipUlations on 

Feynman graph integrands. However, Adler has shown[13] by actual calculation 

of T and U that 

2m UUV Uvpa kl::I + 8~2 e k2 (4.18) 
p a 

a relation which is known as the anomatoU4 Ward identity in the case of the 

axial current, the "normal" identity does not survive the one loop correction. 

We do not want to reproduce the calculation which leads to the result (4.17), 

but just draw the attention of the reader to a few points which are useful for 

what follows. The contribution of the graph 

to the tensor TUv is 
a. 

::I f 
Reg. 

d4 p Tr[t~V] (4. 19) 

where the loop integral f d
4 

p means that some regularization is needed, on 
Reg 

which we will come back later on. The trace is made on Dirac indices, and 

iJV::I U 1 \) 1 1 
ta Y (p-m) Y (is-tt -m) y 5 Y Ct. ....,..(~..,..+-!"J'il-l--m-) (4.20) 

2 
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The graph with the two photon being interchanged, namely 

happens to give the same contribution as t~v. In order to show that, it is 

convenient to use -p as integration variable, so that the second contribution 
. 1 T l.1v . hlnvo ves r t2(l Wlt 

(4.21) 


Using that Tr t2 is invariant under transposition, and its invariance under 

cyclic permutations of the factors, its contribution to Tl.1V is equal to that(l 
of 

t,ll'V = y1.1 
T 

1 
Y 

vT 
1 T 1 

2(l T Y(lYS T T -p -m _pT+li~-m -p -k1-m 

= -
C 1.1 1 v 1 1 Ct 

Y ~-m Y p-~-m YCj.YS p+lt1-m2 

where C is the charge conjugation matrix, such that 

Hence 

(4.22) 
Reg 

2 f 

The same doubling occurs for uUv . Note here for future reference that if YS 
is replaced by 1 (vector coupling), there is one - sign less in the manipula­

tions made for t~~ above, so that Tr t and Tr t2 exactly caneet each other 

(special case of the Furry theorem : a fermion loop with an odd number of 

photon legs attached gives no contribution). 

The integral involved in (4.22) is a priori linearly divergent (of the 

form f d 
4 
~ at large p's). As a consequence, given a prescription for computing 

p 
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(4.22), one might get a different result by making the change of variable 

(4.23) 

That it is possible to produce an unambiguous contribution from the triangle 

graph comes from the requirement of gauge invariance with respect to the 

photon indices ~,v, which states 

llV= k T = 0 (4.24)
2v (l 

These two relations are used to define two a priori divergent integrals 

appearing in (4.21) as a combination of the other integrals, which converge. 

The rest of the calculation is straightforward. One computes 2m UllV and 

compares with (k
1
+k

2
)(lTllV to find the result announced in Eq. (4.17). The 

(l ~v(lB
anomalous term sllvpa kl k2 comes from a term proportional to e (k1-k2 ) 

in T~v , the coefficientPofawhich, formally given by a divergent integra~, B 
ex 

being fixed by the condition (4.24). This condition actually forbids arbitrary 

translations of the form (4.23), which would generate additional terms linear 

in the 4-momenta k 1,k2 ­

The above results can be understood in the following way. Feynman graphs 

must be regulated prior to any manipulation. Anomalies happen when there is 

no regularization which preserves all the Ward identities of the formal theory 

(the normal ones) for both types of vertices, vector (Eq. (4.24» and axial 

(Eq. (4.17». When it is so, some of the gauge symmetries of the Lagrangian 

are broken by radiative corrections (in the case of SSB, by "gauge symmetry" 

we mean independence of the S-matrix on the gauge fixing parameter ~). The 

anomalous Ward identity precisely expresses this lack of symmetry of the theory 

with respect to that of the Lagrangian. The result (4.18) is obtained if the 

electromagnetic current conservation (Eq. (4.24» is imposed. One regularizes 

the theory in a U (1) invariant way (e.g. Pauli-Villars regulators). Then e.m. 
the regulated T and U obey normal vector and anomalous axial Ward identities. 

As the regulators are removed, T and U are finite (no renormalization) and thus 

obey the same identities. 

In the discussion of the anomalies, we have emphasized the point of view 

of the unitary of the S-matrix. The anomaly problem is at the same time 

intimately connected with the renormalizability of the theory : the counter­

terms in the Lagrangian which would cancel the anomalous piece of Eq. (17) 
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is non renormalizable and gauge dependent. 

The solution to the anomaly problem 

Suppose now we have not 1, but n fermions f. in the Lagrangian, with charges
J 

e. ,g. and arbitrary masses m. (given by arbitrary couplings G. to Higgs fields 
J J J J 

q,.). From the expression (4.14), we see that the residue at k2 =O of the pole
J 

contained in the Wpropagator is proportional to 

2 2 \2(n
a = L e. gil

i= 1 1. 

Therefore, the condition for the triangle anomaly to disappear is a = O. In the 

present simplified model, this condition can be realized, e.g., with two fer­

mions of opposite weak charges gl =-g2' and electric charges equal or opposite. 

It has been shown that once the 3 boson vertex has no anomaly at the one loop 

level, there is no anomaly at all for any diagram at any order in perturbation 

theory [ IS]. Hence a = 0 is the only condition to be fulfilled for the renormali­

zation program to be pursued. 

The condition a - 0 clearly is a constraint on the quantum numbers of the 

fermions. As a consequence, if these quantum numbers are related to each other 

by symmetry properties induced by some gauge group, the absence of anomaly 

appears as a condition either on the group itself or on the group representations 

to which the fermions belong. If this condition is fulfilled the theory is said 

to be anomaly free. We actually have to consider anomaly free theories only, 

since otherwise we are faced with all the problems of gauge dependent quantities 

in the S-matrix or of non renormalizable counterterms in the Lagrangian. Note 

that these problems are present in any gauge theory, abelian or not, spontaneously 

broken or not. It follows that the absence of anomaly is a constraint of funda­

mental importance for grand unified models, as we shall see at length. 

We consider the triangle graph in a general case of gauge symmetry, for 

3 arbitrary external gauge fields with group 	indices a,b,c. They couple to the 

TCfermion loop through representations Ta , Tb , of the associated generators, 
b Tewith strengths measured by the gauge coupling constants. Note that Ta , T , 

-+ ­need not be the generators of the same simple Lie group : for example the W W B 

vertex involves the generators T-+, T- of SU(2) and Y of U(I), the coupling co~s­

tants being respectively g and g'. Finally, the couplings of the gauge fields 
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2to the fermion loop may involve y5 or not. In all cases, since y5 .. 1, any 

odd (even) number of YS's can always be reduced to only one (zero) at a given 

place. Therefore, as far as the anomaly is concerned, we have to consider 

yt:J. T.? 
IJ 

k, b 

+ rr a 
ijkiJk 

Due to the equality of the two Feynman graph contributions to the anomaly, 

the absence of anomaly is expressed by 

(4.25) 

The curly bracket means anticommutator, and the trace runs over the indices 

of the fermion representation R. In order to draw useful consequences from 

this equation, we first recall a few properties of traces over group repre­

sentations. 

i) Tr R [Ta ] = 0 for any representation R (irreducible or not) of any 

~~ple Lie group. But Tr[Ta ] ~ 0 for U(I) which is not simple. 

ii) If the group G is a direct product of Lie groups G(l), G(2) , ••. , 
. (1) (2)then any T LS the direct sum of its representations Ln each group T ,T , .•• 

and 

(4.26) 

(4.26) , 
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iii) If the representation R is reducible, R=R1 ED R2 + ••• 

(4.27) 


Dabc• ) . h .1V van1S es for any real representat10n of a Lie group. The proof 

goes as follows. If T is the matrix representing a generator in a unitary 

representation R, _TT represents it in the conjugate representation R : T = Tt 

implies 

( .~ 1* ~ ~T-La.T _ -i(a.(-T»\e - e 

If R is real, by definition Rand R are equivalent, i.e. they differ by a 
abcunitary transformation U. Under U, D is invariant (trace property). Hence 

oabc = _ Tr (Ta T { Tb T TCT}) 

Tr(Ta{Tb TC}) = _ Dabc 
= ­

v) SU(N), N ~ 2 and SO(6) (which is locally identical to SU(4» are the 
. I L' h· h Dabc [ 16, 18]onI y S1mp e compact 1e groups w 1Ch h ave representat10ns..W1t non zero . 

(Recall that a(l) is not simple. All irreducible representations of a(l) have 

D :F 0, but the trivial one Y = 0). In a first step, the demonstration uses the 

fact that the only simple compact Lie groups which have non real representations 

are SU(N) N.2, SO(4N+2) N > 1 and E .[17]
6

vi) It can be shown[18] that for any SU(N) irreducible representation R 

(4.28) 

where only A(R) depends on the representation. Therefore, if nabc(R) =0 for 

one particular set a,b,c of indices, then (provided dabc is not zero for this 

set) A(R) = 0 and nabc (R) vanishes for any set of indices. The values of A(R) 

for all R's of SU(N) are given in Ref.[19]. 

Coming back to SU(2) 8 U(l), we examine the anomaly problem for the repre­

sentation formed by the following 7 fermions 

(4.29) 
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The only triangle diagrams which may cause anomalies are those which contain 

at least one W, otherwise there is no YS in the loop. If there are 3 W's, 
abcthen D (R) =0 because of the property (v) (all representations of SU(2) 

are real). If there are one Wand two B's, the anomaly vanishes because of 

properties (i) and (ii). Finally, if there are two W's and one B, one may 

replace the generator Y/2 associated with B by (Q-T3). The term with T3 vanishes 
abc)(3 SU(2) generators in n and we are left with only two cases corresponding 

+ ­to WWyand W W Y vertices. 
o 0 

These vertices are proportional respectively to 

33yand D = Tr(T~ Q) 

{T+T-} = 2(T~ + T~) gives the same contribution as T~ and therefore the anomalous 

term is weighted by the quantity 

2 

ASU (2) 8 U(1) = Tr(T3 Q) 


The contribution of the quarks comes from the left handed doublet (u,d)L 

+-y
D 

1 
12 

The contribution of the leptons is 

Aleptons = 1. Q 

4 e 


so that the anomaly does not vanish. Including other similar families cannot 

help. A way out is to postulate the existence of new quarks and leptons with 

right handed SU(2) couplings in order to cancel separately Aquarks and Aleptons 

(vector like theories). There is however no experimental evidence for such new 

fermions. A far simpler mechanism is the one where the quark and lepton contri ­

butions to the anomaly cancel each other. This happens if the quarks appear 

with 3 colours. Then: 

2 3 Aquarks + Aleptons = 0A = Tr(T3 Q) = 

We have shown that no triangle graph with external W's or y (or B) gives rise 
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to any anomaly if we consider a 15 member family with quarks being triplets 

(3) (antiquarks antitriplets 3) and leptons singlet representations of SU(3). 

We are thus naturally led to the gauge group SU(3) 8 SU(2) 8 U(1), and we 

have to check that there is no new anomaly associated with triangle graphs 

with one or several external gluons. That it is so follows from the following 

considerations. If there is one external gluon, D vanishes from properties (i)
WO

and (ii) above. For 2 external gluons, we have to consider Dgg which vanishes 

Dggyfor the same reason, whereas does not appear (no Y5 involved in the corres­

ponding triangle graph). The above arguments work for all similar 15 dimensional 

families (c., s., v ,U), (t., b., v ,T) etc ••• , or linear combinations of 
~ ~ U ~ ~ T 

them. So the anomaly cancels family by family. Why it is so is a question which 

has to do with the general problem of flavours : why successive generations, 

how many of them, etc •••. 

We conclude that the gauge group SU(3) 8 SU(2) 8 U(I) has no anomaly at 

all for replicated 15 dimensional representations, the colour degree of freedom 

being essential for the argument. This symmetry group is spontaneously broken 

through a Higgs mechanism involving a colour singlet, SU(2) doublet of complex 

Higgs fields as before (section 3). Therefore the symmetry is broken down to 

5U(3) 8 U (1) at low energy, which is exactly the remaining exact symmetrye.m. 
we are looking for. 
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PART II 


GRAND UNIFIED THEORIES-SU(5) 


Before going into the main subject of this second part, we summarize 

the results we have obtained with the standard model of electroweak interactions. 

This model 

- gives rise to a renormalizable theory of weak interactions, 


- unifies charged and neutral weak currents, 


- leads to the right phenomenology of all electroweak processes which have 


been 	measured up to now. 

The colour degree of freedom has been useful to prevent from anomalies 

which otherwise would spoil the renormalizability of the theory. For that 

purpose, a global SU(3) symmetry is sufficient, but we know that when extended 
c 

into a local gauge symmetry (QeD), SU(3) is a good candidate to be a theory of 

strong interactions. In particular it has the property of being asymptotically 

free, allowing perturbative expansions for the so-called hard phenomena. There 

are also indications that it gives rise to confinement of quarks and gluons. 

Therefore the SU(3) 8 SU(2) 8 U(l) local gauge group provides us with a 


very successful model of elementary interactions (but gravity). However the 


model has some serious defects which we recall here by collecting the various 


questions we have been led to ask in Part.I. 


I. 	Why is electric charge quantized ? (Q = T3 + Y/2 and Y, the U( 1) generator may 

take any a priori value). 

II. 	How to predict the value of the Weinberg angle ? At the present level, we 


still have in fact 3 independent couplings a, a and sine. 

s 

III. 	How can we reduce the number of free parameters? In addition to the couplings, 

we would also like to predict the fermion masses. 
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Grand unified models answer these questions in a definite (questions I 

and II) or a partial way (question III). It was outlined in the general intro­

duction (section 1), especially in connection with the ?roblem of the quanti ­

zation of charges, that a unified model should be built on a symmetry group 9 
containing 9 =5U(3) 1 e U(I) as an unbroken, non invariant subgroup. This o co our 
group also has to contain 5U(2), the weak group, in order to reproduce the 

successful 5alam-Weinberg model of electroweak interactions. Finally, the theory 

should be free of anomalies (section 4) in order to be a renormalizable theory. 

However the large group 9 cannot be an exact symmetry group since only 9 is o 
observed as an exact symmetry at low energies. It happens that the above consi­

derations lead to rather stringent restrictions in model building : it is shown 

in section 5 how 5U(5), which fulfills all the conditions required, appears as 

a very natural (and unique in a sense to be made precise) candidate for g. The 

5U(5) model is described in section 6, and its predictions on 5U(3), 5U(2) , 

U(I) couplings shown in section 7. The Higgs mechanism is introduced in section 

8 in order to get the breaking of 5U(5) into 5U(3) 8 5U(2) 8 U(I) in a first 

stage, and into 5U(3) e U (1) in a second one. It is a very nice propertye.m. 
of 5U(5) that these breakings can actually be achieved in a rather elegant way 

through the Higgs mechanism. The great weakness of the model however is undoub­

tely that the coupling constants of the model have to be adjusted with a fantastic 

precision in order to yield the required low energy physics, since the fundamental 

scale 	of the theory (responsible for the first stage breaking), is as large as 
14about 10 GeV (section 9 - Renormalization of couplings and masses). The possi­

bility of matter instability (nucleon decay) being the most spectacular predic­

tion of grand unified models, we finally present the main results obtained in 

the recent past years on the proton lifetime (section 10). 

Apart from the hierarchy problem, another question for unified theories 

LS that of family replications. One would like to be able at least to classify 

all families in one irreducible representation of the unifying group. In 5U(5), 

the number of families is somewhat restricted by phenomenological implications 

of the model (value of sine, fermion mass ratios), but there is no theoretical 

argument in favour of any particular family number. Other groups than 5U(5) 

are of interest, in particular 50(10), especially if neutrinos happen to be 

massive. We will however limit ourselves to 5U(5) in the present lectures. 

We recall that gravity is left aside in all these models. 5uperunification, 

based on extended supergravity, with all particles (from spin zero bosons to 
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the graviton) in the same irreducible multiplet, may give an answer to the 

problems left opened. The corresponding models are however in their early 

infancy and will not be considered here. 
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5. IN SEARCH OF THE UNIFICATION GROUP 

In the above introduction, we have given arguments for embedding the 

SU(3) 8 SU(2) G U(l) group into a simple Lie group G . This will give us 

relations between various previously unrelated parameters of the theory. In 

particular the strong, weak and U(l) coupling constants will be equal (up to 

well defined numerical factors due to different normalization conventions). 

As a consequence, sin 6 will no more be a free parameter. Such a theoryW 
predicts the existence of ~~otic(*) bosons. After breakdown of G to 

SU(3) 8 SU(2) 8 U(l) , the resultant exotic interactions are suppressed by 

the extremely high mass acquired by these bosons, so that the SU(3) 9 SU(2) 9 U(l) 

pattern "observed" at present energies (up to a few hundred GeV) is recovered. 

The relations between coupling constants implied by G are no more exact after 

breaking, but are still good approximations at very high energies. To be more 

precise, if the theory is renormalized at a scale very large compared to that 

where the breaking occurs, its symmetry (with all its consequences) is prac­

tically restored. Conversely, in order to allow for perturbative calculations, 

at present energies, the theory has to be renormalized using a substraction 

point at a scale U comparable with these energies. There the symmetry G is 

strongly broken, but the mass and coupling parameters at the scale U can be 

computed from what they are in the symmetric case by the so-called renormali­

zation group equations. (RGE). 

Since strong and electroweak interactions have very different strengths 

at present energies, and since couplings vary only logarithmically with the 

scale U , one finds a theory containing exotic bosons of fantastically high 

mass (of the order of 10 15 GeV). Such high masses are independently required 

in order to push the rate of proton decay (induced by the exotic interactions) 

below present experimental bounds (lifetime - 1030 years). However, one finds 

that the predicted unification scale is smaller than the Plank mass scale 

(10 19 GeV) where gravity can no more be neglected. 

In what follows, we assume that there are no other fermions than the 

presently known (but the top quark t) fermions, grouped into llreplicated" 

(*) B" ." ( .y exot1c, we mean new w1th respect to the known y , gluons and weak 
bosons) and with unfamiliar charges. Also~ they have characteristics of quarks
and leptons at the same time (leptoquarks). 
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families 

(u,d,v ,e) (c,s,V ,U) (t,b,v ,T)
e u T 

which in the simplest unification scheme (the only one to be considered here) 

are classified in equivalent multiplets. One thus gives up explaining the 

existence of these families as well as their number. In this respect, the 

situation will not be better than in the SU(2) 8U(I) model. In a maximal uni­

fication, one would like to be able to classify all particles in a single 

irreducible multiplet. 

We assume that all neutrinos are strictly massless and for definiteness 

consider the first family. There are 15 spinors of given chirality. 7 of them 

have chirality +1 (right handed in the zero mass limit), namely 

(e-,u.,d·)R 
~ ~ 

The 8 other ones have chirality -1 they are 

(e-,v ,u. ,d')L
e ~ ~ 

i= 1,2,3 is the colour index. Since the gauge transformations are Ys inde­

pendent, fermions belonging to the same irreducible representation of the 

gauge group must have the same chirality. Rather than the above right handed 

fermions, we thus consider their 7 charge conjugates, which are left handed. 

In order to be more precise about our definitions concerning fermions 

and their representation ~n Dirac space, we recall a few properties of Dirac 

spinors. Let f be a fermion spinor. From 

1 + Y 5 
fR = .., f 

"­

follows fR = f (' -zYS ) 

The charge conjugate of f is represented by the spinor 

= 

where C is the charge conjugation matrix. It is unitary and verifies 
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.;.. T = _yJ.lC
I 

Y C 
lJ 

From these definitions, we obtain the following property of the charge con­

jugate (f )C of a right handed fermion:
R 

l-y l-y
5 -T 5 = C(fR)T = C f = C fT 

2 2 
I-y

5 fC (fC)= = 
2 L 

One should be careful about the place of the index R,L with respect to the 

parenthesis the conjugate of a kight handed fermion is the corresponding 

le6~ handed antifermion (fC)L . In the representation used throughout these 

notes for the "'( matrices, C is given by 

__~__Lt~j
o -I I 0( 

I 
101 

We have 

T CTC = = - C 

The following relation holds for two fermions f and f' 

-If'C fC f,I a + f f'= f 

The second equality is due to the fact that fermion fields anticommute. 

For the same reason 

C = 

(5.1) 

and 

(5.2) 

The last equation is valid up to a total derivative which does not contri­

bute in the action f L(x) d4 x . 

When the fermio

form according to a 

ns have group indices, 

representation D 

we denote them f .• I
~ 

f f. 
~ 

trans­
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f. -+ D•. f. 
1 1J J 

then its conjugate (f.)C transforms according to D* . We denote it as fi 
1 

and thus have 

(D .• ) * fj 
1J 

The place of the indices will then be very important in all subsequent 

manipulations. 

With these properties and conventions, our 15 basic left-handed fields 

transform according to the following SU(3) 8 SU(2) representations 

(1,2) 


(3,2) 


(1 , 1) (5.3) 

(3,1) 

(3, 1) 

The bracket (n ,n ) means that the corresponding fermions belong to the
3 2

representation of dimension n3 of SU(3) and to the representation of dimen­

sion n of SU(2). n means the conjugate representation of n .2 

(*)( 20]
If the unifying group is to be a simple compact Lie group , it must 

be 

(*) The definition of "compact", together with useful properties of Lie 
groups which are not all explai~ed in the text, can be found in Appendix A. 
The role of compactness for the commensurability of the charges is under­
lined there. 
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~) either one of the classical groups listed below 

Name Definition Number of 
igenerators Rank 

5U(n) complex unimodular unitary matrices Unxn 

Ut = -1 det U = 1U , 

2 
n -1 n-t 

50(n) nXn real unimodular orthogonal matrices 0 

oT = -1 
0 , det 0 = 1 

n(n-l ) 
2 

[n/2] 
the integer 
part of n/2 

U5 (2n)p 2nx2n complex unitary symplectic matrices 5 

S (_ U Un) ST = (- n In) 
n n 

n(2n+ 1) n 

The following equivalences between some of these groups hold 

50(2) U(l) 

50(3) 5U(2) 

SO(4) 5U (2) x 5U (2) (50(4) is thus not simple) 

SO(5) 

50(6) 5U(4) 

ii) or one of the 5 exceptional groups listed below 

Name ~ Generators RankII 

14 2G2 
52 4F4 
78 6E6 

133 7E7 
248 8E8 

I 

In order to choose among these candidates, let us first remark that 

the massless fermion free Lagrangian 
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? -i I -iL = i {\i ~ \l + e - ~ "i: + u ~ U + d ~ d
0 L iL iL 

~ i 

+ + - i+ e 3 e + I (u) i 3 uL + I (d) i ~ dt}L 
i 

has global U(15) = 8U(15) efU(1) symmetry. Hence provided one admits (it will 

always be the case in practice) that G is a symmetry separately of the free 

and of the interaction Lagrangians, G must be a subgroup of SU(15), or SU(15) 

itself. 

The choice is further strongly reduced by the following considerations. 

The 3 and 3' representations of 8U(3) being not equivalent to each other, the 

basic 15-plet representation, which has the decomposition 

(1,2) + (3,2) + (1,1) + 2(3,1) 

under SU(3) ~ 8U(2) (Eq. (5.3», is complex (not equivalent to its conjugate). 

We recall that the only simple Lie groups which admit complex representations 
are [ 17] 

8U(N) N :f 2 

SO(4N+2) 

and 

Ne..~t we remark that SU (3) ef SU(2) 8 U (1) has rank 4 (4 commuting generators). 

G thus has at least rank 4 • From the above tables, the only admissible rank 

~s . 8U(5) (*)4 group 

Let us now show that, irrespective of the rank (~4), SU (5) is in fact 

the only admissible group which provides us with a I5-dimensional represen­

tation where the 15 particle family can be arranged. From the above tables 

(*) If one allows G to be not simple, but a power of simple groups, all of 
them associated with the same coupling constant, 5U(3) 88U(3) is another 
rank 4 candidate. One SU(3) must be identified with 8U(3) colour, so that 
the other one should be the electroweak group. In such a case, the charge 
operator Q is traceless in any representation. 8ince the quarks (8U(3)c 
triplets) and the leptons (SU(3)c singlets) must be in separate representa­
tions of the second SU(3), one predicts that the sum of the quark charges 
should be zero, which is wrong. 



- 49 ­

and previous comments, we are left with 

(i.) SU(N) 5 < N < 15 the lowest dimension ~educi.ble representations 

are : 

- the fundamental (or vector) representation, with dimension D::a N • It 

has anomalies, according to the following argument. N-l generators can be dia­

gonalized at the same time (rank =N-l ) • One of these generators, Z, can 

be chosen to have all diagonal elements equal to 1 except one equal to I-N 

(trace = 0). Tr Z3 is proportional to N(N-1) (N-2) , :f 0 for N > 2 , and 

thus the fundamental representation has an anomaly (see Section 4). 

- the antisymmetric tensor, with D = N(N-I)/2 • D = 15 for N:iII 6 but 

this representation must be rejected because its reduction to SU(3) is not 

real. 

- the symmetric tensor, with D = N(N+l) /2 • D =15 for N=5 • SU(5) 

will be discussed at length below. This representation will be seen to be 
unacceptable. 

- the other irreducible representations all have too large dimensions. 

Finally, the only reducible IS-dimensional representation is the sum 

of the fundamental and antisymmetric tensor representations of SU(5). It 

will happen to be the correct one. 

(~l E6 : the smallest representation has 27 dimensions. 

(~) SO(4N+2) , N~ 2 • The lowest dimension representations are: 

- the vector representation, with D=4N+2 • D cannot be 15, furthermore, 

this representation is real. 

- the spinor representation, with D = 22N (~16) • Hence there is no 15­

dimensional representation. Here one should notice that if neutrinos are 

massive, then the right handed v has to fit into the considered representa­

tion of the unifying group, enlarging the family to 16 members. This fact 

makes the study of SO(10) very important, although it is not made here. 

Also of course one should underline the fundamental interest of all expe­

riments about neutrino masses and oscillation phenomena. 
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6. DESCRIPTION OF THE SU(5) MODEL[2I] 

We have just shown that all the simple compact Lie groups other than SU(5) 

contain no suitable I5-dimensional representation. It remains to be shown that 

among the I5-dimensional representations (irreducible or not) of SUeS) there 

is at least one with the required properties. 

All SU(N) representations can be obtained from properly symmetrized 

tensorial powers of the fundamental (N dimensions) representation. Let ~a be 

this fundamental (or vector) representation, (~ )t=~a its complex conjugate.a 
~a transforms under SU(N) infinitesimal transformations according to 

(6.1) 


or in 	matrix notations, 

~ -+-	 ~ -i ca. ~ 
ca = 	ea t 

and ~t -+- ~t +i ~t OCt 

By tensorial product of two vectors ~ and ~, one obtains two irreducible 
-I)) and . ( N(N+l)\representations : the antisymmetric 	 the symmetr~c D = 2 )(D -_ N(N

2
tensor representations. Explicitely, they are 

which both transform according to 

(6.2) 

The two conjugate representations are obtained by th.e similar products of ~ t 
and 	~ t. 

The traceless part of ~ 6 ~t forms the adjoint representation 

which 	transforms according to 

M -+- M -i (oa.M - Mea. t) 

=M- i [ oCt ,M] (6.3) 
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For completeness, we give the list of all SU(5) representations of dimension 

less or equal to 50, together with their Young tableaux (see appendix B) • 

5 10 15 24 35 40 45 50 

0 8 rn 

r EP Ef EE 
Their conjugate representations are 

5 10 is 24 35 40 45 50 

§ Efj
~ mr g~ ~ 

Note the identity of the 24 and 24 tableaux, which reflects that the 24 is 

equivalent to the 24 : it is real. In order to assign the IS-family particles 

to a representation of SU(5) , we need the SU(3) 8 SU(2) decomposition of the 

representations of interest. The SU(3) and SU(2) subalgebras of SU(5) can be 

realized as 

- the 8 matrices (+) 

where the A. 's (i=l,8) are the 8 SU(3) 3x 3 matrices. 

1 

- the 3 matrices (-+.-) 

where the L.' s are the 2 x 2 Pauli matrices. 

1 

andAccordingly, the representation 5 can be decomposed into 

which transform like (3,1) and (1,2) respectively. In the 

same way, 

'5 = (3,1) + (1,2) 
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The 10 (resp. 15) representation is obtained from the antisymmetric (resp. 

symmetric) part of the product 

[(3,1) + (1,2)] 8 [(3,1) + (1,2)] (6.4) 

We have 

(3,1) 8 (3,1) = (3,1) + (6,1) 

(1,2) 9 (1,2) = (1,1) + (1,3) 

In the right hand side of these two equations, the first reps. (3,1) and (1,1) 

are symmetric, the other ones antisymmetric. Next we write the sum of the 2 

crossed term (3,1) 8 (1,2), as the sum of the symmetric and antisymmetric 

products, to be respectively attributed to the 15 and 10 representations. 

To summarize, we get the following decompositions 

5 = (3,1) + (1,2) (6.5) 

:5 (3,1) + (1,2) 

10 = (1,1) + (3,2)A + (3,1) (6.6) 

15 = (1,3) + (3,2)5 + (6, 1) (6.7) 

By computing the decomposition of 5 8 5, one gets for the adjoint representation 

24 = (8,1) + (1,3) + (1,1) + (3,2) + (3,2) (6.8) 

We see from Eq. (6.7) that the 15 has not the right SU(3) 8 SU(2) content 

(it contains an SU(2) triplet and a colour sextet), whereas the reducible 

representation 5 + 10 is exactly suited to accomodate the 15 left-handed fer­

mions of Eq. (5.3), higher representations being too large. So, we are led 

to arrange vL.and e~ and. the 3 anti-down quarks dt into a 5 representation. 

That we put d l and not u l in :5 follows from TrSQ= 0 since Q is a traceless 

generator in any representation$U(5) is a simple Lie group). Turning the 
-1argument the other way around, we see that Q . = --3 Q- , i.e. the fact that 

d~ e 
quark and electron charges are commensurate (answer to question I) is required 

by the postulate of symmetry under the simple group SU(5). 

The 5 is thus the vector 
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L 

The 3 first components transform like the complex conjugate of the SU(3) 

fondamental representation. In writing the last two fermions, we have used 

the standard form for the left handed spinor of the representation 2(v)
e- L 

of SU(2). Since 2 (which is equivalent to 2) appears in the 5 rep., we used 

= 

Put in a different way, if f. € rep. 2, fi = s ij f ., where s ij is the antisymmetric 
] ] ­

tensor with two indices, transforms according to 2. By charge conjugation of the 

5 representation, we obtain the 5 rep. which contains the right-handed d. quarks,
1. 

positron and antineutrino, 

d1
d2d (6.9)If; = 3 
e+ 

c-v 
R 

so that the charge operator Q in this representation is 

-1/3 o 
-1/3 

- 1/3 (6.10) 

oo 

It generates the U (1) transformations. Let us explicitely construct the 10 e.m. 
as the antisymmetric product of two 5' s, IV and If;'. Denoting \{I as 

(6.11)IV = 

where c stands for colour and w for weak isospin, the 10 

1 

12 
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is represented by 

M= 
1 

12 

o 

o 

o 

o 

o 

Mis antisymmetric and only the elements above the diagonal are written. 

- i ijkUsing the fact that in SU(3) , the 3 representation c transforms as E cjc ' 
k 

which expresses that the 3 is the antisymmetric part of 3 8 3, we see 

(i) that the upper left 3 x 3 matrix of M is of the form 

It is invariant under SU(2) , and hence corresponds to SU(2) singlets. 

(ii) that,Q5 being a multiple of unity in this subspace CEq. (6.10)), all ci,s 

have the same charge, which is twice the c. charge. Hence 
1. 

(6. 12) 


More generally, if QS8S(ij) is the charge of the element ij of the product 

5~S, QS8S(ij) =~~i +~~j' Q5 being given by (6.10). So, the three states 
icl., i=i,2,3 are to be identified with the three left handed anti-u-quarks u , 

i=1,2,3. 

The lower right 2 x 2 matrix of M is SU(3) singlet. Its non-vanishing 

element, w1wi-w2wi is the antisymmetric product of 2 SU(2) doublets and thus 

is SU(2) singlet. Its charge is Q(e+)+Q(vc)=+l. Hence it has to be identified 

with the positron. 

Coming to the elements M.. , i=I,2,3 and j=4,5, they obviously transform
1.J 
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according to the representation 3 of SU(3) at fixed j, and the representation 2 

of SU(2) at fixed i : they form the part (3,2) of the representation 10 of SUeS). 

Their charges are those of the states (d.e+) and (d.vc) respectively for columns 
1. th 1. 

4 and S, that is 2/3 and -1/3. Hence the 4 column is ui and the Sth is di . 
L L 

In terms of particles, we may thus finally write 

3 2
0 u -u u d1 1 

3 1 
-u 0 u u d2 2 

2 11 (6.13)u -u 0 u dM 3 3rz 
+ 

-u -u 0 e
1 -u2 3 

+
-d -d -d -e 0

1 2 3 

In writing this matrix we implicitely made some phase conventions (without 

any physical consequences) for the various states appearing. For example, we 

could have written -ul..' -d. instead of u. ,d .• The 1/12 factor is also for 
1. 1. 1. 

convenience. 

Remark 

That it is possible to arrange the known quarks in the fundamental + 

antisymmetric tensor representations of SUeS) is not at all automatic. In order 

to see that, let us assume that there are N colours, and that we are to build 
c 

an SU(N +2) unified theory of SU(N ) 8 SU(2), where SU(2) is the standard one. 
c c 

+ ­Then in the fundamental we set N quarks d , the e and the v • From Tr Q = 0 
1 e 

we get Q - N Q + • In the representation generalizing the expression (6.1!)d = 
c

of the antisymmet~ic tensor, the charges of the anti-up quarks would now be 

-2/N ' whereas the up quarks appearing in the N +l column would have chargec c
 
1-1 IN • We see that only for N = 3 Q. = -Q • By the way (N 8 N ) A = N 


c c ' 1. U. C C C 
only for N = 3. U 1. 

c 

The 24 gauge fields, belonging to the adjoint representation of SUeS), 

can be classified according to the decomposition given in Eq. (6.8). We easily 

recognize the 8 gluons (rep. (8,1»), the 3 W's (rep.(I,3» and the B boson 

(rep.(1,I»). In addition to these bosons of SU(3) 8 SU(2) 8 U(l), we next have 

12 "exotic" gauge bosons. Six of them, x., Y. (i=I,2,3), belong to the (3,2)
1. 1. 
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representation, and their charge conjugatesXi , yi to the (3,2) representation. 

These particles are coloured and thus presumably confined. Each of the pairs 
i i

(Xi'Yi) or (X ,Y ) form an SU(2) doublet. The charge of any of the 24 gauge 

bosons is easily derived by building the 24 rep. from the product 5 8 5, so 

that 

(6.14) 


with Q given by Eq. (6.10). We verify that the gluons (i,j=I,2,3) have no5 
1charge. The Xi' defined as the j=4, i=I,2,3 objects, have charge - '3- 1 = -4/3, 

and the Y. (j=5;i=1,2,3) have Q= -1/3. Of course the anti X,Y have the opposite 
~ 

charges. 

Anomalies 

We have seen (section 4) that the 15 member family has no anomaly in the 

context of SU(3) 8 SU(2) 8 U(I), that is when the external legs of the triangle 
+

diagram are gluons, W- ,Z or y bosons. The absence of anomaly was guaranted by
o 

the relation 

2
Tr[Q T3 ] = 0 (6.15) 

where the trace runs over the 15 fermions. If we restrict the trace to the 

fermions belonging to the 5 or to the 10, we find 

1Tr- [Q T 2] = ~ Q = - -4
5 3 4 e 

1 
+­

4 

the anomaly disappearsby cancellation of anomalies in the 5 and the 10. It 

turns out that this is sufficient to deduce that the 5 + 10 representation has 
no anomaly at all, as shown by application of property vi) of Dabc=Tr[Ta{TbTc}] 

abc . . h(section 4) : since D =0 when a,b,c correspond to W or y bosons, l.t van~s es 
for any set of indices. 
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7. RELATIONS BETWEEN THE SU(3), SU(2), U(l) COUPLING CONSTANTS 

Let us explicitly build the generators in the representation 5. As it 

was the case for the charge operator Q, this allows to build them in any 

representation. 

The SU(3) 0 SU(2) 8 U(l) generators are very simple. The eight gluons 

are coupled to the SU(3) generators 

a = 1, ... ,8 (7 • 1 ) 

where the Aa,S are the usual Gell-Man matrices normalized according to 

Tr(AaAb)= Z 0a,b . The W bosons are coupled to the SU(2) generators 

iwhere the T 's are 

= (~ 
the Pauli matrices. 

i = 1,2,3 (7.2) 

The B boson is coupled to the U(l) generator 

= fl(~
V5\~ 

(7.3) 

where Y is the conventional hypercharge. These 12 generators are (ortho) 

normalized according to 

The 12 other hermitian generators are constructed from the requirement 

of orthonormality. They are similar to the Pauli matrices TI/2 and T2/2 , 

which couple to WI and W in SU(2). We havez 

(ojillline j1 I column 4
T 1 = all other elements vanish (7.4)2"x. -~--:-~- {line 4 

J / column j 

(0 :_il-{line j 
I1 --__J..I ___ \. column "+

T ? = all other elements vanish (7.5)2 IX: 
J 

i I 0, {COlumn j 

fC ( line 4 
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and similar matrices T 1 ' T 2 with line or column 4 being replaced by line 
y. y. 

12 J 12 J 	 • 
or column 5. X.' and Y.' are the correspond~ng 12 gauge bosons. The 24 

J J 
SU(5) generators of Eqs.(7.2 -5) are hermitian and they are associated with 

24 real gauge fields. As stated in Section 2, one often uses complex combina­
+tions of fields with definite electric charges, such as the Wand W weak 

vector bosons 

(W+)t = W 

coupled with 

= 
1 

-
12 

('r 
1 

± 

according to 

= 

In the same way the charged X's 

X. 	 a 1 (X~ 

J 12 J 


are coupled to the complex combinations of generators 

(T) == (T j) t (7.6)= - (T 1 + iT 2) 
0/2 X X 

X 
J 

X 

according to 

2
T X~ + T 2 X. = (T )j X. + h.c

XX~ J X. J J 
J J 

With similar notations one also has 

T 1 y~ + T 2 y~ = (Ty)j YJo + h.c 
Y. 	 J Y. J 


J J 


We will use the following notation 

(7.7) 
(TX)j = (*l 



- 59 ­

(7.8) 


where all the elements of Z~ (Z4) are zero but the one in the line j, column 

4(5) which is equal to 1/12 • 

It is sometimes convenient to use a matrix A which represents the 24
J.l 

gauge bosons as a whole. By definition (see appendix A) 

24 
TaAJ.l AJ.l= 12 (7.9)~ aa=I 

The factor 12 is chosen in such a way that 

Tr(AJ.lA\) = 2 L AJ.l Tr(TaTb)
a ~ a,b 

a 

Under a global infinitesimal SU(5) transformation defined by the 5 x 5 matrix 

oa, AJ.l transforms as 

It has the following expression in terms of the gauge fields 

8 a I 
I '1

A I 
-+ -+ -+ -+LGJ.l I 

I X.ZX + Y.Zya T I1 I 
I
AJ.l 
 ~ = 12 +t~TB (7 ° 10) 

l 
I 
I 

---------------~-------------
t I 

-+ 
-+-+ -+-+ -+ 

(X. Zx + Y. Zy) I 
I WoIT 

I 

" 

where use has been made of the complex X and Y for convenience. 

In terms of the representations ~ and M , the free Lagrangian is 

We now define by convention, for k,i = 1, .•. ,5 

= (¢ )
k 

http:Tr(AJ.lA
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and 

so that ~ and Mexist as respectively a vector and a (antisymmetric) matrix, 

whose elements are conjugate Dirac spinors. Note the index transposition in 

the last equation, which is convenient in order to rewrite the free Lagrangian 

as 

= i ~ ¢ W+ i Tr M~ MLfree 

The couplings of the fermion to the gauge fields are the most easily 

deduced from this equation by replacing the derivative ~ by the covariant 

derivative '0 = ~ + ig;" (see Appendix A). In the 5 representation, one 

directly obtains 

L = (7.11) 


Recalling that Mtransforms like the product ~ 8 W of two fundamentals 

one gets the following 5 x5 matrix representation of A~M (see Eq.(6.2» : 

~ 	 1lA(A M)ki = ~ a (f T~i MU + L. ~.) T~j)
a J 

T a = 	 LA~ (Ta M + MT ), 
a ki 

Hence M ~ Mgenerates the coupling term 

24 
- 2g ~ AU Tr(M T

a 
y M) (7. 12) 

a=l a U 

The factor 2 cancels that which occurs from the 1/1Z in the definition of 

Min terms of the individual spinor fields. Eqs.(7.11) and (7.12) contain 

all the information about any particular coupling. In particular, the gluon, 

Wand B couplings of the SU(3) 8 SU(2) Q U(l) model are recovered under the 

form 

Aa 
- g G~ I q Y 2"' q

quarks ll 

-lo­

- g Wl1 \' f Y .!. f - gaBU \' f y ! f (7 • 13)
t... L1l2 L 5 L u2 

ferm~ons 	 fermions 

http:Eqs.(7.11
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By comparing the above expression with Eq.(2.8) we see that the SU(5) model 

implies 

g' = g (7.14)J; 

As a consequence, we get a prediction for the Weinberg angle defined by 

Eq.(2.21) 

tg e = L = ..); (7.15)
g 

so that 

. 26 3 
= (7 • 16)s~n 8' 

As a second consequence, the model also predicts that not only weak and 

electromagnetic interactions are governed by the same coupling constant g, 

but also that g is the strong interaction coupling constant 

2 
Ct. e 3 

= s~n (7.17)
Ct. 2' =­

. 26 
8' 

S g 

We will show later on how these predictions, which are exact in the exact 

SU(5) symmetry limit, are modified in a predicted way at present energies 

where SU(5) is strongly broken. 

Before going on it is useful to notice that the predictions we have 

obtained in SU(5) for sine and a./a. are valid in much more general situations. 
s 

Indeed they only rely on the existence of a multiplet, irreducible or not, 

made of one or several families ({u,d,e,v } , {c,s,~,v } , ••. ) , and on the 
e ~ 

fact that the unifying group is a simple group. Let T3 and Y/2 be the matrix 

representations, for the quoted multiplet, of the third component of the weak 

isospin and of the weak hypercharge (with their usual eigenvalues). In gene­

ral, they are not normalized in the standard way, that is one has 

y22 
Tr T3 1 Tr­

4 

The hypercharge generator TB is suitably normalized if written 

= C!TB 2 
2

4 Tr T3 
with C :: 

Tr y2 

http:Eq.(2.21
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T3 and TB are then coupled to the corresponding gauge fields with the same 

strength g . Thus it is quite general to have 

4 Tr T3
( ,)2 2 

tg2e == L == == 
g Tr y2 


3 
== 5" 

in all cases where the same 15 family (or several of them) forms a represen­

tation of a simple group. From the same argument 

Tr(X 12)2
a. a 3 

- == 8" 

is general under the same conditions. 

Apart from the SU(3) 8 SU(2) 8 U(1) interactions, which are now related 

with each other, there are new ones mediated by the X and Y gauge bosons. 

From the general expressions of Eqs.(7.11 and 12), using the explicit contents 

of the ~ and M representations, and the matrices TX ' Ty of Eqs.(7.7 and 8), 

the new interaction terms are for the first family 

(7.18) 

The experimental implications (proton decay) of these exotic interactions 

will be discussed later on. Here we only remark that these new. interactions 

violate baryon (B) and lepton (L) number conservation. This is an unavoidable 

consequence of any unification scheme where quarks and leptons appear in the 

same irreducible representations. As we will see however (Section ad), there 

is a global U(1) invariance left which implies that B-L is conserved. 

http:Eqs.(7.11
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8. HIGGS BOSONS, SU(5) BREAKING, MASSES 

SU(5) has to be broken; if it was not, we would not have time to discuss 

it before all our protons have decayed. This means that the breaking of SU(5) 

down to SU(2) 8 SU(2) 8 U( 1) must occur at an extremely high energy scale, in 

such a way that the gauge bosons responsible for the exotic interactions 

acquire masses of the same order of magnitude and lead to essentially no 

observable effect (with the eventual exception of proton decay at an extremely 

low rate). After such a (first step) breaking, we come back to the situation 

of the SU(3)8SU(2)8U(I) model, with however the bonus of relations between 

the couplings. The latter symmetry gets itself broken down to SU(3) i U (1)e.m. 
(second step), like in the Salam-Weinberg model. This ~reaking occurs at a 

considerably lower energy than the first one. 

In the SU(5) model, symmetry breaking is supposed to be spontaneous, 

through the Higgs mechanism. We recall the main lines of this scheme. The 

Higgs boson potential is supposed to be minimum for a non zero vacuum expec­

tation value of some of the Higgs fields. Through their minimal couplings to 

the gauge bosons, they give some of these gauge field masses, and, through 

Yukawa couplings, they also give fermion masses. There are as many generators 

broken by the non vanishing expectation values as there are real Higgs bosons 

which disappear, transfering their degrees of freedom to the gauge bosons. 

If the symmetry of the Higgs potential is no~ larger than the symmetry of the 

whole Lagrangian, the other Higgs bosons survive as massive physical particles. 

If this symmetry is larger, some of these Higgs bosons remain massless (pseudo­

Goldstone bosons[22]), at the lowest order in perturbation. 

As the two stages of breaking occur at very different energy scales, it 

is convenient to treat them successively. 

a) The first stage of spontaneous symmetry breaking (SSB) 
SU(5) ~ SU(3) 8 SU(2) 8 U(l) 

Our first problem is to determine the nature of the Higgs multiplet re­

quired. As one wants to give masses to the 12 exotic bosons X and Y, one 

needs at least 12 Higgs bosons. On an other hand, given a Higgs representation, 

there are only a few possible patterns of unbroken subgroups. The remaining 
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symmetries after SSB of SU(N) have been studied in the literature for the 

Higgs representations of low dimensions. The results are just listed below, 

illustrations being given in the forthcoming detailed discussions about SU(5). 

Higgs boson representation Remaining symmetry after 
spontaneous breaking 

Fundamental D=N SU(N-l) 

Antisymmetric 2nd rank tensor 

D = N(N-l) 
2 

SU(N-2) 

or SO(2,9,,+I) 

Symmetric 2nd rank tensor 

D = N(N+ 1) 
2 

SU (N-!) 

or SO(N) 

Adjoint D = N2-1 SU(~) 9 SU(N-,9,,) i U(l) 

or SU(N-l) 8 U(I) 

Tabl.e 8.1 

Symme;tJty pa:t:teJtn. a6:teJt SSB by a g,i.ve.n. H,i.gg-6 JtepILuerr.ta.:ti.on. In :the. ~e.c.on.d 

c.o.wmn., Q., ~:ta.ncU, 60IL :the ,i.ntegeJt paJt:t 06 N/2 • "OIL" me.an6 :tha;t one. 06 :the. 

two pO~.6,i.bi..LUi.u OJt :the o:the!t ~ c.ho.6 e.n ac.c.oJU:.Ung :to :the. va.lu.u 06 :the. 

paltame:te!t.6 ,in :the. H,Lgg-6 po:tenV..a.i.. 

This table shows that 24 Higgs fields in the adjoint representation 

offer the simplest possibility(*) for obtaining the required first stage 

breaking of SU(5). As an illustration of how these results on SU(N) breaking 

are obtained, we examine the two cases of the fundamental and the adjoint 

Higgs representations, the former one being of interest for the second stage 

breaking of SU(5). 

i) Higgs fields in the fundamental representation of SU(N) 

The Higgs fields form a vector of dimension N, {h } , which transforms 
Ct 

(*) One can show tha.t only the real representations of SU (5) may contain 
a singlet of SU(3) ~ SU(2) ~ U(I) , and thus have to be considered. The next 
real irreducible representations beyond the adjoint have dimensions 75 and 
200 ! 

http:JtepILuerr.ta.:ti.on
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according to Eq.(6.1) 

h ...,. (1 - ioCL) h 

The most general SU(N) invariant renormalizable Higgs potential can be 

written as 

V(h) (8.1) 

2 
~ and A are real numbers. A must be > 0 in order for V to be bounded from 

below. The ground state is obtained for 

aV o CL = 1, ••• ,Nah = 
a. 

that is for 

= o (8.2) 

One solution of (8.2) is {h} = 0 , for which V =0 • This is the minimum for 

negative ~2 • For positive u2 , the minimum of V is reached for the other 

solution 

(8.3) 

of energy 

Thus for ~2 > 0 , there is spontaneous symmetry breaking. {h } is a vector 
o 

of fixed length and of arbitrary orientation in the representation space. 

One can always transform the h fields into a new vector (which we relabel 
o 

h ), by a global SU(N) transformation, in such a way that the new h points 
o th 0 

along the N coordinate axis. Then 

This vector is invariant under the SU(N-l) subgroup acting upon the (N-I) 

first coordinates. This is the result announced in the above table. There 
2are (N -1)-«N-l)2_ 1) = 2N-I broken generators. According to the general 
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theorem, 2N-I out of the 2N real Higgs bosons of {h} disappear, so that 

there is only one real physical Higgs particle left. 

ii) Higgs fields in the adjoint representation'of SU(N) 

They can be represented as a second rank traceless tensor H. j , which 
1. 

transforms under SU(N) according to Eq.(6.3) 

H 	 + H - i[ ca , H] 

The most general invariant potential is (up to a cubic term, which is absent 

if we impose the symmetry H+ -H) 

2 2 Al 2 2 A2 4 
v 	 = - .L Tr H + - (Tr H ) + - Tr H (8.4)

244 

2There is SSB if u is positive. We want to find out the possible ground 

states for this potential[23]. Due to the SU(N) invariance of V, the various 

possible ground states differ from each other by SU(N) transformations. We 

may thus look for the minimum of V after a transformation of the fields which 

diagonalize the (hermitian) matrix H . The new fields (relabelled H) form the 

matrix 

jH. j = c. a. 
1. 1. 1. 

N 

L a. 
1. 

= 0 
i=l 

so 	that the potential reads 

(8.5) 


We 	 first look for a minimum of V at La~ = R2 fixed. One has to minimize 
\ 4 2 \ 1.

.:\2 	 L a at fixed R and for L a i = 0 • Using 2 Lagrange multipliers 02 and 01i 
for these constraints, the a. 's must verify

1. 

rdSo, all the a. 's are solutions of the same 3 degree equation, and thus 
1. 

take at most 3 different values. If they are all equal, they all vanish due 
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to La. = ° (V=O). We now specialize to SU(5) and enumerate all possible 
~ 

configurations with at 	least 2 different values for the 5 ai's. 

(A) 	 2 different values. The solution is 


R

(1) either ~ (1, 1 , 1 , 1 , -4) 

v20 

ff 	 3 3(2) or ITS R (-1,-1,-1, 2' 2) 

(B) 	 3 different values. Their sum is °as there is no second degree term 
rdin the 3 degree equation they verify. One finds 

R
(3) either (0,0,0,1,-1 )

(2 

(4) or TR 
(1,1,-1,-1,0) 

For these 4 solutions, 	the values of V are of the form 

V = 
n 

13 7 I 
with sn = ( 20' 30 ' 2 , ±) respectively. There is a minimum with respect 

to R2 for A1+A 2s > ° (otherwise V is not bounded from below). The minimum, n 
obtained for 

2 
R2 11= Al + A2sn 

4-uis 	 V = n 4 (AI + A2s )n

For a given point in the A1,A2 plane, the absolute minimum is the smallest 

of the 4 values V 
n 

For A2 < ° , the minimum solution is solution (I). 

22 11
CJ = o 



- 68 ­

For A2 > 0 , the minimum solution is solution (2). 

o-1 2z
-1H = cr cr = H (8.6)o o o

3/2o 
3/Z 

In order to determine the remaining symmetry, we remember that under 

a transformation of SU(5) represented by oa, H transforms according to 
o 

H -+ H - i[ oa H]
o 0 ' 0 

so that H is invariant for all oa's such that 
o 

[oCt. , H0 ] = 0 

For A2 > 0 and 30A 1 + 7A2 > 0 , OCt. is any matrix of SU(3) i SU(2) i U(l) 

while for AZ<O and 20A + 13A > 0, oa is any matrix of SU(4)8U(I) •
1 2 

This property illustrates the last result of Table 8.1. The allowed regions 

in the A1,A plane and the remaining symmetry pattern after SSB are sketchedZ 
in Fig. 8. 1. 

5U(3) ~ SU(2) 

SU (4) 

~ U(1) 

~ U(1) 

Ftg. 8. 7 - SU (5) bJte.ah.ing by H,igg-6 bO-6o n.6 ,in the. adjo,in:t Jte.p1tU e.n:ta.ti.on. In 
the plane 06 the two coupling-6 Al and A2 00 the H,igg-6 pote.ntial (Eq. (8.5)), 
the 10Jtb,idde.n doma-in (unbounded potential) -i..-6 -6ha.ded. In the. allowed domain, 
the. Jte.g,iOYl.-6 wheJLe the -6ymme.:t!ti.~:, 5U(3) i 5U(2) i U(I) and 5U(4) i U(l) ltupec­
liveiy a.Jte. pJte.-6 eJLved a.Jte/:, e.pa.Jta.-ted by A2 =o. 

http:e.n:ta.ti.on
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From now on, we assume that we are indeed in the situation where A2 is 

positive and larger than -30A /7 . This situation is stable against radiativel 
1[24]. t he H' 

~ggs potent~a 
. 

correct~ons to . 

In the same way as the gauge fields may be considered as members of 

the algebra, and represented in the representation 5 by Eq.(7.9), we write 

the Higgs fields in the adjoint representation as the sxs matrix, 

24 
H = L 

a=l 

which satisfies 
24 

Tr(H H) = 2 H2 
a=l a 

Using the explicit form of the T 's given in Eqs.(7.1,2,3,7,8), we write 
a 

1 
I ........! ~.Zx +~.Zy 
I 
I 

H = +12 (8. 7)---------------r-------------­
1 

.... .... tl
1 

(Rx,Zx + ~.Zy) I 
I 

In this equation, all H fields have vanishing vacuum expectation 

values, the constant /fSoo TB being separated out. The Higgs bosons have 

the same charge as the corresponding gauge boson~which also belong to the 

adjoint representation 

(i) the 8 H~ 's (coloured and thus presumably confined), ~ and ~ have 

zero charge. 

(ii) ~+) = 

has charge + 1. 

(iii) the 3 complex ~ and the 3 complex ~ (colour triplets) have charge 

-4/3 and -1/3 respectively. 

The gauge fields which are coupled to those Higgs fields which have 

non vanishing expectation values acquire masses. The Higgs-gauge couplings 

are obtained from the term 
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of the Higgs Lagrangian, where D is the covariant derivative 
II 

= 

We have used hermitian fields so that D is hermitian. The gauge boson mass 

term is identified as 

= 

with H given by Eq.(8.6).
o 

The mass matrix thus reads 

(8.8) 


The 12 generators associated with the gluons, the W's and the B obviously 

commute with H • These gauge bosons thus remain massless, as they must do. 
o 

The masses of the other 12 X and Y bosons are easily computed from Eq.(8.8) 

and. the explicit representations of the corresponding generators (Eqs.(7.4) 

and (7.5». One finds 

25 2 2 
= = 8 g 0'0 (8.9) 

The reason why all these masses are equal is that, at this stage, SU(3) i SU(2) 

is exact. 

The 3 ~ and the 3 ~ remain massless in the Landau gauge. They can be 


gauged away (unitary gauge - see the beginning of Section 4), and their 12 


degrees of freedom are transferred to the 12 gauge bosons which become mas­


sive. The 12 physical Higgs bosons HG ' ~ , HB acquire masses, which we com­


pute by taking the part of the Higgs potential (8.4) quadratic in these 


fields, using the representation (8.7) of H . One finds: 


2 5 2 m = crH '4 A2 0G 

2 2 
m~ 5 A2 0'0 (8.10) 

2 7 2 m = (15A 1 +2" A2) crH 0
B 
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The 12 physical Higgs bosons have extremely high masses of the same order 

as the X and Y masses also proportional to cr (see Section 9 for orders of o 
magnitude). The choice A2 very small seems unnatural, and anyway such an 

artificial adjustment would be destroyed by higher loop corrections to the 

Higgs potential. 

b} Second stage of breaking SU(3} Q SU(2) 9 U(l} .... 

The second stage of SSB breaks SU (2) i U(1) down to U (l), and also e.m. 
gives masses to the fermions, which are still massless after the first stage 

exactly as in the unbroken Salam-Weinberg model. By the way, it happens that 

there is no Yukawa coupling at all between the fermions of the 5 and 10 and 

the Higgs fields in the adjoint representation (see below), so that not only 

H ,but all Higgs bosons of the adjoint decouple from fermions. 
o 

We recall that the form of a Yukawa coupling of fermions to a generic 

Higgs field ¢ is 

The problem is to determine which Higgs representation can be involved. The 

5 multiplet tp is 

tp := {d. , e + 
, -v 

c 
}R

~ 

and the conjugate 

i ­tpc := {d ,e ,-v}
L 

The 10 multiplet is 

i + 
:;;M {u ,u., d. , e }L 

~ ~ 

and its conjugate loS 

C i i ­M = {11. 
~ 

, U ,d , e }R 
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Terms like fRfL are thus to be found in(*) 

or 

We recall that the charge conjugate of a spinor f is defined as 

fC = C(f)T 

so that 

C Ct _MT
M = (C (M) T) = MT == * T Ct

Yo Yo Yo Yo 

MT C*== 

We have used the fact that in any gamma matrix representation Yo =y: and 
TC = _c . 

The only Higgs representations giving rise to fermion mass terms are 

then to be found in 

(i) 5 8 10 5 + 45 

whose Young tableaux (see Appendix) are 

0 + (8.11)~ ® 8 ~ 
(ii) or 10 i 10 = 5 + 45 + 50 

with Young tableaux 

rn (8.12)+B ® B ~ + EP 
We first se~ that the adjoint is absent, the candidate Higgs representations 

being 5, 45 and 50. Moreover the representation must contain at least the 

cM ~ l~ Yukawa couplings are forbidden by chirality. 

~c ~ ~ can couple to reps 10 and 15. In the latter case the neutrino could 
acquire a Majorana mass. 



- 73 ­

(l,2) representation of 5U(3) i 5U(2) in order to give 5U(3) invariant masses 

to the fermions. This leads to reject the 50 representation which decomposes 

under 5U(3) 85U(2) according to 

50 ::: (8,2) + (6,3) + (6,1) + (3,2) + (3,1) + (1,1) 

The 5 and 45 representations have the following 5U(3) i 5U(2) decompositions 

5 ::: (3,1) + (1,2) 

45 = (8,2) + (6,1) + (3,3) + (3,2) + (3,1) + (3,1) + (1,2) 

The simplest choice is to assume the existence of one multiplet {h} of 

Higgs bosons in the fundamental representation. 

The Higgs potential is minimum for a non vanishing value w of the 

5 a.. 2


Higgs fields {h}, that is (see § 8. a) i» < L h n >::: W • The value of w 
0.-1 ex. 

will be far smaller than that of (J characterizing the 5U(5)" 5U(3) 8 5U(2) 8 U(I)
o 

breaking, in order for the first stage breaking to be far stronger than the 

second one. As we have seen in Section 3, the order of magnitude of w is 

200 GeV, whereas, as will be shown in Section 9, cr is of order 10 14 GeV. 
o 

The complete Higgs potential with both the adjoint H and the fundamental 

{h} representations present, and coupled to each other, is (assuming again 

h .. -h and H .. -H symmetries) 

112 2 Al ( ~2 A2 4 2 tAt 2v __ Tr H + - Tr H + - Tr H - m h h + - (h h)t""_ 

2 4 4 2 

(8.13) 

Suppose first ex. = S ::: 0 • The situation has been studied in part a) of this 

section. For positive m 2 , the minimum is obtained for 

2
2 m<hth> = w = 

the direction of the vector ground state h in the 5 dimensional space being
o 

arbitrary. As a function of H , the potential is minimum for a field confi­

guration H ,which, after a suitable 5U(5) transformation reads 
o 
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I 

-1 
-1 

H -1 (8.14)
o 3/2 

It is clear that in order for SU(3) symmetry to be preserved by the 2nd 

stage breaking, the vector h has to point in a direction contained in the o 
plane of the two last coordinates. Hence h has to be 

o 

0 
0 
0 (8.15)h = 

0 
O

h4 
hO 

5 

Once it is of this form, an SU(2) transformation which leaves H unchanged,
o 

allows to write it 

0 
0 
0h = (8.16)

0 
0 

A\ w- T 

so that the SU(2) 8 U(l) SSB generated by {h} is identical to that of the 

Salam-Weinberg model, as described in Section 3. Therefore, the crucial 

point is to insure that the minimum of the complete potential V of Eq.(8.13) 

is actually obtained for h in the form (8.15), when the couplings a and B 
o 

of the hand H fields are non zero. 

RemaJtk 

One should notice that even in the case a = B= 0 , hand H get coupled 

by radiative corrections (e.g. gauge boson exchanges). In the absence of 

such couplings, the part of V (Eq.(8.13» which contains only {h} has SU(5) 

symmetry, a larger symme~ry than that of the rest of the Lagrangian after 

the first stage breaking. As stated at the beginning of the present section, 

we might have to face a situation where pseudo-Goldstone bosons (massless 

physical particles not associated with a broken symmetry) remain in the 
I 22] h' . d d . . 1 Sspectrum . T LS LS easy to un erstan Ln our part1cu ar case. uppose 

h has the form (8.15) in the absence of h-H couplings. Among the 4 real o 
fields contained in h4 and hS ' 3 fields are "eaten" by the 3 gauge bosons 

-+ 
W , 

http:Eq.(8.13
http:Eq.(8.13
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and one field remains as a massive Higgs boson, as in the Salam-Weinberg 

model. But the 6 real fields of hI ' h2 ' h3 remain massless. There is no 

mystery about what happens. In fact, in the absence of coupling, the generic 

situation for h after the first stage breaking is no~ (B. 15), but rather,
o 

o 
o 

say 	 h3 , since the h fields know nothing about which axis among the 5 
o 

O
h

5 

SU(5) axis are the 3 SU(3) axis and the 2 SU(2) axis. In this case, both 

SU(3) and SU(2) are separately broken. 5 real Higgs fields among the 6 of 

hI ' h2 ,h3 disappear, and 1 remains as a massive particle, while as usual 

3 disappear among the 4 of h4 ,h5 ' the last one being massive. So, in a 

generic, uncoupled situation, one in fact does no~ expect pseudo-Goldstone 

bosons to be present. If the couplings are turned on (by radiative correc­

tions or explicitly by non zero values of a and B), the h fields which do 

not disappear anyway get large masses (-0 ) due to the terms hth H2 and 
o 0 

ht H2 h • 
o 

A complete treatment of the coupled potential (B.13) can be found in 

Ref.[25]. There it is shown that for S positive, the couplings of {h} to H 
actually provide ones with the orientation required for {h } (Eq.(B.15». 

o 
The desired breaking SU(5)Ji. SU(3) 9SU(2) 9U(1)...b,. SU(3) 9U (1) is 

(*) . . e.m. 
thus obtained in a natural way • The m1n1mum of the potential is finally 

realized for the following Higgs configuration 

(B.]7) 

-1 
-1 

H = 0 -1 
o 	 0 

(*) Here "natural" means that the desired breaking does not require any 
t1ne tuning of the parameters, so that it survives small variations and 
presumably to higher order effects. In our case, only inequalities on the 
Higgs potential couplings have to be fulfilled. What will be seen to be 
unnatural is the value of w/o (hierarchy problem, see Section 9).

o 

http:Eq.(B.15
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The terms proportional to € in H transform like an adjoint representation
o 

of SU(2). They reflect the SU(2) breaking induced by h • As shown in Section 
o 

3 (value of p = GN/G in excellent agreement with a breaking by an SU (2)F 
Higgs doublet), the weak interaction phenomenology requires cr g to be much 

o 
smaller than w • Computation shows that the condition E« 1 is in fact 

insured provided w/cr is very small. The problem of how obtaining this 
o 

"hierarchy" of vacuum expectation values in a "natural" way is a completely 
. [26] f· d h" 11 .opened quest~on . One ~n stat ~t requ~res very strong cance at~ons 

in the expression for ~,between terms which are a priori of order MX,y ; 
moreover these cancellations, when imposed at zeroth order in pertur­

bation, are not preserved by higher order loop contributions (the coupling 

constants are very large as compared to 10-13 ). The so-called hierarchy 

problem is precisely that the potential parameters have to be adjusted up 

to many decimals at each order in perturbation. As a conclusion about this 

breaking scheme of SU(5), we may say that, while the two required steps may 

be achieved in a very simple and elegant way, the need for a fine tuning of 

the parameters is an up to now unsolved problem of the model (including 

other groups than SU(5), like SO(10) for example). 

Fermion masses 

We come to the predictions of SU(S) for the fermion masses, generated 

by the second stage SSB. The most general Yukawa couplings of the Higgs 

bosons in the 5 rep. to the fermions of the (5' + 10) rep. take the form 

(Eqs. (8. 11,12» 

LHiggs(S) = G ha ~B M -..!. G gaSyon h (M ) T C*M.l'n + h. c (8. 18) 
as 4 a o~Y u 

In order to understand the structure of the second term (the normalization 

is a matter of convenience), one remarks that 5 can be obtained as the 

totally antisymmetric product of four reps.S (i.e. of two reps.l0). So, g 

being the fully antisymmetric tensor with 5 indices, the second term is of 

the form I ha<pa , the singlet piece of 5 is. 
a. 

Since only hS has a non vanishing vacuum expectation value w , the 

first term is readily seen to yield the following mass term : 

-6 = Gw + h.cMl tV MS8 

Gw + = (~ d-i d. + e + h.c (8. 19) 
/2 ~ 

R ~L R e~) 
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The coupling constant G may be complex, G= IGlei~ . Any fermion f appears 

in M} under the form 

= 

~ -i~ fso that eac~ chiral fermion field fL ' fR may be redefined, f L e 
or fR ~ e~~ fR in such a way that M} reads 

(8.20) 

The second mass term is 

1 -G 5Syon [ ]T * = -4" we MSY C Man + h.c (8.21) 

The right hand side of this equation is obviously symmetric under S +-+- Y 

and a++ n • We remark that it is also symmetric under the exchange of the 

two pairs (By) and (on). So is the E tensor, and moreover we have 

(M ) T C* M = [ (M ) T c* Monf =By on SY

= (M ) T c* M on By 

We have made use successively of the facts that the l.h.s., a scalar in 

Dirac space, is invariant under transposition, that two fermion fields 
TanticoImllUte and that in any gamma matri."'( representation C = -c . Hence 

the four terms in (8.21) where one index among B,Y,o,n is equal to 4 are 

equal. We may thus write 

__ - ijk M T * l
M2 - G WE (ij) C 1'\4 + h. c 

where i,j,k= 1,2,3 . Using the explicit particle content of the 10, namely 

Mk4 = ukL/1:2 and 
m CURm) TuL

M•. = E.. --...-.. = 1:: •• C--­
~Jm 12~J ~Jm 12 

etc = 1 , we obtain 

,..... -m 
= - GUlu U + h.c

R mL 
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By phase transformations of the fields u and u ' made in order to absorbL R 
the phase of G , as above for M} , we finally get 

-m = - IGI w I u u 
m 

m 

This means term M2 concerns only u-quarks and thus leads to no prediction 

at all since G is arbitrary. On the contrary, the equation (8.20) predicts 

that the down quark and the electron have the same mass. This degeneracy is 

a consequence of the 5U(4) invariance of {h }. It is however broken by radia­
o 

tive corrections (see Section 9), the quarks being subject to stronger inter­

actions than the electrons, below the scale cr where 5U(5) is broken. o 

In what follows, we outline what happens if one multiplet of Higgs 

in the 45 (instead of the 5) is used. This 45 can be constructed from the 

product 5 8 TO = 45 + 5' • Since 10 = (50)5] t' , the 45 is representedS an 1sym. 
by a third rank tensor TaY , antisymmetric with respect to the upper indices. 

I T
ay

Furthermore , which would clearly represent the 5' , has to vanish. 
a 

Let us now as~ume that SSB occurs (with the 45) in such a way that 

5U(3) 0) 5U(2) 0) UO) is broken down to SU(3) 0) U (1). The Higgs fields 
e.m. 

which get non vanishing vacuum expectation values must have zero charge. 

The only zero charge components of Tare : 

(i,k = 1,2,3) and 

as one verifies from the general relation 

= 

with Q5 being the charge matrix in the representation 5 (Eq.§6.10)). The 

Higgs expectation values must be 5U(3) symmetric, so that we set : 

<T~> w o~ = 
1 1 

and the trace condition on T finally imposes 

= -3w = 

5ince the 45 representation appears both in 5810 and 100)10 , there are 

http:Eq.�6.10
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again two possible Yukawa couplings, namely 

and 

Substituting the expectation values for T, one obtains from the first term 

-i + +( -42G w e-3 lJJ M45 + ? lJJ MiS) + h.c = 12 GW(-3 R e
L 

+ ~ d! diL) + h.c 
~ ~ 

The second term yields 

as one verifies by manipulations similar to those made for the breaking by 

rep.5 . After suitable phase transformations on the fields, the mass term 

becomes 

(8.23) 

The prediction of SU(5) for a rep.45 (alone) of Higgs bosons is. thus that 

the electron should have a mass three times larger than the down quark mass, 

while the up quark should be massless. Such a situation before mass renor­

malization does not appear as very appealing. Of course one may mix both 

reps.5 and 45 of Higgs bosons, and play with the parameters, but very little 

of the predictions is left. 

c) Generation mixing 

So far we have considered the case of only one family. In the SU(5) 

model, nature is supposed to contain at least 3 such f.amilies. Let {lJJ'} and 
a 

M' be the corresponding representations 5 and 10 where the subscript a dis­
a 

tinguishes between various generations. The prime on lJJ and M means that, in 

general,w' and M' are linear combinations of the wand M containing the 
a a 

mass eigenstates, as we shall see now. In the presence of several families, 

the most general fermion Lagrangian is 
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L = i ~' ~ \jJ' + i Tr(M' i> M') + h ~'G M' + h M' T C G M' + h. c. , (8. 24)a a a a a ab b a ab 'b 

where summation over the generation index is understood. The term involving 

the covariant derivative is by definition proportional to unity in genera­

tion space. The Higgs part, where all SU(5) indices have been omitted in 

the couplings to the Higgs bosons {h}, contains matrix couplings (in genera­

tion space) Gab' Gab ' which generalize the couplings G and G of the pre­

vious section. They have no reason to be diagonal, and are in general arbi­

trary complex matrices. When h is replaced by its vacuum expectation value, 

one obtains two fermion mass matrices, and as announced, the fermions 

of \jJ' and M' are not mass eigenstates. Explicitly, the mass matrices are 

(8.25) 

u' ,d' ,e' here stand for charge 2/3, -1/3 quarks and charged lepton respec­a a a 
tively. They are linear combinations (to be determined from G and G) of, 

resp., the (u,c,t, ... ), (d,s,b, ••. ) quarks and (e,ll,T, ••• ) leptons,. which 

are the physical mass eigenstates fermions. The two non diagonal mass ma­

trices in (8.25) are : 

w = (8.26) 

and = (8.27) 

We have to show that they can be diagonalized through global unitary trans­

formations acting only on the generation indices. Being global, they do 

not affect the "kinetic" terms f i> f . Since the two matrices in (8.25) con­

cern d's and e's on one hand, u's on the other, we first diagonalize M, 

and then diagonalize M . 

We first recall that any regular matrix A can be put into diagonal 

form a by a bi-unitary transformation (V,U) 

V A U' 
..;. 

= a (8.28) 

a is furthermore real and positive definite. The proof is as follows. The 

matrix ATA , being hermitian, can be diagonalized by a unitary matrix U : 
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where a is defined as the square root of a2 whose all elements are positive. 

A being regular, det(a) = IdetA I ~ 0 , and a-I exists. We define a second 
-1 t

unitary matrix V =a U A and Eq. (8.28) follows. 

Let now (V,U) be the pair of matrices in the generation space which 

diagonalizes M of Eq.(8.26). The new fields 

lP" = V 4J' 
(8.29) 

M" U M' 

are such that d" and e 
+" 

are mass eigenstates. We drop the double prime for 
a a 

them and write 

= m = m 
e a 

a 

The new u-quarks, un are still unphysical since (V,U) in general does 
a 

not diagonalize M of Eq.(8.27). From (8.29) and (8.24), the mass matrix 

between u" states is 

7N = U* M U

and we diagonalize it by a new bi-unitary transformation (V,U) which acts 

on charge 2/3 quarks only, not to destroy what is already achieved. The 

new u-type quarks are mass eigenstates, with masses m 
a 

In order to construct explicitly the physical u-quarks, we remark that 

the symmetry of Mab (Eq. (8.27) allows a simplification. It implies that N 

also is symmetric, so that 

In terms of the diagonal form Mof N , which by definition verifies 
~,...,,..., 

N = V ,\1 U , this equality means 

= 

http:Eq.(8.27
http:Eq.(8.26
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It shows that the matrix S =Vor , which commutes with the diagonal M2 

the elements of which are by assumption all different (no degeneracy in 

flavour space), is also diagonal. Since it is unitary, 

itp
a = e cab 

,..., ':':'*
We then replace V by S U ,and get for the mass matrix between u-type 

quarks 

which shows that the left handed and right handed mass eigenstates are 

= Uun 
kL 

= S U* u"
kR 

Here we have restored the colour index k. 

Finally, since all neutrinos are massless (in the model), any linear 

combination of neutrino fields is a mass eigenstate. It is a matter of 

convention to set 

v :: v" 
a a 

According to their definition in terms of the original fields, the 

physical fermions fall in either of the three classes (d,e,v) or ~ or 

• Since the interactions with the gauge bosons were written in termsukL 
of the original fields (with primes), these interactions which involve 

different class physical fermions contain Cabbibo type mixing angles and 

(or) phases. Let us make this point more explicit. The fermion-gauge boson 

interactions, in terms of the original fields, are (Eqs. (7.13,18) : 

,\a ..... 

-g 'Gl1 

a 
I qf Y q' + w11 If' y f' 


112 f' L 11 2'
T 

L
{ quarks erm~ons 

3 ].l
+ ) -

5 
B I 

fermions 

[X~ ( . d,1 y +' . 'k _~_ ++ e e:~J (~, ) . y u' )
12 11 J 11 kL 

y~ 
d,i - +' ijk+_1_ (v Y11 L 

u' i Yll 
eL + IS (~')

J 
. Yll dh) + hOC]}

12 
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A sum over all generations is understood everywhere. The first transforma­

tion (V,U) which acts over all types of fermions leads to the same inter­

actions in terms of the d, e and un fields. But the second one, defined 

by (if ,Ii), or equivalently (SU* ,'U') , distinguishes the un from the d and 

e fields, and the u£ from the ui • As a consequence the interactions with 
+

the W- and X,Y gauge bosons, which involve ut and ui linearly, are modified. 

Recalling that d = d" and u = Uu" are physical particles, we obtain forL L 
the charged weak current 

_1_ w+ _1_ w+a' y11 d' + h.c = u.r: y11 d£ + h. c
11 L L 1112 12 

_1 W+ - 1J I'V = uLy + h.c (8.30) 
12 11 

UdL 

The unitary matrix U is the usual generalized Cabibbo mixing matrix. The 

charged weak current couples the charge 2/3 physical quarks (u,c,t' ••. )L 

to the linear (charge -1/3) quark combinations U(d,s,b' ••. )L • IT depends 

on F2 real parameters if there are F families. However, the 2F quark fields 

have 2F-l arbitrary relative phases which can be used to absorb 2F-I phases 

of the U matrix elements in the quark field definitions. Hence the number 

of physically relevant parameters in U is F2 - (2F-l) :: (F-l) 2 • It is 1 

for F = 2 (the Cabibbo angle), 4 for F =3 (3 Cabibbo-like angles and 1 phase, 

responsible for CP violations in weak decays[27]). 

In performing the relevant,unitary transformations in the piece of 

the interaction Lagrangian which violates baryon number conservation, one 

has to be careful about the notations. Consider for example the quantity 

(~r ) j YII u which coupl~to XjJ • From our conventions (see the beginningkL 
of Section 5), (u'). = u,j is the Dirac conjugate of the spinor u,j=(u!)c. 

J c c J 
Since for any fermion (f ) = (f )L ' the current (uf)j yllukL can be

R
written 

= 

= (UJ!R) c Y u'
II kL 

As a consequence, when we transform the ur-fields into the physical u-fields, 

we have to take care of the different transformations occurring for the left 
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and right u" 

u' = Ut un Ut ot u= L L L 

but u' = U
T u" = UT ijT st u

R R R 

so that 

and 

From these identities, we find 

- *(~') . y U t = (u) . y S 
J l.1 kL J l.1 

The complete interaction with the X,Y bosons finally reads in terms of the 

physical fermion fields : 

x~ 
- g '21. (d- i Yll e+ ijk - * )y,(. to' + S (u) j Yl.1 S ukL 

Recall that in this formula, the symbols u,d,e,v are generic for respecti­

vely charge 2/3 , -1/3 quarks, charged leptons and neutrinos. We see that 

in addition to the Umatrix which already appeared in the weak charged cur­

rents, we have a new matrix S in the currents. In the present case, as we 

have shown, S is diagonal and its phases are not observable at the tree 

diagram level. Since furthermore, we know from experiment that ~ is closed 

to unity (small Cabibbo angles and CP violating phase), the interaction 

described by (8.31) is nearly identical to the original one (7.18). This 

simplicity disappears for more complicated Higgs systems : S is no more 

diagonal because the original mass matrix Mab is no more symmetric. Even 

with ij z 1 , (8.31) is no more diagonal in generation space. 

Let us make a final remark we have stated that the first family was 

composed of 
c ­- one 5 containing the physical d ' e and 'Je
L L 
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. .;. 
- one 1 0 conta~n~ng the phys~cal dL ' a combination of the variouseL 

left handed charge 2/3 quarks (u,c,t' ••• )L and another combination of the 

corresponding left handed antiquarks. 

c
In the same way, the second family is composed of a 5 made of sL ' UL and 

v ' and of a 10 with sL ' U~ and 2 combinations of respectively quarks and 
l1 

antiquarks, and so on. Concerning these statements, the following comments 

are in order. 

(i) As already said above, any linear combination of massless v's is a 

mass eigenstate, which allows ones to define the neutrino states in such 

a way that weak interactions induce only v ~ e ,v ~ U , transitions. 
e U 

The pairing (e,v ) , (U,v) , ••• is thus only a labelling convention for 
e U 

the v' s • The pairing (e ,V~VlJ) and (lJ' V~VlJ) ,say, involves exactly 

the same physics although in a rather awkward way. 

(ii) The mixing between the u's is severely constrained by existing data 

on weak interactions. For example the matrix U restricted to the two first 

families is nearly unitary (success of the original Cabibbo model with 

only one mixing angle e ). So, the other mixing angles contained in Umust 
c 

be small. 

(iii) In principle, one may associate the pair (e,v ) with any quark family.
e 

Such a choice would lead to the same present energy phenomenology except 

for the fermion masses(*). But this unusual association would however clear­

ly show up in X and Y interactions. With the choice (e,s) , (U,d) for example, 
.;. 0 + .;. 0

the proton decays p ~ 11 IT and p ~ e K rather than p IT and~ e 
o 

p ~ 11
.;.

K become Cabibbo allowed. 
o 

(iv) There is however no possibility, in the simplest SU(5) model for, say, 

the first multiplet to be made of the down quarks and of some linear combina­

tion of the physical leptons. 

(*) In Section 9 below, it is shown that after continuation down to present 
energies, the (asymptotic) prediction m =mb compares well with experiment 
(under the assumption of 3 families onl~). But the other mass predictions, 
in particular md =me ' have problems. It is thus not impossible, though a 
little bit bizarre, to make the associations (e,s) and (U,d). 
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d) B-L invariance 

As we have seen (Eq.(8.31», the X and Y gauge bosons connect quarks 

and leptons and thus the baryon and lepton numbers Band L are not conser­

ved. However, B-L is conserved in the simplest 5U(S) model as we shall see 

right now. The unbroken theory exhibits an additional global abelian inva­
i8xriance which we call U (1) = e- • U commutes with the 5U(S) transfor­x x 

mations. The gauge bosons and the Higgs bosons in the 24 are real (the 24 

is a real representation) so they must be U singlets.
x 

Let Xs 5 and x 10 TO be the eigenvalues of X for the fermions of the 
- , , h 

S,S and lO,TO respectively, Xs that of the Higgs bosons in the S. The inva­

riance of iiiSDlllPS and iiilODllIPIO requires xS=-xS and x10=-x · 
10 

In order for the couplings of the fermions to the Higgs bosons of the S, 

namely for terms of the form (Eq.(8.l8» : 

and 

to be invariant, one has 

= = o 

Hence setting arbitrarily 

= 

one obtains 

= 3 (8.32) 

= -2 

The breaking of 5U(5) by the adjoint Higgs representation preserves the 

U (1) symmetry because these Higgs are U invariant. This is not so for 
x x 

the second stage breaking since the non vanishing value W of ha is shifted 
-i/3x

byeS under a U transformation. Now the hypercharge Y of 5U(S) also 
x 

gets broken at the second stage. Using the explicit form of Y in a rep.S, 

http:Eq.(8.l8
http:Eq.(8.31
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-2/3 
(8.33)-2/3Y = 

and x~ = -2 (Eq.(8.32», we see that, for the Higgs bosons in the rep.5, 

(X+2Y) has the eigenvalues 

-10/3 
-10/3 

-10/3(X~ + 2Y) = 
o 

Thus X+2Y remains unbroken when the h fields acquire a non vanishing expec­

tation value in the last two directions(*). Let us now compute X+2Y for the 

fermions. Calling Band L the usual baryon and lepton numbers, we obtain 

and (8.34) 

(X+;Y) _ _ -1 _ -L 

e , \) e ,\)

L 

For the fermions in the representation 10, we get 

1 
= = B

3 c 
u 

1 = "'3 = B (8.35)u,d 

- -L 
e e 

(X+t) + = + 

(*) One may wonder where is the Goldstone boson associated with the spon­
taneous breaking of the global U symmetry. In fact, as X+2Y is unbroken, 
there is only one Goldstone bosoa, associated with X-2Y, say (and not two 
associated with X and Y), and this boson is "eaten" by the B boson, which 
is massive. This miraculous escape from the Goldstone theorem is known as 
the 't Hooft mechanism. 

http:Eq.(8.32
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B-L X+2Y 	
( X+2Y) =1 YHence =-5- is conserved. Moreover, since x d' ::I 0 a J. 5 d' 5 adj.a J.from which we learn that 

::I (B-L).. ::I (B-L)B = o(B-L) gluons W 

whereas 
2 

(B-L)X,Y = 
3 

= - (B-L) (8.36)
X*,Y* 

The same is true for the corresponding ~- Higgs bosons. Of course the non--X, Y 
vanishing of (B-L)X,Y is connnected to the fact that the X,Y gauge bosons 

(as well as the Higgs ~,Y) couple on one hand to 2 quarks (B = 2/3 , L::I 0) 

and on the other to one antilepton (B =0 , L =- -1) and one antiquark 

(B=-1/3, L=O) • For example the transition 

d C+u + 	 u .. Y ..
L 	 R ~ + R 

is allowed by the Lagrangian of Eq. (8.31) and indeed leads to the possibi­

lity of proton decay. 

RemtVLk 

B-L is not conserved for any Higgs system. The addition of a rep.4S 

or 50 is innocent in this respect, but suppose instead that we have an 

additional rep.IS of Higgs bosons. The U invariance of the Yukawa coupling 
-c t h 	 x
iPS iPS HIS requires XIS = 6 . Assume now that the zero charge, colour sin­

glet, 5U(2) triplet component of HIS' (H1S)SS ' acquires a non vanishing 

expectation value. This has several consequences 
2 
~ i) the relation 	 = is violated2 2 cos e mZ 


ii) the neutrino acquires a Majorana mass from 


= 

iii) 	B-L is violated as X+2Y is equal to 6+4 for (Hl~)5s . This point is 
related to point ii): B-L invariance forbids a Ra]orana mass at all orders. 

In such a case there is a physical Goldstone boson associated with 

(B-L) 5SB. The only way to get rid of it is to make the original Lagrangian 
tnot U invariant (e.g. by adding the trilinear coupling hshsHIS ).x 



- 89 -	
: , 

9. RENORMALIZATION OF THE SU(5) PREDICTIONS 

This chapter intends to show how much the predictions of exact 5U(5) are 

altered 	at present energies by 5U(5) breaking. The computational tool is the 
,. [28 ]renorma1~zat~on group • 

a) Coupling constant renormalization 

Let gl' g2 and g3 be defined from the part of the Lagrangian containing 

the B, the W's and the gluons 

gl nB)l- L f y Y f (9.1)
5 f' U 2 

erm~ons 

Similarly g is the X or Y coupling to the fermions. In absence of 55B, 5U(5) 
x 

symmetry means gl = g2 = g3 = gx· In the case of 55B, these equalities can be 

true only at very high energies, above the mass scale cr at which breaking
o 

occurs. To be more precise, let us recall that coupling constants are defined 

for a given scale u(the value of the external momenta at which the renormali­

zation conditions are imposed). If U, which is arbitrary, is v~ried, the cou­

plings and masses have to be varied in order for the physics to remain unchanged. 

This invariance of physics with respect to U leads to the so-called renormaliza­

tion group equations (R.G.E). gl' g2' g3 and gx are thus functions of U ("running 

coupling constants"), and they all become equal at very large U's. 

The RGE 	 for the couplings have the form 

a u au ga(U) = Sa ([gi(U)]' masses, Higgs self couplings and couplings to fermions). 

The S functions are computable in perturbation. For U much larger than all 

particle masses (u » cr ), the situation is identical to the symmetric one 
o 

(where all particles are massless) : the four S 's are thus equal, and accor­
a 

dingly the g's remain consistently equal in this region. As U decreases, the 

masses of the X and Y become non negligible, so that the values of the various 

B's become different. As a consequence, the corresponding g's have different 
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evolutions between the region ~ ~ cr and present energies. Before discussing
o 

these evolutions, we recall how the renormalization program is achieved. The 

Green's functions r (*) computed with Feynman rules for given bare mass m and 
o 0 

coupling g are in general represented by divergent integrals. These integrals
o 

are made convergent by some regularization procedure, such as for example the 

introduction of a cutt-off parameter I\. in the loop integrals over internal 

momenta. A renormalized Green's function r, depending on renormalized mass m 

and coupling g, can be defined as 

r(g,m) = lim Z r (g ,m ,A) (9.2)
1\-+<:0 0 0 0 

Z is a product of renormalization constants (**) • It contains 

- one factor Zl/2 for each external gauge boson leg,
A 


- one factor ZI/2 for each external fermion leg,

F 

- other factors associated with other external legs we have not to 


consider here. 


The limit A + +00 is taken at fixed g and m, g and m being redefined as func­
o 0 

tions of g, m and I\. according to 

-1 
0 
a = lim Z 

g go
1\.-+<:0 

-1 m = lim Z m m 01\.-+<:0 

The renormalization constants (Zg' Zm' ZA' ZF' ••• ) are functions of g, m and A 

(or g , m and 1\.). They diverge as I\. goes to infinity and are determined by the 
o 0 

requirement that the limit 1\.-+<:0 of Eq. (9.2) exists for all I.P.I. Green's 

functions. Proving renormalizability consists in showing that it is actually 

possible to compute these renormalization constants order by order in g from 

the requirement that all I.P.L. Green's functions are finite. The renormalization 

constants are determined up to parts which remain finite as 1\.-+<:0. Accordingly, 

the Green's functions are obtained up to some constants (with respect to external 

(*) It is sufficient to consider the so-called "I-particle irreducible" (1.P. I.) 
Green's functions (no way to decompose the diagrams into two disconnected pieces 
on cutting I internal line only). All Green's functions can then be built without 
introducing any new problem of convergence. 

(**)They are constants with respect to external momenta, but functions of the 
parameters (see below). 
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momenta). These constants are fixed by the "renormalization conditions", i.e. 

by specifying the value of a finite number of I.P.I. Green's functions at 

given values of the external momenta, usually defined as euclidian values 
2 2 1"" d· b .such t hat p. =-~ . By t he renorma 1zat1on con 1t10ns,. g and m ecome f unct10ns 
1 

of the particular mass scale II chosen. Hence, they are "running" coupling and 

mass g(ll) and m(ll). 

One has some freedom in choosing which set of I.P.I.Green's functions 

is used to impose the renormalization conditions. (It is sufficient to fix 

the values of all the propagators and of one vertex). Since the coupling cons­

tants (except gl) appear as the coefficient of the term of the Lagrangian which 

is cubic in the gauge fields A , the 3 A vertex may be conveniently used in the 
j.l 

following way. In the Lagrangian, the cubic term has the form 

(9.3) 

where f is the group structure constant and, in momentum space, P is a Lorentz
llVP 

tensor linear in the boson momenta. The 3 A vertex (the 3 A's are all either 

gluons or W's or X,Y) contains a term of this type, which at the renormalization 

point may be written 

(9.4) 

plus other terms with different Lorentz tensors in the p. 's, which are finite 
1 

and do not require renormalization. We then set the renormalization condition 

(9.5) 

and from Eq. (9.2) for the 3 A vertex (where group and Lorentz indices where 

omitted), we get 

(9.6) 
limA-+oo 

owhere ZA and Fa have to be calculated in perturbation as functions of go' mo 

and A. At lowest order, g (1..1) = g and the coupling constants are SU(5) sym­
a 0 

metric. The difference, by one order of magnitude, between the strong and 

electromagnetic coupling constants observed at present energies 1..1C::! II is 
o 

actually due to radiative corrections. The point is that the usual perturbative 
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m 
expansion is not valid due to the presence of large logarithms In X,Y • 

The role of the R.G. is precisely to sum up all these logs, leading1-10to a 

final result quite different from the lowest order. 

At next order (one loop), F~ is given by the graphs (computed at p~ =_1-12) 

A A 	 A 

Fa 
o 

+ I: + I: 
f A'HI 

A A 

and ZA ~s computed from the A boson inverse propagator 

'Ii\IAf\NV~.+ r. 
A:HI 

.A:HI 

2 2and a renormalization condition imposed to it at p = - 1-1 • In both cases, the 

third graph involves all the (Higgs and gauge) bosons which couple to the 

particular A considered. For example, if A is a gluon, the loop may involve 

gluons, X or Y bosons, or Higgs bosons. But it never involves W's or B's. 
3Since the fermion and boson propagators occur only in graphs of order g ,o 

at this order we may use the renormalized masses as well as the bare ones in 

the 	graph computation. Finally, as far as the dependence on A is concerned, 

all 	loop integrals happen to be logarithmically divergent, leading to terms 
1\2 2

Log 	-z ' where M is some typical scale. For each graph, the only scales are 
M 

the masses ~ appearing in the loop, and 1-1, so that all the results obtained 

through equations (9.6) to (9.8) can be gathered under the form : 

ga (u) = go + :~ Lr L bLIn ~2 2 +fL(*, ";)Jl + O(g~) 	 (9.9) 
L 1-1 +~ 

Note that, as there is only one bare coupling g , the four g (1-1) are not o a 
independent. Once the value of one of them has been fixed, the values of the 

others are determined. fL has a limit £L ~) as A-+ 00 It can be shown that• 

~ 1Lis moreover regular in both limits InL -+ 0 and -- -+ 00 • x is a constant 
1-1 1-1 

of order 1 coming from the loop integrations. The sum runs over all possible 
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. (*)
loops, ~ being the corresponding (bare or renormal1zed) mass • One sees 

from Eq. (9.9) that for U much larger than all the masses of the problem, the 

relation between ga(U) and go is that of the massless (unbroken) theory, the 

same for all a's: 

This is the result announced : gl(~)' g2(~)' g3(~) and gx(~) are equal for very 

high U's. 

Suppose now that we change the renormalization scale from ~ to U'. From 

equation (9.9) the relation between ga(~) and ga(~') reads for ~ close to U', 

after taking the limit A ~ ~ : 

,2+ 2 
(9.10)ga (~) =ga (U') + Sl'IT L g3 (L) [bLIn )l 2 ~ + 1l:)

L ~ +~ 

3In this equation, for each loop L g (L) has to be interpreted as a cubic monomial 

of the renormalized coupling constants, that is g3(L) = g3(~,) or g2(~')gb(U')
a a 

or ga(U')g~(U') or ~(~')' according to which vertices appear in L. For example, 

if the graph involves three-gluon vertices, g3(L) is to be reinterpreted as g;(~f). 
The evolutions of the four coupling constants are thus coupled to each other. 

oHowever, as stated above, the 1 loop graphs for FO
l (Fw) never involve Wbosons g uon 


(gluons) or B bosons as internal lines. Hence, at this order, the evolutions of 


g3(U) and g2(U) decouple from each other and only depend on themselves and on gx(U). 

For U' and U very different, Eq. (9.10) becomes useless (large In(~'/~)), 

and we must use the R.G.E. Recalling the definition of the B function 

(9.11) 


we are going to use (9.10) in order to differentiate g(~) with respect to u, .. 
which gives-the 1 loop contribution to S, and then to integrate the differential 

equation to get g(U). We remark that since \ is regular in both limits ~/U ~ 0 

and ~/~ ~~, u~ 1 (rot) vanishes in both cases and gives no contribution to B 
U LUI 

provided U is chosen far away from all masses. So, the contribution to B from a 

given loop is 

(*)Strictly speaking, some loops involve particles of different masses. Eq. 
(9.9) is thus somewhat symbolic. This complication however does not modify 

the conclusions. 
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3
~(u) b 2 2i) - for »U , as in a massless theory41T L ~ 

ii) 0 ()l2) 2 2for u «\2 ~ 
~ 

Hence extremely heavy particles decouple, which is a special case of the Appelquist 

and Carrazzone theorem[29]. That means that for U far below ~, My the X and Y 
contributions to the evolutions of g2 and g3 are negligible. If at the same time 

u is well above MW and MZ' these masses can be neglected, and g2 evaluates as an 

unbroken SU(2) coupling constant. 

In order to compute the evolution of gl(U), we have to use another Green's 

function. We choose the gauge boson-fermion vertex (more precisely that part of 

it which couples to the fermion via a YuBU coupling). Here, in addition to ZB' 

we need the fermion renormalization constant ZF' which can be computed from the 

renormalized fermion inverse propagator. That the evolution of gl decouples from 

the others (namely g2 and g3) is not as simple as it was for g2 and g3. Never­

theless it holds (in the one loop approximation) due to the Ward identities 

which relate the fermion propagator to the fermion-B field vertex. They have 

the consequence that the renormalized gauge coupling gl is related to the bare 

one simply through 

(Note that any reference to the external fermion has disappeared). So we have 

to consider only the B propagator (to compute ZB)and the decoupling holds as 

for g2 and g3· 

Summarizing: for MW,z « U « ~,Y' the X and Y contributions to the SiS 

vanish and the W,Z masses can be neglected. The three coupling constants g3(U) , 

g2(U) and gl(U) "run" as independent SU(3), SU(2) and U(l) coupling constants 

(SU(2) and U(l) are still unbroken). 

As a side remark, let us point out that a great variety of renormalization 

conditions can be used. They all lead to equivalent results (in perturbation), 

the results given by one renormalization scheme being obtained from those given 

by another one through a change of the coupling constants and masses. This is 

one of the aspects of the R.G. invariance. However this does not mean that the 

S functions obtained in different schemes are equal (6 is even gauge dependent) . 
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Only when all particles have zero mass, the first two coefficients of the 

expansion of 6(g) are universal[30]. The same "universality" holds in the 

so-called minimal schemes (MS) where the renormalization is done in a way 

completely independent of the masses. Note that this makes the MS not directly 

suitable for our purpose, as it leads to mass independent 6-functions, which 

apparently violates the decoupling theorem. In fact, in such schemes, the 

perturbative expansion is not valid at low energies, even after the R.G. 
MX Y 

"improvemene', due to the presence of large logarithms, ln T . The problem 

of the large logs and that of the lack of decoupling are related to each other 

if all the logs are summed up, the decoupling is restored[31]. 

For any pure SU(N) gauge group (and for U(I) setting N=O in the formula 

below), b is found to be(32].
N 

(9. 12) 


The first term in the bracket is the gauge boson contribution in the loops. 
a a a is not summed over. The Tfts (THts) are the gauge group generators in the 

representation 	of the fixed chirality massless fermions (complex massless Higgs). 
a 2 aThe trace of (T ) has the same value for 5U(3), 5U(2) and U(I), since the Tftsf 

are generators of 5U(5) , normalized as such. Taking 5U(3) for definiteness 

one has 

1 
= -2 

for each fixed chirality 5U(3) triplet. There are 4 such triplets per family 

{u~} , {d~} , {ui,L} , {di,L} • 50, for F 5U(5) families of negligible mass 

fermions, the fermion contribution to bN is 

-4F 
= -­121T 

The Higgs boson contribution is intrinsically small. We have to work in 

a manifestly renormalizable gauge, such as the 't Hooft, or R~ gauge (see 

section 4). In this gauge, there are two classes of Higgs bosons. A first 

class has very large masses, of the order of Mx y. This is the case first for , 
the 12 physical Higgs bosons of the adjoint representation. It is also the 

case for the 12 unphysical ones because in this gauge (section 4), 

the unphysical bosons have masses proportional to ~,y/~1/2 (we keep ~ finite, 
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for example the Feynman-'t Hooft gauge ~= 1). Finally, the 6 coloured fields 

of the fundamental representation {h} have masses of order a.x,Y because, as 

explained in section 8, they couple to the adjoint H. All these very massive 


Higgs bosons decouple and give no sizable contribution to a for ~ «a. . 

x,Y

We are left with 4 real fields in the fundamental Higgs representation. One 

is the physical Higgs, m - nv z' the 3 others are unphysical and have masses 

1/2 ' 


of order nv Z/~ • 50, only 4 out of the (24+ 10) real Higgs bosons may give 
., (*)

contributions to the a functions • For ~ »n. , their masses can be neglected.w,Z 

In this limit, their contributions are given by 


1 3 1 3(i) b = [(1.) 2 + (_ 1.) 2] = - for U( 1)- 121T 5' 2 2 121T TO 

1 1 1(ii) b = Tr for 5U(2)Cal = - 121r - 121T 2 

(iii) b = 0 for 5U(3) 

r They are indeed small as compared to those of the fermions and gauge bosons. 

Collecting all the contributions to the coefficients b , we finally obtain
N

U(I)} 
{
5U(2) (9. 13) 


5U(3) 

We note that F cancels in differences bN-b , , and, neglecting the Higgs boson
N

contributions, that the b's increase linearly with N. 

We are now ready to study the evolutions with ~ of the couplings. 5etting 
gr(~) 

ai(~) = 41r ,the solution of the R.G. equation (9.11) for Cl i is at the 1 

loop order the celebrated relation 

112 
-ex-.(~l.!~) = a.. (M) + b. ln U 2 (9.14) 

1 11M 

(*)We recall that any way the so-called unphysical Higgs bosons (together with 
the Fadeev-Popov ghosts), which have ~-dependent masses, have only the effect 
of compensating unwanted poles at k2 = m2/~ in the transverse part of the gauge 
boson propagators. For ~ finite, the contributions of this transverse part and 
of the unphysical Higgs separately vanish. For ~ infinite (Landau-'t Hooft), 
the poles are k2 =0, the decoupling does not hold, but the two contributions 
cancel each other. 
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This result is valid in any region for II and M , ~ « ~ « ~, provided 

a. (ll) and a. (M) are both small as compare to 1. a 
3 

is the usual strong 
1. 1. a 5 a 

interaction running coupling constant, = . 2e and a 1 = 3 2e· Notea 2 
s~n W cos W 

that a , the fine structure constant, and the Weinberg angle 6W are also "running". 

We have : 

-1 5-1 
= a

2 
(ll) + 3 a 1 (ll) 

3a (ll)
2 1 

tg e(ll) = (9. 15)
5a (u)

2 

Running coupling constants 

cr3 (ll) 
II 

I 
I 


I 
 I 

I 
 I 

I 
 !~) 

mass sccle I:L 

(GEV) 


F-iA. 9. 1 - SkeA:c.h 06 the evo£.u..ti..On6 06 the Jtu.nni.ng c.oupUng C.On6.ta.n..t:& aJ.. (u) • 

In oUWeen me!) Z a.nd mx V'. the a' & 06 su (3 J, su (2" U(1) evoR..ua.te J..ndepeJi.dent£.y. 

A6 II - mX V -v~ a.ppltoa.c.he.cL, the X, V bO-6on c.on-tJtJ..bu.tJ..on6 bec.orne -impotc.:ta.nt a.nd tend 

to JtutoJtt!. the c.ornpleA:e &ymme;tJr.y. Above mx,v" ali c.oupUng.6 aJt.e dO-6e to as(ll). 


The evolutions of the three couplings are sketched on Fig. 9.1. At a mass scale 

a little above the Wand Z masses, one has a 3 > a 2 > ale (The latter inequality 
2 3is due to tg e < 5)' From b3 > b2 > 0 and b < 0, we get that a 3 decreasesl 

faster than a 2, and that a increases. These 3 coupling constants are thus in
l 

a good position to meet(*). As one deduces from the decoupling properties, the 

(;)~~~~~~:elY, grand unification (like SUeS»~ "explains" why the strong inter­
actions associated with a gauge group SU(3) are stronger than the e.m. interactions 
associated with a gauge group U (1) c SU(2) 8 U(l).

e .m. 

http:impotc.:ta.nt
http:c.on-tJtJ..bu.tJ
http:a.ppltoa.c.he.cL
http:evoR..ua
http:Jtu.nni.ng
http:evo�.u..ti
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three curves come close to each other in the region ~ - ~,Y. A precise descrip­

tion of this region requires taking the effect of the X and Y mass carefully 

into account. For still larger ~'s the three curves have essentially merged 
55and there is only one rapidly decreasing (b5 ~ 12~) SU(5) coupling constant left. 

From the experimental data on two of the couplings, one can now compute 

the X and Y mass, and the value of the SU(5) coupling constant in the asymptotic 

region. This allows one to then predict the value of the third coupling constant. 

In other words, one can compute sine, say, in terms of a and the presently known 

(?) a . 
s 

As a first rough estimat~:)one does as if the three approximate expressions 

(9.14) for aI' a 2 and a 3 met at some unification point MGU ~ ~,Y. Let a GU be 

this common value. One has 

2
1 1 ~ == -­a (~) 

+ b3 In ~ 
s aGU 

GU 

2
1 1 5 8 ~ --= + =--+ (; b l + b2) In -2­a(~) a2(~) 3a (~) 3a

1 GU MGU 

Thus 

1 8 1 (9.16)a (~) - ":"'3a~(""'~~) == -12-~ 
s 

The (negligible mass) fermion contribution cance~out in this combination (as 

it has to) and we obtain the simple formula 

2 

1 8 = .!..!. In MGU 
 (9. 1 7) 

a(~) - 3a (~) 2~ 2 
s ~ 

( ;6! In 
M2 

;U had we included the Higgs contribution). We will apply this for­
~ 

mula for U a little above the Wand Z masses. The value for a is roughly known 
s 

thanks to deep inelastic scattering experiments, wh.ose results are compatible 

with 

(*)In this approximation we do not commit ourselves with any assumption about 
the nature of the (simple) unifying group_ The only assumption made is that 
the breaking of the unifying group down to SU(3) 8 SU(2) 8 U(l) occurs in one 
step only. 
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(9.18) 

and A ~ 500 MeV. In this formula F is the number of families which can be actually 

excited at the energy scale ~. In order to compute as at U ~ ~,we thus have to 

take into account all quark thresholds opened below Mw. As a first approximation, 

one considers a new quark as infinitely heavy below the corresponding threshold 

and as massless above it. This means that F in formula (9.18) changes by half 

a unit at each threshold. If a is still represented by Eq. (9.18), A also has 
s 

to change at each threshold, faking the associated non perturbative phenomena, 

in order to keep a (u) continuous. 
s 

a(~) is known on shell with an extreme precision 

2 2 1
a(~ =-m ) = -­

e 137 

We have to extrapolate this value in the euclidean region, up to u of the order 

of ~, mZ where we start our analysis. One finds : 

This value, together with that of as(~) obtained from Eq. (9.18) and the relation 

(9.17) leadsto : 

15 
~,y ~ MGU ~ 4.10 GeV 

and one deduces from any of the evolution equations 

1 
aGU 42Qt 

More refined computations have been performed which treat correctly the mass 

effects[33]. A detailed discussion is given in Ref.[34] • The result for ~~,y 
is 

14~,y = (6 ± 3) 10 GeV 

(for A = 0.5 GeV) , 

i.e. one order of magnitude below the previous result. The error quoted is the 

one estimated in Ref.[34]. With the latter value of Mx y and Eq. (9.15), one , 
predicts 
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C:I( 0.206 + 0.006 

This theoretical estimation is to be compared with the present world average 

experimental value[4] 

(9. 19) 


It is not clear whether or not there is a discrepancy between these two values, 

which by the way differ only by about 1.5 standard deviation. In particular 

the present experimental determinations neglect radiative corrections. 

b) Fermion mass renormalization(351 

The predictions for fermion mass ratios, like me ;: md for SSB by a 5 of. 

Higgs bosons, are also strongly altered by radiative corrections. As a matter 

of fact, only fermion masses relative to some superhigh energy scale may 

satisfy the lowest order predictions. This is certainly not the case for the 

mass defined as the position (computed perturbatively) of the fermion propagator 

pole (whatever it means for a confined particle, especially if it is light). The 

scale then involved is the physical mass of the particle, which is small. On 

the contrary, fermion masses defined from the value of some Green function 

evaluated at a scale ~ much larger than ~,Y verify the naive SU(5) predictions 

properties (at least for the simplest Higgs systems). Such definitions are the 

followings 

(i) 	the fermion mass is defined from the Yukawa Higgs-fermion-fermion 
·· 2 2 2 A h' . 8b h f() at t he p01nt 	Pi = -~ »~,Y. s s own 1n sect10n , t e er­vertex G Pi 

mion masses appear, at the tree level, as products of a Yukawa coupling constant 

G by the vacuum expectation value w of some Higgs 

Gordan coefficient A (or a sum of such products) 

field ~, up to a Clebsch­

m = A w G (9.20) 

In the renormalized theory, this relation becomes 

(9.21) 
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The vacuum expectation value is evaluated from a potential renormalized at 
. . 1 d h . 2 2 2the pOl.nt <P = 11, and the Yukawa vertex l.S eva uate at t e pol.nt Pi = -11 »~,Y. 

The ratio of, say, the electron mass to the down quark mass is then 

(9.22) 

2Ae = Ad in the case of SSB by a S of Higgs bosons. For 11 .. 00 the Yukawa couplings 

are SUeS) symmetric (exactly as the gauge couplings) so we recover the lowest 

order Sues) result for the mass ratio. This would not be true however in a more 

general case where several Higgs multiplets give masses to the fermions[3S 1. 

(ii) the fermion mass is defined from the fermion propagator 

S (p) = A(p2) (9.23)
F p-m(_p2) 

2 222 2by the value of the function m(-p ) at p = -11 , 11 »~,Y. This definition is 

useless in the involved cases above mentioned where the fermion masses do not 

obey the naive broken SUeS) prediction as 112 .. 00. 

In subsequent uses of masses in perturbative computations, one sets 

m=m(ll) if the typical scale involved is of order 11 • If we were to use m(ll), 

~ » ~:. the perturbative expansion would not be val~d due to large 109(0 ) • 
o 

In order to compare SUeS) predictions with "experimental" determination of 

fermion masses we have to scale them from their region of validity 11 » a.
x,Y 

down to the low energy region where they are measured. Here again, the renorma­

lization group makes the job of resumming the large logs. 

The renormalization group equation for the masses is 

(9.24) 

where y, called the mass anomalous dimension, is computed in perturbation.m 
The solution of the RGE is 

lnu 
f y (a(ll)) d(lnll) 

lnll 
m 

om(ll ) e 
o 

• 
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g(ll) ym(g')
f dg' 

g(11) S(g') 
"'0or e (9.25) 

where use has been made of the RGE for g, 

3 2 
At the I-loop level, B := -b .L and -.L 0 • b and yO are constants if4'IT Ym - 4'IT Ym m 
all the masses are neglected in the computation. The result of (9.25) is 

yO g(ll) 0 

-l) f ~ -L 
g 2b

g(llo) 
m(ll) = m(ll ) e = ( (l(lJ)) (9.26)

0 m(llo) a(ll) 
0 

If we choose to define the fermion masses from the fermion propagators, we 

have to compute all fermion self energies in order to obtain the y 's. For 
2 m 

II larger than the X and Y masses all (fermion) y 's are equal due to the m 
SU(5) symmetry being exact. The masses of, say, the electron and the down quarks 

evoluate with ll,but in the standard Higgs scheme their ratio remains fixed at 1. 

As the value of II is decreased well below ~,Y' the X and Y contributions go 

to zero and the various mass parameters follow different evolutions. 

As for the coupling constant renormalization, we make an approximate 

treatment, neglecting all masses exept the X,Y mass, taken as infinite for 

ll's below ~,Y (in fact up to II = ~,Y)' and assuming that the SU(5) prediction 

is verified at II = ~,Y. At first order we have to consider only one loop 

diagrams like 

.. .. 
p 

where a can be a gauge or a Higgs boson (Higgs bosons will be however subse­

quently neglected). Renormalization is achieved by imposing the renormalization 

condition 

SF(P) I 2 2 
P =-ll 

At a different point, the propagator has become 
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with, from the definition of Y ' m(~,2) ~ m(~2)(1-Y (a(~2))ln~) at ~'- ~ m m ~ 

The computation is simpler in the Landau gauge, where it can be shown that the 

fermion wave function renormalization ZF is finite. If furthermore all masses 

are neglected, ZF is a constant, fixed to one by the renormalization condition. 

That means A(p2) = 1. The computation of the diagram then gives: 

a aL (T )· . (T )· . (9.27)
R 1.,J L J,~a,j 

The T~'s (T~'S) are the SU(3) , SU(2), U(I) generators in the representation 

of the right (left) fermions. One sums over all possible gauge bosons. The 

reason for the occurrence of T , TR is the following. In order to get m(~'),
L 

one -1computes SF (p) from the self-energy diagram, and, due 2to A(p ) = 1 

m(~') 1 -I= 4 Tr SF (p) I 2 2 
p =-~' 

The trace is taken on Dirac indices, and the only contribution to m(~') comes 

from the case where the incoming and outgoing fermions have opposite chiralities. 

Since chirality is conserved at the gauge boson-fermion vertex, the transition 

from L to R in the fermion propagator goes as depicted on the next figure 

... 
L"i R"i 

The internal fermion propagator changes the chirality (by its mass term) and 

conserves the gauge index. The contrary occurs at each of the two vertices. 

The initial gauge index i is finally conserved since 

T
a aL .. T
1.J jka,j 

Neglecting the large mass X,Y gauge boson contributions, we only have to 

(*) The y 's are gauge dependent. However this dependence finally cancels in 
~ me (~) 

mass rat1.OS (e.g. () ) . 
md 11 
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consider those of the SU(3), SU(2) and U(I) gauge bosons. The results are the 

followings. 

i) SU(3) contributes to the anomalous dimension only for quarks because 

the leptons are colourless. One finds 

a 

2= -- (N =3) 	 (9.28)rr 

ii) SU(2) gives no contribution as (T )SU(2) = 0 
R 

iii) U(I) contributes by 


Y
( 1) = - -

3 
x 


o 	 2rr 

= ---
1 for charge 32 quarksIO'Tr 

1 for charge - 31 quarks (9.29)= + 20'Tr 

9 for charged leptons= -	 201T 

Using the above results for Y~ , the values of bN (Eq. (9.13» and the solution 

(Eq. (9.26» of the RGE for m the SU(S) predictions for fermion mass ratios 

thus get modified into (neglecting the Higgs contributions to the y functions) 

3 
4F 

(9 • .30) 

This result is rather sensitive to the number F of SUeS) families. For A-O.S GeV, 

one obtains 

3.6 	 3
md (10 GeV) 

= 5.3 for F = 4 	 (9.31)m 	(10 GeV)
e 	 { 8.5 	 5 

The present experimental situation implies that F is at least equal to 3 (though 

the t quark has not been discovered yet). In this case, one obtains at ~ = 10 GeV, 

from the known values of the e,~,T masses: 
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n;, ~ 6 GeV 


ms ~ 0.4 GeV 

{ 

md ...... 1.6 MeV 

This prediction, which was made[24] before the discovery of the y , is in 

good agreement with what is thought to be the bottom quark mass. Conversely, 

if ~ is correctly evaluated from the y data to be around 5 or 6 GeV, the 5U(5) 

prediction indicates that there are only three 5U(5) families. The top quark, 

then, would be the last quark to be ever discovered. 

The modifications due to RGE of the exact 5U(5) predictions for strange 

and down quark masses clearly go in the right direction. Quantitative analysis 

is however extremely hard to perform, due to the lack of an operative definition 

of what a light quark mass is. 
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10. THE PROTON LIFETIME 

In this short section we just gather the various ideas and formulae, 

already presented in different parts of these lectures, which are relevant to 

the problem of nucleon stability. Quantitative results on the proton lifetime 

within SU(5) models will be reported, but we also have to point out that 

many of the properties exhibited by SU(5) are not specific to it and belong 

to most grand unified models. 

Nucleon decay may occur only if the baryon number B is not conserved 

(disregarding neutron a-decay which does not occur in most nuclei), leading to 

mesons and leptons. At the end of section 7, we noted that B (and L) conservation 

is unavoidably violated in models where quarks and leptons are in the same irre­

ducible representation. Such is the case in SU(5) where the right handed d-quarks, 
Ce+, V are in the rep.S, the left-handed u, d-quarks, e+ in the representation 10, 

and their charge conjugates in the corresponding conjugate representations (with 

similar assignments for the other families). Whenever such a situation is reali ­

zed, there are gauge bosons coupled to currents build from a quark and a lepton. 

In SUeS), these gauge bosons are the X and Y bosons, and the general couplings 

of Eqs. (7.11) and (7.12) led us to the explicit formula (7.18) which exhibits 

all the B,L violating interactions induced by gauge invariance. Besides the 

currents of the form q Y t which mix quarks and leptons, Eq. (7.18) also con­

tains terms like 
_ 
qCylJq 

f , 
lJ 

involving a quark and an antiquark, which allow for 

qq' or qCqfC annihilation. Again this property is not specific to SU(5), but 

rather belong to any model in which at least some of the quarks and antiquarks 

are classified in the same irreducible representation (like the 10 of SU(5»). 

Therefore, in models where bot.h c.UIVl.ent.o q Y Q, and qCy q f are coupled to at
lJ lJ 

least one of the gauge hosons G, there is the possibility of 6B= 1 processes 

generated by the elementary interaction 

(10.1) 


At present energies, the relevant symmetries are SU(3), SU(2) , U(1) 

which all conserve separately Band L. However, if these symmetries are the 

symmetries remaining after SSB of a larger symmetry group g, then the process 

(10.1) may become possible, although its rate is considerably lowered by 

symmetry breaking. The situation is exactly the same as in the Salam-Weinberg 

model which leads to an effective 4 Fermion-interaction, weak at low energies 

as its strength is measured by GF , 
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2 
-g- (IO.2) 
8 nv2 

In SUeS}, the strength of the B,L violating interactions is 

GB L g 
2 

(10.3)--'- = 
8 212 ~,Y 

14
and, as we have seen in section 9, ~,Y is of order 10 GeV. So, hopefully, 

the corresponding rate is extremely small. 

In the broken situation, there is in general other interactions leading 

to B,L violation, which are mediated by some of the Higgs bosons which couple 

to fermions. In SUeS}, broken by an adjoint and a fundamental representation 

of Higgs bosons, only the latter couple to fermions (section 8b). We recall 

that in the standard model, among the 10 real Higgs fields {h}, 3 are "eaten" 
+ 

to give masses to the W-, Z bosons, and is the low-mass physical Salam-Weinberg
o 

boson which does not lead to B,L violating processes (it is colourless). The 6 

other ones (colour triplets, SU(2) singlets} induce B,L violation via the inter­

action described by Eq. (8.18) for one generation, and Eq. (8.24) for the general 

case of any number of generations. The effective strength of the four fermion 

interaction mediated by the Yukawa coupling G (or G) is 

The coupling G is related to the fermion masses (Eqs. (8.20), (8.21)), so that 

one has 

where is a typical fermion mass and w the vacuum expectation value of themf 
h Higgs field. On the other hand, the mass ~ of the 6 Higgs bosons under 

consideration, generated by the couplings to the Higgs H of the adjoint is 
·· . [24])of order ~,Y (g ~,Y if the h-H coupling is generated by rad ~at~ve correct~ons . 

Therefore one has 

(10.4)p 
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with p at most of order 1 and presumably of order g 2 • Higgs contributions to 

nucleon decay are found to be small, especially because it involves only light 

fermions. 

In order to compute the proton and neutron decay rates in SU(5) , various 

steps have to be achieved. First one has to take into account generation mixing. 

The X,Y interactions of Eq. (7.18) are replaced by the general one of Eq. (8.31) 

in section Bc. As argued there, the mixing matrix U is phenomenologically close 

to unity and S, a diagonal unitary matrix, has no visible effect at lowest order. 

There is no coupling dd-gauge boson, so that in a proton or a neutron, one may 

have uu or ud annihilations only. There are two kinds of elementary graphs to 

be considered (Fig. 10.1). 

Ko u dC } 11:0 

d .. ~C } 

d .. 
u 

: y I :u 
u bL+ 

e+ 

ba 

Fig. 70.7 - al an example 06 anni.hil.a..ti.on glUtph. Eve.n 60Jc. T1 = 1, one ma.y get 
4e.eond gen~on &~On6 in the 6ina.l 4tate. 

"""" 
b) exeh.a.nge glUtph. In the li.mi.;t u = 7, only 6.i1t.6t geneJULt.i.on pltodud6 

Me a.tlowed. 

Graphs of type ~ (annihilation) allow a change of generation, leading 

either to a strange quark accompanied by U + or v ,or to fermions of the 
U 

first generation. For the exchange graph of Fig.lO~, transitions from one 

generation to the other is Cabibbo suppressed. Once all graphs of type ~ or 

~ have been listed, one has to compute the corresponding matrix element, 

which is easy from Eq. (8.31). One then uses some wave function in order to 

describe the nucleon in terms of the u and d quarks. Since, due to the high 

value of ~,Y' the interaction is a contact interaction, the decay rate is 

proportional to the wave function at the origin squared IwN(O) 12. Finally, 

one needs some interpretation of the final states containing quarks and 

http:geneJULt.i.on
http:6.i1t.6t
http:anni.hil.a..ti
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leptons. One may compute the inclusive decay rate by summing over all possible 

qq'C final states for a given outgoing lepton. This gives the total nucleon 

width for each lepton type and the inverse life time. From the above conside­

rations, one expects the life ti~e to be of the form 

4 
(mx,y) 

l - ~----~~~ (10.5)
g41~(O) 12 ~ 

up to Clebsch-Gordan coefficients given by the interaction Lagrangian (8.31), 

and numerical constants coming from phase space. 

It is clear from Eq. (10.5) that the most important piece for computing 

l is the value of ~,Y. We refer to section 9 for a discussion of what the 

problems are, and to Refs.[33,34] for a complete study of the uncertainties 

involved. The value of g4 is (4n a )2 at a scale of order mx,y' by definitionGu
of the unification point (aGU-4~). It has to be further renormalized by 

radiative corrections and proper use of the renormalization group[24]. The 
. [34]presently admitted result found for l ~s p 

l = 8 x 1032±2 years
P 

in the standard SU(5) model. 

1030Since it happens that the range in between (the present experimental 
33lower bound) and - 10 years seems to be experimentally accessible, the last 

question of interest is that of the branching ratios for the various allowed 

decay modes. This subject has been recently studied by many people[37,33] • 

It is generally agreed that the most favoured channel is n e+ as it contains 
o 

the lightest particles· and because the corresponding exchange graph is Cabibbo 

allowed. There is more variety in the predicted branching ratios for other 
. 11' . h 1s h as +p0 , +n, +w. Th ch 1sexper~menta y ~nterest~ng c anne suc e e e e anne 

involving neutrinos are generally found to be suppressed. 

Among the properties found in SU(5) for AB= 1 processes, all of which 

have not been quoted here, s·ome are more general. For example, one may show 

by inspection of general effective Lagrangians[38]violating Band L conservation 

that B-L conservation should hold at a very high degree of accuracy, that 6S=6B 

transitions are forbidden, or that relations due to the weak isospin structure 

of the'Lagrangians exist between some inclusive rates involving given chirality 
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leptons. On another hand, it must be possible to distinguish between various 

unified models by more specific experimental investigations, such as the 

ve/e+ ratio or ~+ polarization in nucleon decays. Also it has been noted that, 

although the simplest Higgs mechanism leads to suppressions of channels like 

p ~ kOe+ or ~o~+ (Cabibbo suppression), it would not be so in other schemes 

involving at least 2 Higgs multiplets. So the measurement of ratios of "Cabibbo 

forbidden" to "Cabi,b<§ ]allowed" decay rates may help in distinghishing between 
3

various possibilities. This is especially worthwhile as the Higgs pattern is 

intimately connected to the very important problems of fermion masses and 

flavour mixings. 

We do not want to try and give any general conclusion about the topics 

covered in these lectures. Let us just emphasize the central role of proton 

decay in all grand unified theories based on SSB of simple Lie group symmetries 

like SU(5), 0(10) and E • Alternatives to the theories based on spontaneous6
symmetry breaking have been proposed. In the so-called dynamical symmetry 

breaking schemes, a new mass scale in the range 1 to 100 TeV should show up, 

and specific predictions about a new, rich, spectroscopy below 1 TeV and about 

CP violation have been made[40]. 

Finally we recall that it may be that only when gravity is included a 

new fundamental insight into particle physics will be obtained[41]. 
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- APPENDIX A ­

YANG-MILLS AND GROUP THEORY 

This appendix intends to remind the reader with a few results and useful 
. f· ld[lI]d . h [20] ..concepts 1n gauge 1e an L1e group t eory • Suppose we have a f1eld theory 

with fermions (and scalars). The Lagrangian L is taken to be invariant under 

some compact(*) Lie group of transformations G. The various fields belong to 

(generally reducible) representations U of G. U may be chosen unitary (any 

continuous, finite dimension, representation of a compact Lie group is equiva­

lent to a unitary one). L is thus invariant under the field transformation 

\jJ(x).... U tjJ(x)
g 

with Ut = U- 1 = U -1 (A. 1 ) 
g g g 

For the time being, U is independent of the point x. One says that L is invariant 

under a global transformation. In the vicinity of the identity e, any element 

g of G can be written as 

a 
g ~ e - i co. t (A.2)

a 

a, .The co. 's are the infinitesimal parameters of the group, the t s 1tS generators.
a 

By real linear combinations of the generators, one generates the Algebra a for 

the group. The inner product of two elements of a is -i times their commutator. 

The structure constants of a are defined by the relation 

(A.3) 


The structure constants are real. The appearance of a factor i in Eq. (A.3) comes 

from the choice made in (A.2), which is frequent in Physics. Were the generators 

be multiplied by -i, there would be no i at all in the algebraic manipulations, 

but they would appear in the relations between observables and generators. • 

(*)A set M is compact if any infinite subset of M contains a sequence which 
converges to an element of M. For example, any closed region of finite extension 
of~n is compact. A Lie group is compact if its parameters have finite domains 
of variation. 
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To each representation of the group it corresponds a representation of 
a . . a. h f t1n t its algebra. Let T be the matr1x represent1ng t e space 0 represen a­

tion which the vector Wbelongs to. The infinitesimal transformation of ¥ 

reads 

or in matrix notation 

(A.4) 

Here T =Tt and since T is a representation of a 

An ~ea.t r is an invariant sub-algebra of a for all elements t of a, 

[I,t] c: i I 

In what follows, we restrict ourselves to the so-called ~impte Lie algeb~~ 
which by definition have no proper (i.e. different from {O} and from a itself) 

ideal. A wider class is that of the semi-simple algebras, which have no abeLian 

ideal except {Ole An abelian algebra is an algebra all the elements of which 

commute. A group is simple (semi-simple) if its algebra is simple (semi-simple). 

By convention, U(l) and its corresponding one dimensional algebra is not simple. 

Gauge fields are introduced to insure invariance under group transformations 

which now depend on the point x where they are performed : 

w(x) .. u 
g 

(x) w(x) 

The global symmetry is enlarged to a toeal symmetry. Under local transformations, 

the kinetic part of the free fermion (or scalar) lagrangian namely i~~~ (or 

(3 ~)(a~~)t), is no more invariant. The invariance is restored if the derivative 

au 
~ 

is replaced by the eovaniant d~vative 

(A.5) 

The A~(x)'s are the gauge fields. Their transformation properties are designeda 
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to compensate the terms generated by aU acting on the x-dependent transformation. 

If one considers the gauge field as a member AU of the representation of a, 
defining 

(A.6) 
a 

AU transforms according to 

(A.7) 

Then one verifies that 

which insures that ~ » ~ is actually invariant. Intrinsically, one defines the 

gauge field as a member of the algebra itself by 

so that AU(x) is a particular representation of AU(x). From (A.7), we obtain ...... 

that under an infinitesimal transformation, AU transforms according to 

(A.B) 

For oa constant, the last term drops out, and the transformation of AU is that 
a 

of the. a.djo..i..nt Jte.pJtUe.rr.ta..t.,[oyt of the algebra. 

With each element t a of the algebra, the adjoint representation associates 
bthe linear transformation of t 

The adjoint representation of a simple algebra is irreducible (there is no 

subspace of the representation space which is invariant under all group trans­
aformations). Note that the matrix Ta associated with t in the adjoint repre­

sentation verifies by definition 
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Hence 

We finally have to add the pure gauge field term in the Lagrangian. To our 

disposal, we have the gauge invariant quantity Tr(F~VF~v), where 

A mass term Tr(A A~) for the gauge fields would spoil the gauge invariance. In 

taking traces, we 
~ 

have to specify which matrix representation A~ of ~~ we choose. 

A usual choice is 

Ta abeing the matrix representing t in the adjoint representation. This particular 

choice has no consequence since, for any simple group, if in the adjoint repre­

sentation we have 

then in any irreducible representation R 

with C (R) > O. The only exception is the trivial representation which associates2
o to all elements of ~. Since the gauge group is supposed to be compact and 

semi-simple, one can always find a basis for the algebra for which the matrix 

9 is unity. 

a bTr d.(T T) = 
a J 

One can show that in this basis the structure constants are totally antisymmetric. 

The complete Lagrangian (ommitting scalars) finally reads 

L = - __1__ F~v F + i~(~+i~)~-~ M~ 
4g2 a ~v,a 

where g is the coupling constant and M the fermion mass matrix. When the algebra 

is simple, one cannot separate it into pieces transforming independently. Hence 

there is only one coupling constant when we have exact gauge symmetry under a 

simple group. 
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The above results can be generalized to groups which are (locally) direct 

products of simple groups and (eventually) of U(l) groups. This is in fact the 

most general case : we want the form Tr(F~v F~v) to be non degenerate (all gauge 

fields present in the kinetic part), and positive definite (all kinetic terms 

of the same sign). This requirement implies that the gauge group is a direct 

product of a semi-simple group and of an abelian group. The algebra is the 

direct sum of the corresponding algebras (which commute between themselves). 

Since any semi-simple Lie Algebra is a direct sum of simple algebras, the algebra 

of a general gauge group is a direct sum of simple algebras and eventually of 

U(l) algebras(*). The most general Lagrangian to be considered thus is : 

L = i [- -;z (L F~ FllvaJ] + 
gk ~ 

+ 	 i ~ (~ + i L ~)~ - ~ M ~ 

k 


There are as many coupling constants as there are factor groups. Under the field 

rescaling ~ ~ gk~' L gets the more familiar form (now including eventual 

complex scalars) : 

L = L 
k 

(A.9) 

As shown above, if we restrict ourselves to simple Lie groups (such as 

SU(5)), the theory depe~ds on one coupling constant only, and it is unified 

in this sense. The charges of the-various particles are moreover seriously 

constrained. For example, if some representation appears several times (several 

families), each generator has the same representative for all these replications, 

and in particular the charge operators are the same. Finally the charge opera­

tors in different irreducible representations are also related. 

(*)In the U(I) case, the algebra and all its irreducible representations are 
isomorphic to ~ (except the trivial representation by 0). Since all commutators 
vanish, the adjoint representation is the trivial one and cannot be used to 
define Tr(F~VF ). In any representation, A~ is represented by AU(x)Y/2, where 
Y is the U(l) H~percharge (Y=O in the adjo!nt). The Lagrangian is 

_I F~vF 	 + i ~ (~+ i ~ Y/2)~
4g2 ~v 


{ F~v = a~ AV - aV A~ 




- 116 ­

A further important point is that moreover the charges a~e commensurate. 

It seems a priori very easy to build a candidate for the charge which has 

non commensurate eigenvalues : such are the eigenvalues of the SU(3) generator 

A3+Aa in the fundamental representation 

1 +_1_ 

I! 

1
-1+­

13 
= 

--2 

13 

Let us explain why the charge operator Q cannot be of this kind if the 

theory is based on a compact Lie group g. We consider a simplified example in 

which the group generator associated with Q is, say, the one parameter group 

. (1 0)
-iaQ -~a 0 e 

G = e = e (A.I0) 

G has two non commensurate eigenvalues' 1 and e. It is non compact since ex varies 

from to +00 (as opposed to the case Q - (~ 0), p,q integers, where the maximum-00 
q . 

length of the variation domain is 2~pq, finite). Moreover, because 1 and e are 

non commensurate, any point of the square x€ [0,2~], y € [0,2~] can be arbitrarily 

closely approached by a point x = a(mod.2n}, y = ea (mod.2~). One says that 
o 0 

the set {x ,y } is dense in the square[0,211']2. Accordingly, any transformation o 0 

of the ~ parameter group [U(1)]2 can be approached by an infinite sequence of 

elements of the ~ parameter group G. But if G is a subgroup of the unifying group 

g, the above sequence has a limit which belongs to 9 because 9 is compact (defi:.. 

nition of compactness - see first note of this section). Hence in our example, 

9 should contain ~ unbroken U(1) generators, that is two say two photons. This 

situation is neither that of the real world, nor the one w~ describe" by .the- suc­

cessive breakings of SU(5) U (1) is the only abelian component left unbroken. e.m. 
Note that compactness of 9 was essential for the argument : charge is not quan­

tized in the Salam Weinberg model because 5U(2) 8 U(1) is not compact. 

http:a(mod.2n
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- APPENDIX B ­

YOUNG TABLEAUX FOR SU(N) 


All irreducible representations of SU(N)(42] can be obtained as properly 

symmetrized powers of the fundamental representation. This is why the irredu­

cible representations of the permutation group of N objects, and hence Young 

Tableaux are relevant to the study of SU(N) representations. A Young tableau 

is composed of boxes, each box corresponding to one fundamental representation 

~ • These boxes are arranged in rows in non increasing length order. 
ex. 

I I 

-
-

A Young -ta.ble.a.u 

For SU(N) , there is no tableau containing columns with more than N boxes. 


The tableaux made of only N box columns represent a singlet. Any N box column 


in a tableau can be ommitted, unless nothing is 1eft,in which case the tableau 

represents a singlet (we call it a unit tableau). 

ex.The conjugate representation q of the SU(N) fundamental q is built from 
(1) (2)0. (N-l)

the totally antisymmetric product of N-l fundamentals q ,q , ••• q 

a. 
q 

(N-l) 

qSN-l 

It is represented by a N-l box column. More generally, each Young tableau cor­

responds to a given symmetry pattern with respect to box permutations (in fact 

toone irreducible representation of the permutation group), obtained as follows 

- one first symmetrizes each row 

- one then antisymmetrizes each column (this destroys row symmetry, unless 

all rows have the same length). 

o means l/fa. 
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The Young tableau t(R) for the conjugate representation R of some representation 

R is obtained from the complement to a unit tableau of t(R). 

Examplu 60lt SU ( 5 ) (unit t - any number of 5 box columns) 

8 § 
R-I0 

CD 

15 

45 

r 
24 24-24 

When necessary (last two examples), we have to rotate upside down the tableau 

obtained by complement of t(R) to a unit tableau, in order to obtain a proper 

Young tableau (rows in non increasing length order). The representations are 

labelled by their dimensions in the above examples. The dimension of a repre­

sentation of SU(N) given by its Young tableau can actually be computed directly 

from the tableau, as explained now. A simple recipe is : 

(i) make the product of the factors indicated below for each box of the 

considered tableau 
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N N+l N+2 N+3 ·... 
N-l N N+l N+2 ·... 
N-2 N-l N N+l ·... 
· · · · 

· · · · 
· · · · 

· · · · 

(ii) divide the result obtained in (i) by the product on all boxes of 

factors r .. For the box j, r. = {I + the number of boxes to the right of box 
J J 

j + the number of boxes below it} • 

Examptu 

2fN IN+' N(N+l) N-1N~ (N- 1 ) N (N+ 1 ) 

IJJIJ 
= 

2 
2 1 

:I 

12

tHE 
[ruN+j
N-1 (N- 1 ) N (N+ 1 ) 

3

SP 
= 

The nature and multiplicities of the irredQci~le representations entering 

the decomposition of the product Rl 8 R2 of two irreducible representations 

can also be found from Young tableau considerations. For each operation we give 

the example of the product 

(i) One first labels each row of the R2 tableau : all boxes of the first 

row get label a, those of the second one get label b, etc ... 

(ii) One enlarges the Young tableau of RI in all possible ways by adding 

one box labelled a to Rl on the right or below each of its own boxes 
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R1 

(iii) One excludes the tableaux which are not Young tableaux (rows not in 

non increasing order or columns with more than N boxes). In the example, one 

throws the last tableau away. 

(iv) One starts again by adding the b boxes to the allowed tableaux, again 

excluding illegal tableaux 

The 	 other possible additions of b do not lead to Young tableaux. 

One goes on with boxes c etc ••• , and stops when all the boxes of R
Z 

have been used. 

(v) 	Among the tableaux which are left, one further reject those 

- which have several a's, or b's, ••• in the same column (no such 

case in the example) 

-	 which are not a "lattice permutation". A tableau is a lattice 

permutation under the following condition. One starts counting 

the numbers N(a), N(b), ••• of boxes a,b, ••• occurring in the 

tableaus obtained, from ~ght ~o !e6~ and from up ~. down. At 

each stage of the counting these numbers must be found in non 

increasing order : 

N(a) > N(b) > 

In our example, this rule leads us to reject the 3rd and 5th tableaux obtained 
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after the step (iv). The result for the product of two antisymmetric tensor 

representations of SU(N) is thus 

B B 


The equality of the dimensions on both sides of the equation can easily be 

checked. The first non trivial application is to SU(3) (for SU(2) E3 = unit 

tableau), in which case the last tableau does not exist (4 box column) and 

the second one can be reduced to CJ (a 3 box column can be ommitted). The 

result is then to be read : 3 8 3 = 6 + 3. 

Once all the steps from (i) to (v) have been made, one has all the 

irreducible representations of SU(N) contained in Rl 8 R2 , with furthermore 

their right multiplicities, obtained as follows. A given representation occur­

ring in the decomposition has a multiplicity equal to the number of times its 

Young tableau appears with not all labels a,b, ••• at the same place. If a 

tableau appears several times with all the labels at the same place, then it 

is counted only once. 

We end up with a second example, where only the allowed tableaux are 

kent. We compute 

p = 

We first add the a boxes, and obtain 4 distinguishable tableaux to which we 

add the b box 

r 
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We see that the representation appears twice, all others 

appear only once. Application to SU(3) , for which is the 

adjoint representation, of dimension 8, allows one to recover the well known 

result 

8 8 8 = 1 + 8 + 8 + 10 + TO + 27 
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