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Abstract

The quantum deformation of the classical Clifford algebra is constructed
from the quantum Pauli matrices, which follows a tensor analysis of quantum
SU,(2) group in a similar way as the ordinary Pauli matrices in SU(2)
analysis. From this the matrix form of the generators of quantum Lorentz
group can be obtained directly. In the limit ¢ — 1, they reduce to the
classical Clifford algebra and ordinary generators of Lorentz group.
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Motivated by the idea of quantum group theoryl!l, we investigate the q-deformation
of the Clifford algebra from which the corresponding quantum orthogonal group
generators in the spinor representation can be obtained immediately. After col-
lecting the main results of classical Clifford algebra in this section we build, by a
construction method, the quantum Pauli matrices and Dirac matrices in Sec.2 and
Sec.3 respectively. The generators of the corresponding quantum group, SO,2(3)
and S0,(1,3), are obtained by the g-anti-symmetric part of the bilinear com-
bination of Clifford matrices. All the classical relations have their ¢-deformed
counterparts.

It is well known that a Clifford algebra is a set of matrices {T'4, 4 = 1,2,--- , N},
satisfying the anti-commutation relations

1. Introduction

{T4, TP} =297 (1.1)

with 742 being the metric in the N-dim space. Given such a set of matrices, we
can define

MAB = :i-[rf‘, r? (1.2)
Then it can be easily shown that
[M*F, T = i(T4pP° - n*°T") 13)
and
[MAB, MCP] = i(MAPyBC _ JfACpBD 4 1AD \fBC _ pAC \rBD) (1.4)

Eq.(1.4) implies that M#® are the generators of SO(N) (or SO(p,q) when 748
has signature (p,q) ) in the spinor representation whereas Eq.(1.3) shows that I'¢
transform as the N-dim vector representation of SO(N).

For the simplest example, N = 3, we have three 2 x 2 Pauli matrices

IMM=o¢', {=1,2,3

with o By
{o*, 07} =269, [o°, 07] = 2ie'T*e" . (1.5)
Introducing
A D
MV = :}E[a', '] = 56""0’” (1.6)
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then 1
M &= 5e"f’=[a’=, a'] = i(8%07 — o'6%) 7
And the three generators {9,;-} of SO(3) in the 2-dim spinor space satisfy the

following commutation relations

1,1, a4l
[5(7’, 50"} = ze”kia" . (18)

For the next example, N = 4, we have four 4 x 4 Dirac matrices
=9 1p=0,123

{7“a 7‘,} =2ﬂw i T?“V =diag(1"‘11_1’“1) ' (19)
-Then

M* = }1[7“, 4] = 2w (1.10)

1
2
are generators of Lorentz group SO(1, 3) in the spinor representation. Besides the
above four 74’s, we can introduce the fifth

=iy ' (1.11)
with the properties
%=1 {7 ¥} =0, [15 T¥|=0. (112)

As is well known, the Dirac matrices vy can be expressed as the direct product of
the Pauli matrices. For example, in the chiral representation

0, -I
R S L B
P=8=-0'01I (-I, ) )
" - s ~ 0, -7 I, 0
7:;’)’0:102@0:(“&.’ Od), 7,;:(0, —I) (1.13)

k k
W . ijk as, Q 0k _ ag, 0
YW=¢ (0’ o")’ z —1(07 —o")'

In a similar way, all the higher dim matrices I''s can be written as the direct
product of the Pauli matrices.

2. Quantum Pauli Matrices

In a recent paper!¥, quantum Pauli matrices are introduced in a spinor analysis of
the quantum group, SUq(2)[2 3 parallel to the one in the classical SU(2) group. It
begins with the quantum R matrix associated with SU,(2) or SLy(2,C) satisfying
the Yang-Baxter equation (in the braid form)

Ri2RysRyz = RysRisRiag (2.1)
and the reduction equation
(R-g/"R+¢°7)=0. (22)
The eigenvalue equation of R can be written as

R 5tn(q) = g %m(q) , RPps5(q)° = —q7*?s(g)*”

W(Q)aﬂ}}asﬂﬁ = qlnt—m(q)wé ’ §(q)or,0R°ﬁ76 = _q—3/2§”/5 b (23)
where a, 8,--- =1,2 and m = +, 3, —. For conventional form of RA
q
5 B ~1/2 q- ‘1‘1 1
. (R) = Raﬂp’s =q 1 0 ) (2'4)

we can choose

tlg) = (é g) » ta(g) = (_q(il/z _%1/2) @27, t(9) = (g _01)

-1/2
wo=( 2 7)o -

with [n] = (¢" —¢™)/(g=g""), and t"™(g)ap = tm(¢)°", s(g)as = s(9)"- Collecting
together £™(q)os and 5(g)ap as a four-vector

#(q) = ((9), t"(2)) = (¢7'5(9),t"(9))

and

tu(g) = (to(9), tm(q)) = (g 5(9),tm(9)) (2.6)
we see that they satisfy the following orthogonal conditions
tu(9)*® (9)an = 6" (2.7a)
4




and the completeness relation
tu(0)° #(g)s = 6°,6% (2.75)

The g-analogue of the Levi-Civita symbols €(g)as and €(q)*? are related to the
singlet eigenvectors

(@)as = ~[2]'*5(g)as , €(9)™” = [2]'/%5(g)** (2.80)
and normalized in a way such that
e(9)op (g)” = 8.7 . (2.80)
Then two conjugate sets of the quantum Pauli matrices are introduced®
0u(a)s = [2*(@) " (@ » 74(9)°0 = [2]V2e(0) T (q)y (2.9a)
with the properties \
0.(9)57°(9) s = [206." , 0,(9)758"(q)"s = [2]6%6875 . (2.95)

Explicitly

J+(9):I2]1/2 0 —q_llz) s 03(9): e q-1) )

(2.10)

As in the classical cases, there exists close relation between SU(2) and SO(3),
and between SL(2,C) and SO(3,1). Starting from the basic R matrix as in (2.1),
(2.2) and (2.4), we can construct two fusion R matrices as follows!¥

R™, = ’f-m12{"34(Rz:sRm}'234-"223)&'12@‘34 (2.11)

and®
R‘w‘,\ = {“12{y34(R23R12R34R2-3!)t,‘lzt/\a“ . (212)
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It can be directly shown that they satisfy their own Yang-Baxter equations similar
to that of R itself in (2.1):

Rmnm'n’ﬂnlkr’aﬁm'rllr = Rnkn’k’Rm"‘lr’R"klra y (213)
A straightforward calculation gives
&
A 1
(1-¢?a  -¢'a g7
1 0
R™y = o A 1 . (2.15)
A 1
¢* 0
1 0
2

where A = ¢ — ¢~?, the index pair (m,n) or (k,!) are ordered as (++), (+3),
(+=), (3+), (33), (3-), (—+), (-3), (—=). In comparison with the standard
form in Ref[4], we recognize that the R matrix in Eq(2.15) is indeed the R matrix
corresponding to SO.(3). This builds the homomorphism between SU,(2) and
$0,2(3). So we denote this R matrix as R(g?) which has three different eigenval-
ues, say Ay(q?) = ¢* corresponding to a quintet, Ay(g%) = —¢~? to a triplet and
A2(¢?) = ¢~* a singlet. Then the left and right eigenvectors can be written as

WM (@i R(¢%) Tk = M )%™ (D, R(¢) uwm ()™ = ha(¢)war(d?)¥
a™(¢)5R(¢*) k= M()™()u , RGP um(@®)H = M(¢")un(e?)” ,
(@) R(%) 71 = Xo(@)¥(du » R(¢D)Tv(d)™ = Ao()V(¢)7,  (2.16)

More explicitly

2Yij v 1 ¢!
v Vo= V33 e ) 1 N 2.17a
(¢") - JEF1lre? ’ ( )

q




ij u, + —q!
u+(q?)J = ( u+3+ ) = V;g:_q_z ( Z )

ust- 1
w(@®) =] wu? |=—Lt=|qg-¢' |, (2.17b)
u;~* e 1
3- -1 .
2yij _ [ U- _ -9
u_(g)]_(“—”)'%lﬁ?( g )
Wz(q",)ij = W2(92)++ =1
+3
i [ W1 _ q
wi(q )J*(wlu)_ﬁ(q—l ) )
wot- ¢
wol(g) = | w3 | = 1 —g — g1 (2.17¢)
o(q’) W00'+ R T— ( QQ_IQ ) ’

wi(g*)Y = W) 9
! wi? Vs \ gt )
wa(gh) =wy(¢?) " =1
with all other components vanishing. The right-acting eigenvectors V(g)i;, U™ (g%
and WY(Q’);]» have the same components as their left-acting counterparts v(qz)‘j,
u,,(¢*)7 and wpe(¢?)7. All these eigenvectors are normalized in such a way that

Ca(g")7CP(g%)i; = 847,
Ca(¢®)CH¢" ) = 646, (2.18)
where CA(‘I2)U = (v(q2)ij’ um(‘]?)ij, WM(‘I2)U) and CB(q"')(j = (V(qz),‘j, ﬁm(qz),’j,

WwM(g?);;).
Now we can define the corresponding projection operators

Qg7 = v(g?) T ¥(q*)u
QM) = uu(g?) T u™ (g% (2.19)
Qg = war(g?) WM (g%

with

QM(gH)QM(¢*) = 67Q(¢?), Q¢?) + QM(¢?) + QP(?)=E . (2.20)

Ird
{

And then
R(¢)u = A(g)Q )k, R7Y(¢)7h = 2 (¢HQUN*) ki . (2.21)

As for the Levi-Civita symbols in the spinor space (2.8), we introduce

g(d); = V@ +1+¢7(d);, 8@’ =@ +1+¢v ()7,  (2.22q)

then
gla")g(dy* = 6% . (2.228)

It has been shown in Ref[2,6] that g(¢?);; and g(¢?)" play the role of metric in the
g-deformed Euclidean space, which can be used to lower or raise the vector index,
eg., :

o™(q) = ~oa(a)g(d*)™" . (2:23)
(The minus sign here is introduced to meet the Minkowski metric, see (3.11).) For
the triplet eigenvectors un,(g?)** and ™ (¢%);, the quantum number m used to
specified different eigenvectors takes the same values as the component indices |
and k. All three indices m, j, k can be put on the same footing. We can easily
show that

u™ (") = g(gh) e (d®)™ = u,;(¢)™g(¢ ik (2.24a)
and ‘ ‘ '

un (Y% = g(g*)'u* (¢)im = w(¢*)migl(e?)™ - (2.248)
Now we define

u(g®)im = g(g")im 0™ (¢*)kl = 0™ (¢*Y*g(¢")mi , (2.23a)

u(¢’Y* = g(¢Y " un () = un(e®V*gld")™ . (2.25b)

1t follows at once "
u(@Yu(@®)m =¢* +1+4¢7*,

u(q2)jklu(q2)klm - 6jm ) (226)
u(g? P u(g?)imn = Q(¢* Y mn -

This means that u(¢?);x and u(¢g®)’¥ can be used as the g-deformed Levi-Civita
symbols in the 3-dim ¢-Euclidean space, i.e.,

(g = —i\g® + ¢ 2u(g)u , (VM =i/ + g (Y . (2.27)
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The eigenvectors v(¢?), un(g?), War(¢?) and then the R matrix have a lot of useful
relations among which the most important ones are ®l

RV i = g()R(") oi8(¢"Y " = (V' R(&) ¥ nglePww . (2:28)
Now a straightforward calculation shows
Qg Youots! =0
Qg uoto! = g(g7?)” (2:29)
QW) uote! = —vVg¥ + ¢ Pun (g7t o™
from which it follows by using (2.20) and (2.21) that

ool + g R uotal = (1+ Pl (2.300)
o,x'aj _ q—4R(q~2)ijk‘aka,l - (1 + q?)Q(l)(q—Z)ijk‘akdl
=41+ ¢ e(g™*)*g(g  Vemo™ - (2.300)

these two are indeed the quantum version of relations appearing in Eqs(1.5). Sim-
_ilar to Eq(1.6), we can define the g-deformation of the SO,2(3) generators as

M = Tt QU(g2)i ool

=Trey e

1 -2 m
= e | mT .
(1 + 9'2) (q g(q )k
As for the classical case, these generators are indeed the Pauli matrices themselves.
And (2.30b) gives the g-commutation relations among these generators
o o’
1+ q—2 14+ q—Z

. ~2\ij = Jm,
= ie(q*)*g(q ”)kmmfz :
(2.31)

g 'R(g7?)n

_a
1+ q—2 1+ q—2
Also we have
M""d' - q—4R(q~‘2)jlj’nl'{(q—'z);j'kmO,k‘ mn _ _i(qQ +q'2)0,lcQ(l)(q-z)ijkmg(q—Z)ml .
(2.32)
This is the g-version of Eq(1.7). Eqs(2.32) and (2.31) are equivalent.

3. Quantum Dirac Matrices

It has been pointed out, in Ref[5,7], that the fusion R matrix given at (2.12) and
(2.14) is really the R matrix for quantum Lorentz group SO(3,1). The explicit

9

form of R was shown there. The 16 x 16 R matrix has three different eigenvalues:
the singlet eigenvalue Ao(g) = ¢~3, the sixfold one A(q) = —¢~! and the nonet
A2(g) = q. The left-acting eigenvectors as well as the right-acting ones are written
as

5(?)uu7z(qyw~) = '\0(9)5(‘1)&«\ s k(?)‘wm\v(‘])m\ = AG(Q)U(q)W )

ﬁms(q)w’fz(qywm\ = ’\I(Q)ﬁms(Q)m\ s {R(Q)Wm\"-‘mss(‘I)m‘q = A(@umi(g)* ,

B™(9)u R(9)* xa = 22(9)B™(@)r , R(Q™ rwmal@)™ = f\z(Q)wmr.(q)“”(, :

3.1

where for sextet eigenvectors (ms) = (1+),(1-), (0—{:),(0-:),‘(14-),(1—:) and for
nonet (mn) = (2,0),(1,1),(1,1),(0,2),(0.0),(0,2),{1.1),(1.1) and (2.0). The
singlet eigenvectors are

v(q)‘w = ('l)+_, ,v33’v30, ,003, 'UOO’ v~+) = (—q_ls —13 0. 09 11 “‘Q)[?‘]—l ’

(@) = (4, V33, D30, Doa, Doo. Ty ) = (-¢71,-1,0,0.1,—-¢)[2]" . (3.2)
These are scaled to give
9@ = 215(Q)u , 9(0)* = [2]u(0)*” . (33)
Then
g(q)lll/g(q)‘h\ = 6;&/\ = g(?)/\yg(Q)w (3‘40)
and
(D =9(¢ o - (3.4b)

And it has been pointed out that g(g),, and g(¢g)** are the g-deformed Lorentz
metrics of quantum Minkowski space.

The sextet eigenvector un,,(¢q)** and @™*(g),, were presented in Ref{7], which
can be expressed as

Un (@7 = un_(9)7 = u(¢?) V¥ +¢7%(2!
= —1g(q")mee(¢?)F[2] !

Ui ()% = um_(g)* = —¢71[2] 16" (3.3a)
Unp () = um-(9)™ = ¢[2]7'6,"
@ (e)y =" (9 = By(@ W F ¢
= ig(q?)™*e(g*)ui;[2]
(3.56)

a™H (o =A™ (Qk = ~q[2] 1™

@™ (g =8 (@)or = g7 2] 716"

It
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The projection opcrators corresponding to different eigenvalues are defined as
Q(O)(q)uu“ = v()*v(g)nx
QM@ x = Uns(4)* Trms(9)er (3.6)
Qm(‘l)"”m\ = wmn(q)‘wi)mn(q)rd )
which satisfy the relations
QoY = 5iiQ(i) , QU+ QM4 Q(ﬂ =E . (3.7
And then
R0 = MOQ ()"0, R0 = AT (@)QD () un - (38)

, The projection operators Q(¢)* ., as well as the R matrix have a lot of useful
symmetries, among which the most important ones are

Q(i)(qywﬁ«\ = Q(i)(q—l)uu,\ﬁ ’ ﬁ(?)uvm\ = k‘!(q-l)w‘/\" ’

IHDouR(@r = R7HD" pe0(Dor + 9(9)7 R0 2 = R7Hg) 109(9)0 - (3.9)

The quantum Dirac matrices are obtained by a construction method in terms
of the quantum Pauli matrices, very similar to the classical case

v aon . [o* {0 I
s =7 L) = (0 ) (3.10)

o*(q) = o,(g)g(@)" | (3.11)

0,(q) are defined as in Eq(2.9), and 6* are related to the conjugate set * in (2.9)
to ensure the adequate transformation property. (! More explicitly,

0 -1\ . [0 ¢
70:(_‘1 ¢ ) 7:(_5 g) (3.12)

A direct calculation shows that

Q™A™ = o), QP Xy =0,

where

iQ(l)(q—l):§7s7)‘ - S(q)uu - (6“‘(')(11) qu?(q)) (313)
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where
54(q) = 1QM(g" ix8"o* = i[2]o™ (@)um-(g71)* , (3.14)
o (g) = iQM(g™" ixo"d* = i[2]o™ (@)um+ (g7 - '
By using (3.5a) we see that
. . AT 0
20 =@ mts (3 )
B =it (3 _0.) (.15
-1
K0 k -¢ 0
e =i (75 0) .
From (3.13) we can obtain
T+ ¢ RGN vy = (L4 ¢h)g(a7 )™, (3.16)
P = PR ™ = (L+7HQM(g) ™t = —i(1+ ¢ TE(9)
(3.17)

Eq(3.16) is the Clifford definition relation for quantum Dirac matrices v*. A
similar relation has also been proposed by Zumino in a different consideration.!®!
The generators of quantum Lorentz group can be defined as

QW@ )y =

M= (g . (3.18)

T 14477

Then a tedious calculation gives

M# o = g R(q) o R(gT ™ oy M = (14 ¢)QW (g7 oo 9(g 7)™

1
1+4¢°?

(3.19)
and i o
MY M = R(qHOEN MM = [l ppee (3.20)
where
RGN = TR RV R s R(GT P e
(3.21a)

which is a 256 x 256 matrix satisfying Yang-Baxter equation, and
100 = 2P QUG g QUG e, (3210)

It is easily seen that Eqs(3.16), (3.18), (3.19) and (3.20) are just the quantum
version of the classical relations.
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4. Brief Discussion

In two previous scctions, we have established the quantum Pauli matrices and
quantum Dirac matrices, as the special case of quantum Clifford matrices in 3-dim
and 4-dim. The generators of the corresponding quantum groups, the quantum
rotation group S0,2(3) and the quantum Lorentz group S0O,(1, 3}, are obtained by
extracting the g-anti-symmetric combination from the bilinear form of two Clifford
matrices. The common features are:

(i) Every main classical equation has its quantum counterpart, as least for the
3-dim and 4-dimn cases.

(i) The ordinary commutation relations in the classical case are changed into R
commutation relations, just as proposed by Woronowicz,!!l with adequately given
R matrices.

(iif) In the limit ¢ — 1, all these quantum relations reduce back to their
classical counterparts.

For arbitrary N, the Clifford definition relation can be written as

1-\.41—‘3 . /\I—XRAECDI*CI*D — (1 . '\‘I-IAU)QAB (41)

where R*Pcp, being the R matrix characterizing SO,(N) (or SO,(p — N — p))
group, has three different eigenvalues: Ao(gq) = ¢'~" corresponding to the singlet,
A(g) = —¢7! to the g-anti-symmetric multiplet with dimﬂz—ll) and Az(g) = ¢ to
the g-traceless-symmetric multiplet with dim-’\i;—'*ll — 1. The projection operator
to the subspaces with different eigenvalues A; are denoted by Q% and g*Z is the
eigenvector of R*P;p corresponding to Xg. The definition given at (4.1) coincides
with that in Ref[8]. Then the generators of quantum orthogonal group are taken

as

y ¢ AB .
MAB = T:—:E;FQ(I) CDFCrD (42)
(¢}

with — sign for Euclidean case SO,(N) and + sign for pseudo-Euclidean case
S50,(1,N — 1) (since the time-favor metric convention is adopted). The vector
properties of the I'C is now expressed by
MABIC Ai—zRBC‘DBIR.-\DC'A'FC’A[A’B’ =401+ /\;2)F:\'Q(I)ABA,B/gB'C”
(4.3)
But the commutation relations among M+ take a little bit complicated form for
higher dimensions.

MABAICD _ 7*{(,43)(GD)AIB,)(C,D,M.yg,Mclpf :‘f""?}g‘”(ﬁﬂﬂ +£9FC),  (4.4)
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where

RO — )\;4}?23312}?34}?237 (4'5)

and
> . — - B el cD
FOTEEP = 2idoA T (14 AW ppigP O QY g, (4.6)
. 14+ A7
= Fi a — 4.7)
A v (e Wiy (
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