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Abstract 

The quantum deformation of the classical Clifford algebra is constructed 

from the quantum Pauli matrices, which follows a tensor analysis of quantum 

SUq(2) group in a similar way as the ordinary Pauli matrices in SU(2) 

analysis. From this the matrix form of the generators of quantum Lorentz 

group can be obtained directly. In the limit q - 1, they reduce to the 

classical Clifford algebra and ordinary generators of Lorentz group. 
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1. Introduction '•••Biili.111 o llbD DD1~lb~ b 
Motivated by the idea of quantum group theory!l], we investigate the q-deformation 
of the Clifford algebra from which the corresponding quantum orthogonal group 
generators in. the spinor representation can be obtained immediately. After col
lecting the main results of classical Clifford algebra in this section we build, by a 
construction method, the quantum Pauli matrices and Dirac matrices in Sec.2 and 
Sec.3 respectively. The generators of the corresponding quantum group, SOq2(3) 
and SOq(I,3), are obtained by the q-anti-symmetric part of the bilinear com
bination of Clifford matrices. All the classical relations have their q-deformed 
counterparts. 

It is well known that a Clifford algebra is a set of matrices {rA, A = 1,2,··· , N}, 
satisfying the anti-commutation relations 

{rA, rB} = 2TJAB (1.1 ) 

with TJAB being the metric in the N-dim space. Given such a set of matrices, we 
can define 

MAB = ~[rA, rB] (1.2)
4 

Then it can be easily shown that 

[MAB, rG] = i(rATJBG _ TJAGrB) (1.3) 

and 

[MAB, M GD ] = i(MADTJBG _ MAGTJBD + TJAD M BC _ TJAG MBD) (1.4) 

Eq.(1.4) implies that MAB are the generators of SO(1\') (or SO(p, q) when TJAB 
has signature (p, q) ) in the spinor representation whereas Eq.(1.3) shows that rG 

transform as the .iV-dim vector representation of SO(N). 
For the simplest example, N = 3, we have three 2 x 2 Pauli matrices 

ri = O'i, i = 1,2,3 

with 
{O'i, O'i} = 26ij , [O'i, 2ieijk O'k . (1.5) 

Introducing 

Mii == ..!..[O'i O'i] = !eiikO'k (1.6)
4i' 2 
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then 
[Mii, O.lJ = ~fiik[o.k, 0-1] i(8il o-i - o-i8il ) 7)

2 

And the three generators {~} of SO(3) in the 2-dim spinor space satisfy the 
following commutation relations 

1 . 1· "L 1 ..
[-0-' -0-3] if'}" -0-'" (1.8)
2 '2 2' 


For the next example, N = 4, we have four 4 x 4 Dirac matrices 


P' J.l = 0,1,2,3 

{-yl-l, I'''} 21JI-I", rltv = diag(1, -1, -1, -1) (1.9) 

.Then 

MI-I" ~[/'I-I, 1'''] = ~~I-I" (1.10) 

are generators of Lorentz group SO(1, 3) in the spinor representation. Besides the 
above four I"S, we can introduce the fifth 

1'5 = h°1'11'21'3 (1.11) 

wi th the properties 

I'l = 1, b5, I'I-I} = 0, [/'5, ~I-I"l = 0 . (1.12) 

As is well known, the Dirac matrices I' can be expressed as the direct product of 
the Pauli matrices. For example, in the chiral representation 

(0 -1)
1'0 = fJ _0-1 ® 1 -I, 0 

... • 2  (0, -iJ) _(1, 0) (1.13)7 fJo- lo- 00- = -iJ, 0 0,,1'5 - -1 

ijk~ij = f (0-;" ;k)' ~Ok i ( ~~' _~k) . 

In a similar way, all the higher dim matrices r's can be written as the direct 
product of the Pauli matrices. 
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2. Quantum Pauli Matrices 

In a recent paper[2], quantum Pauli matrices are introduced in a spinor analysis of 
the quantum group,SUq(2)[2,3], parallel to the one in the classical SU(2) group. It 
begins with the quantum R matrix associated with SUq(2) or SLq{2, C) satisfying 
the Yang-Baxter equation (in the braid form) 

(2.1)R12R23R12 = R23R12R23 

and the reduction equation 

(R qI/2)(R+q-3/2) O. (2.2) 

The eigenvalue equation of R can be written as 

k>{J-yotm(q)-Yo = qI/2tm(qY:1{J , Rcx{J-yos(q)-Yo = _q-3/2s(q)"'{J , 

f"(q)cx{JRcx'\6 = qI/2f"(q)-yo ,s(q)cx{JRcx{J-yo _q-a/2s-yo, (2.3) 

where 0-, fJ,'" = 1,2 and m = +,3, -. For conventional form of R[4J 

(R) = RcxfJ-yo = q-1/2 (q q - q-1 1 ) (2.4)
1 0 ' 

q 

we can choose 

1 0) ( (0 _qI/2) [ -1/2 ) (0 0)t+ ()q = 0 0 ,ta q) = _q-l/2 0 2] , L(q 0-1( 

and 

s(q) = (_~1/2 q-~/2) [2t1/2 (2.5) 

with [n] = (qTl_ q-Tl)!(q_q-I), and tm(q)cx{J = tm(q)cx{J, s(q)cxfJ s(q)a{J. Collecting 
together fm(q)cx/3 and s(q)a/3 as a four-vector 

[I-I(q) == (fl(q),fm(q» (q-1s(q),lm(q» 

tiq) == (to(q), tm(q» = (q seq), tm(q» (2.6) 

we see that they satisfy the following orthogonal conditions 

tl-l(q)~{J f"(q)cr{J = 81-1" (2.7a) 
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and the completeIlcss relation 

t/.Jq)<:./3 fl'(q)")'.; =6<:''')'6/3.; (2.7b) 

The q-analogue of the Levi-Civita symbols e(q)<>/3 and e(q)<>/3 are related to the 
singlet eigenvectors 

e(q)a/3 _[2]1/2g(q)<>/3, e(q)al1 = [2]1/2 s (q)al1 (2.8a) 

and normalized in a way such that 

e(q)<>11 e(q)I1'Y = 0<>")'. (2.8b) 

Then two conjugate sets of the quantum Pauli matrices are introduced[2] 

(11'(q)a 11 = [2]1/2t",(qt'Ye(q)")'/3 , ij"'(q)f3a = [2j1/2e(q)l1,,),fl'(q)<>,,), (2.9a) 

with the properties 

{1",(q)<>tJijll(q)l1 a = [2]61'''' {1",(qti3ijl'(q)")'.; [2]6<>.;0")'11, (2.9b) 

Explicitly 

-112) (_q)(1+(q) = [2]1/2 -q ,(13(q) = q-l 

{1_ ( q) [2]1/2 ( _q1/2 0) , (10( q) = (1 1) q , 

(2.10) 

ij+(q) = ij3( q) 

-1/2) ( -1 -1 

0) , (-1 1)'( _ql/2 

ij-(q) = [2]1/2 0 -q , ijO(q) = q( -q ) q . 

As in the classical cases, there exists close relation between SU(2) and SO(3), 
and between SL(2, C) and SO(3, 1). Starting from the basic Rmatrix as in (2.1), 
(2.2) and (2.4), we can construct hvo fusion R matrices as fo11ows[2] 

R mn 
kl == fm12fn34(R23R12R34R23)tk12t/4 (2.11) 

andlS] 

-R-I'V,.>. == ["'12["34(R23R12R34R2nt,. I'lt>. 34 . (2.12) 
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It can be directly shown that they satisfy their own Yang-Baxter equations similar 
to that of R itself in (2.1): 

Rmnm'n,Rn'kr,.,Rm'rllr = Rnknlk,Rmn'Ir,R,'I:'r., , (2.13) 

-RI''' p',,' -R'" I< p'l7 -R",Ipi AP = -Rill< V',.' -R-"''''' }.pl -R-pl,,' pl7 • (2.14) 

A straightforward calculation gives 

q2 
6, 

(1 q-2)~ _q-l6, q-2 

o 
RmnkI = _q-l6, (2.15) 

6, 
q-2 o 

o 
q2 

where 6, = q2 - q-2, the index pair (m, n) or (k, I) are ordered as 
(3+), (33), (3-), (-+), (-3), (--). In comparison with the standard 

form in Ref[4], we recognize that the R matrix in Eq(2.15) is indeed the R matrix 
corresponding to SOq2(3). This builds the homomorphism between SUq(2) and 
SOq2(3). So we denote this R matrix as R(q2) which has three different eigenval
ues, say ..\2(q2) = q2 corresponding to a quintet, ..\2 (q2) = _q-2 to a triplet and 
..\2(q2) = q-4 a singlet. Then the left and right eigenvectors can be written as 

W M(q2)ii R (q2)ii kI = ..\2(q2)WM(q2)1:1 , R(l)iikIWM(q2)kI = ..\2(q2)WA/(q2)ii , 

Um(q2)iiR(q2)iikl = ..\1(q2)Um(q2)I:I , R(q2)iikIUm(q2)kI = ..\1(q2)Um(q2)i j 
, 

V(l)ijR(q2)iikl = ..\O(q2)V(q2)kI , R(q2)ii kIV(q2)kl = ..\O(q2)V(q2)ii , (2.16) 

More explici tly 

v(q,);j = ( :: ) = ( q~1 ) , (2.17a) 
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U+(q2)ij (~:::) = ( -!-I ) , 

( 
(1)j U3+- ) (2.17b)UO(q2)i = ~33: q _/-1 

( 3-) (-I )U_Cq2)ii ~= -3 = -!. , 

WZ(q2)ii W2(q2)++ = 1 

2 .. ( q )(wt +3 )
Wl(q )'J = W1 3+ == q-l 

wo+- ) ( q2 )
W033wo(q2)'i _q q-l (2.17c) 

( wo-+ q-l 
3 

W_(q2)ii = ( Wi - ) = ( q )1 wj3 q-l , 

W2(q2)'i = W2(q2)-- 1 

with all other components vanishing. The right-acting eigenvectors v(q2)ij, um(q2)ji 
and w M(q2)jj have the same components as their left-acting counterparts V(q2)ii, 
urn(q2Yj and Wf,.[(q2)ij . All these eigenvectors are normalized in such a way that 

C A(q2)'iCB(q2),j = 6A
B , 

C A Cq2)iiCA (q2hl 6i
k6j

1, (2.18) 

where C A (q2)ij = (v(q2)ij, Um (q2)ii, W;~J(q2)ij) and C B(q2)'i (v(q2)jj, um(q2)jj, 
W M(q2)ji)' 

Now \ve can define the corresponding projection operators 

Q(Ol(q2)'i kl = V(q2)ij v(q2hl 

Q(Il(q2)ii kl = um ( q2)ii um ( q2)kl (2.19) 

Q(2l(q2 )ii kl WAl( q2)iiwM(q2)kl 

with 

Q(rl(q2)Q{S}(q2) = 6T 'Q(Ol(q2), Q(Ol(q2) + Q(ll(q2) + Q(2l(q2) E. (2.20) 

, 

And then 

R(q2)'ikl = ,\.. (q2)Q(.l(q2)ii kl , R-l(q2)'ikl = ,\;1(q2)Q('\q2)iikl . (2.21) 

As for the Levi-Civita symbols in the spinor space (2.8), we introduce 

g(q2),j = /q2 + 1 + q-2V(q2)'i' g(q2)'i = /q2 + 1 +q_2V(q2),j , (2.22a) 

then 
g(q2)iig(l)ik = 6/ . (2.22b) 

It has been shown in Ref[2,6] that g(q2)ij and g(q2)'i play the role of metric in the 
q-deformed Euclidean space, which can be used to lower or raise the vector index, 
e.g., 

om(q) -on(q)g(lrm . (2.23) 

(The minus sign here is introduced to meet the Minkowski metric, see (3.11).) For 
the triplet eigenvectors um(q2)ik and um( q2)jkl the quantum number m used to 
specified different eigenvectors takes the same values as the component indices j 
and k. All three indices m, j, k can be put on the same footing. We can easily 
show that 

Um 
( q2)ik g(q2)ilUk( q2ym = uA q2)mlg(q2)lk , (2.24a) 

and 
Um(q2)i k = g(q2)i1 uk(q2)lm = Ui (q2)mlg(q2yk . 

N ow we define 

U(q2)ikl g(q2)imUm(q2)kl um(q2)ikg(q2)ml' (2.25a) 

u(q2)ikl g(q2)imUm (q 2l1 == um(q2)ikg(q2)ml . (2.25b) 

It follows at once 
U(q2)ik1U(q2)jkl q2 + 1 + q-2 , 

u(q2)ikI U(q 2hlm = 6j
m , (2.26) 

u(q2)jklU(q2)lmn = Q(Il(q2)ik .mn 

This means that U(q2)jkl and U(q2)jkl can be used as the q-deformed Levi-Civita 
symbols in the 3-dim q-Euclidean space, i.e., 

-iJq2 +q_2U(q2)jkl ,e(q2)ikl iJq2 +q-2U(q2)i k1 . (2.27) 
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The eigenvectors V(q2), u m ( q2), WM(q2) and then the R matrix have a lot of useful 
relations among which the most important ones are [6J 

R-I(qZ)il' ki' = g(q2)kiR ( q2)ii i'i,g(qZ)i'I' = g(qZ)iIR(qZY'k' lkg(qZ)k'i' . (2.28) 

Now a straightforward calculation shows 

Q(2}(q-Z)ii klakal =° 
Q(O)(q-2)ii kwkal =g(q-2)ii (2.29) 

Q(l)(q-z)'i 1.10'1.0'1 = _Jq2 + q-Zum(q-Z)ii am 

from which it follows by using (2.20) and (2.21) that 

aiai + q-2R(q-Z)iikwkal = (1 + qZ)g(q-Z)ii , (2.30a) 

aiai _ q-4R(q-2)iikwkal = (1 + qZ)Q(1}(q-Z)iikWkal 

= i(l +q-2)e(q-Z)iikg(q-Z)kmam . (2.30b) 

these two are indeed the quantum version of relations appearing in Eqs(1.5). Sim
ilar to Eq(1.6), we can define the q-deformation of the SOq2(3) generators as 

lvIii == -i Q(I}(q2)ti 0'1.0'1 = 1 e(q-Z)iJkg(q-Z) am.
(1 + q-Z) 1.1 (1 + q-Z) km 

As for the classical case, these generators are indeed the Pauli matrices themselves. 
And (2.30b) gives the q-commutation relations among these generators 

i i .. 0'1. 0'1 . -2)iik (-Z) ~ 0' 0' _ q-4R(q-Z)'J 1.1--_-2----2 = te(q g q km 1 +q-2 . 
1 + q 1 + q (2.31) 

Also we have 

Alij0'1 _ q-4R(q-Z)i1i'nR ( q-Z),i' kmakM mn = -i(q2 + q-2)akQ(1)( q-Z)ii kmg(q-Z)ml . 

(2.32) 
This is the q-version of Eq(1.7). Eqs(2.32) and (2.31) are equivalent. 

3. Quantum Dirac Matrices 

It has been pointed out, in Ref[5,7], that the fusion R matrix given at (2.12) and 
(2.14) is really the R matrix for quantum Lorentz group SO(3, 1). The explicit 
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form of R was shown there. The 16 x 16 R matrix has three different eigenvalues: 
the singlet eigenvalue Ao(q) q-3, the si:~..:fold one Al(q) = _q-t and the nonet 
A2(q) q. The left-acting eigenvectors as ,yell as the right-acting ones are written 
as [7J 

v(q) IlV R(q)llv"A = Ao(q)V(q)"'A , n(q)llv"AV(q)"\ = Ao(q)V(q)IlV , 

ums(q)IlVR(q)llv"A = AI(q)Ums(q)",\, n(q)IlV"'Au m Aq)"'\ = Al(q)Um.(q)IlV , 

wmn(q)IlIlR(q)IlV"'A = A2(q)Wmn(q)".\, n(q)IlV dWmn(q)""\ = Az(q)Wm.. (q)IlV , 
(3.1 ) 

where for sextet eigenvectors (ms) = (1+),(1-),(0+),(0-),(1+),(1-) and for 
nonet (mn) = (2,0),(1,1),(1,1),(0,2),(0.0),(0,2),(1.1),(1.1) and (2,0). The 
singlet eigenvectors are 

v(q)IlV = (v+-, V33 , v30 ,V03, voo, v-+) = (_q-t, -1, 0. O~ 1, -q)[2tt , 

v(q)llv = (V+_,V33,V30,V03,VOO'V_+) (-q-t,-l,O,O, 1,-q)[2tl . (3.2) 

These are scaled to give 

g(q)ll11 = [2]v(q)llv' g(q)llv = [2]V(q)1l11 . (3.3) 

Then 
g(q)llvg(q)"A = 8/ g(q)AII g(q)vll (3.40) 

and 
g(q)IlV g(q-l)vll' (3Ab) 

And it has been pointed out that g(q)1l1l and g(q)IlV are the q-deformed Lorentz 
metrics of quantum Minkowski space. 

The sextet eigenvector ums(q)IlV and ums(q)Il V were presented in Ref'l7], which 
can be expressed as 

um+(q)'i = um_(q)ii = U(q2)iiJq2 + q-Z[2J-t 

-ig(q2)mk E(qZ)kii [2]-t 
(3.5a)

um+(q)Ok = um_(q)ko _q-I[2]-t8m
k 

um+(q)kO = um_(q)Ok = q[2]-18mI. 

um+(q)ii = Um-(q)ij = Ujj(q2)Jq'i + q-Z[2tI 

= ig(q2)mke(qZ)kij[2]-1 
(3.5b)

um+(q)Ok = Um-(q)ko = _q[2]-18mk 

Um+(q)kO = um-(q)Ok = q-l[2]-18m
k . 
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The projection operators corresponding to different eigenvalues are defined as 

Q(O)(q)/lV n'\ 


Q(l) (q)/.w n'\ = um.(q)Il"ums(q)",\ , (3.6) 


Q(2)(q)/lv n'\ = wmn(q)IlVwmn(q)n'\ , 


which satisfy the relations 

Q(i)Q(j) , Q(O) + Q(1) + Q(2) = E . (3.7) 

And then 

n(q)/lV n.\ = Ai(q)Q(i)(q)1l1ln'\, n-1(q)IlV",\ = A;l(q)Q(i)(q)!lV",\ . (3.8) 

, The projection operators Q("(q )/lVn'\ as well as the n matrix have a lot of useful 
symmetries, among which the most important ones are 

Q(i)(q)/lV n.\ = Q(i)(q-I t ll ,\" , R(q)IlVn.\ = n-1(q-l )"Il'\n , 

g(q)plln(q)IlV",\ = n-l(q)"<1 png(q)<1.\ g(qy"n(q)IlV",\ = n-l(qyll,\pg(q)pv . (3.9)1 

The quantum Dirac matrices are obtained by a construction method in terms 
of the quantum Pauli matrices, very similar to the classical case 

U/l) (0 -I)"'(Il = fJo: ll , all ( q/l' fJ = -I 0 (3.10) 

where 
u/l(q) = O",,(q)g(q)"1l (3.11) 

UV(q) are defined as in Eq(2.9), and qll are related to the conjugate set ijll in (2.9) 
to ensure the adequate transformation property. (7) 1,1ore explicitly, 

(0 _ (0 ii)"'(0 	 (3.12)
-q o ) ,,,,( = -Ii 0 . 

A direct calculation shows that 


Q(O)(q-l)~~"'(",'\ = g(q-l)llll ,Q(2)(q-l)~~,n,'\= 0, 


oiQ(l)(q-l)~~"'(""'(,\ = L:(q)1'v = (ijll~(q) ) (3.13) 
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where 
ijllll(q) iQ(l)(q-l )~~a-nU'\ i[2]Um(q)U m _(q-l )/l" , 

(3.14) 
U/l"(q) = iQ(1)(q-l )~~Unq'\ i[2]u m (q)u m +(q-1 )/lV . 

By using (3.5a) we see that 

2:(q)ii = um(q)g(q-2)mk E(q-2)ki j (~ ~) , 

2:(q)Ok=iuk(q)(6 _~-l) , 	 (3.15) 

_ -1 0)
2:(qto = iuk(q) ( ~ q 

From (3.13) we can obtain 

,/l"t + q-ln(q-l)/lV n,\,n",/ (1 + q2)g(q-l)/l1l , (3.16) 

,/l,1I q-3 n(q-l )Illl n'\,",'\ = (1 +q-2)Q(I)(q-1 til n,\"'("'/' = -i(l + q-2)L:(qtll . 
(3.17) 

Eq(3.16) is the Clifford definition relation for quantum Dirac matrices ,Il. A 
similar relation has also been proposed by Zumino in a different consideration. IB] 
The generators of quantum Lorentz group can be defined as 

M/lll = 	__i_Q(I)(q-l)lllln,\,,c,,\ = _l_2:(qyll . (3.18)
1 +q-2 1 +q-2 

Then a tedious calculation gives 

MIlII"'('\ _ q-2n(q-l)"\'<1R(q-l)lllllnp,"lvIP<1 = i(1 +q2)Q(1)(q-IYVp<1,Pg(q-Iy,\ 
(3.19) 

and 
M/lll M"'\ R(q-l)(llv)(n,\) M/l'V' AI"I,\I j(/lv)(",\) !vfP<1 (3.20)(ll'II')(n'N) P<1 

where 

-( -l)(IlIl)(n,\) -4n-( -1)1'1< n"( -l)IlV" n-( -1)<1,\ n"( -1)P""n q (Il'v')(n''\') q q 11"<1 q Il'p q ,,".\' q 	 v',,' 
(3.21a) 

which is a 256 x 256 matrix satisfying Yang-Baxter equation, and 

j(Il;](I<'\) = i[2]2Q(1)(q-l )IlllPll,g(q-l y'1<' Q(1)(q-l )"'\'<1 (3.21b) 

It is easily seen that Eqs(3.16), (3.18), (3.19) and (3.20) are just the quantum 
version of the classical relations. 
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4. Brief Discussion 

In two previous sections, \ve have established the quantum Pauli matrices and 
quantum Dirac matrices, as the special case of quantum Clifford matrices in 3-dim 
and 4-dim, The generators of the corresponding quantum groups, the quantum 
rotation group SOq2(3) and the quantum Lorentz group SOq(l, 3), are obtained 
extracting the q-anti-symmetric comhination from the bilinear form of two Clifford 
matrices, The common features are: 

(i) Every main classical equation has its quantum counterpart, as least for the 
3-dim and 4·dim cases. 

The ordinary commutation relations in the classical case are changed into R 
commutation relations, just as proposed by \Voronowicz,fIl with adequately gi"en 
R matrices. 

In the limit q ~ 1, all these quantum relations reduce back to their 
classical counterparts. 

For arbitrary N, the Clifford definition relation can be \vritten as 

rArB _ .x11RABCDrCrD = (1 

where k.tB CD , being the R matrix characterizing SOq(A') (or SOq(p N 
group, has three different eigenvalues: .xo(q) = qI-N corresponding to the 
.x1(q) _q-l to the q-anti-symmetric multiplet witb dimN(J~-1) and .x2(q) q to 

the q-traceless-symmetric multiplet with clim.N(l~+l) 1. The projection operator 
to the subspaces with different eigf'llYalues .xi are denoted by Q(i), and gAB is the 
eigenvector of RAB CD corresponding to .xo. The defini tion given at (4.1) coincides 
with that in RefrSl. Then the generators of quantum orthogonal group are taken 
as 

MAB = --'--"7C), 

1

with - for Euclidean case SOq(S) and + for pseudo-Euclidean case 
SOq(1, N - 1) (since the time-fa\'or metric convention is adopted), The vector 
properties of the r C is now by 

\-2)rA'Q(l}AB B,C'MABrC _ .x~2RBCDB,h·1DcIA,rc'MAIB' = + A 1 . A'B,g· 

But the commutation relations among .~{AB take a little bit complicated form for 
higher dimensions. 

'j(A.B)(CD)( \{FG +MA-BAl CD 
(FG) 1 
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where 
n(12)(3,1) = )..~4R23RI2R3.jR23' 

and 
_ ±' \ \ -1 (1 + \ -2)Q(l)"D gB'C'Q(I)CD
- ZAOAl Al FB' - C'G, ( 4.6) 

(4.7)~ 
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