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Abstract 

In this paper we first discusse.d the properties of the gauge magnetic 

field of anyons in Ff!rmi representation, (J,nd fo'und that therf! is no Lorentz 

force experienced by every particles. Based on this fact. we nsed the plain 

wa'ue as the perturbative expansion basis and gave the the res'ults of !inen.r 

response theory of an ideal anyons gas in the random pha.~e approximation. 

No Meissner effect and Goldstone mode have been found. which are oppMite 

to the result of the mean field theory. At last, 'we make ,'lome comment8 on 

the mean field theory of anyons. 

PACS number: 74.20+z, 05.30-d 
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§1.Introduction 

Currently, the theory of fractional statistics becomes more and more no

ticeable. The properties of anyons ( obeying the fractional statistics ), such 

as whether its ground state of anyon gas is superconducting, are expected to 

be solved by a lots of theoretical physicists. In 1977, Leinaas and Myrheim[l] 

tried to discuss the possibility of existence of new quantum statistics in two

dimensional space, but, unfortunately it did not attract attention in aca

demic circle at that time. Until 1982, some of the most intriguing ideas in 

physics, such as the magnetic monopole, the Aharonov-Bohm effect and the 

fractional quantization of charge and angular momentum et aI, led Wilczek 

to propose again the concept of anyons, a new kind of identical particles, 

which obey neither Fermi-Dirac statistics nor Bose-Einstein statistics but 

obey a novel statistics, i.e., the fractional statistics[2]. In 1984, Halperin[3] 

suggested that the exci tations in the theory of fractional quantum Hall ef

fect proposed by Laughlin behave like anyons, which was confirmed lately 

[4J. This was a turn point in the study on the fractional statistics. For the 

first time, anyons are observed in three-dimensioal realistic system inex

plicitly. The discovery of high temperaturf> oxides superconductors made 

a great progresses in theory of condensed matter, especially, in the theory 

of two-dimensional strongly correlated system. Soon after the discovery, P. 

W. Anderson[5] pointed out that the high temperature superconductors do 

not behave like conventional metals in their normal, nonsuperconducting 

state. His suggestion led Laughlin[6J to propose that many of those unusual 

2 

properties may be described and understood in terms of peculiar properties 

of a collection, or gas, of anyons. Furthermore, he proposed the mechanism 

of unyons superconductivity: the ground state of semions, interpolating be

tween Fermi and Bose statistics, may be superfluiding. This suggestion was 

just confirmed in the mean field theory[11. In the random phase approxi

mation the full diamagnetism and a Goldstone mode was found, which was 

regarded as a hallmark of superconductivity in a semion gas. But unfor

tunately, in the same approximation, no phase transition had been found 

at any finite temperature[8j, which indicates the anyon mechanism may not 

be related with the high-Tc oxides superconductor even if the mean field 

theory be correct. Some revised revisions have been proposed by sveral au

thers, such as Khveshchenko and Kogan[9J, who used a BGS-type ',;ariational 

ground state to study the anyons system. Furthermore, a lot of experimen

tal results approaches to deny this mechanism, because time-reversal T and 

parity P violation, which is a fundamental property of anyons, was failed 

to observed in high-Tc material{lOj. Based on these experimental results au

thors proposed a two-component anyon model, in which Kosterlitz-Thouless 

phase transition may be responsible for superfluidity[ll]. These facts make 

us have to consider again whether the ground state of anyon is supercon

ducting. 

Until now, Laughlin's ideal was confirmed in the mean field theory. 

In this approximation particles move in a uniform magnetic field that is pro

portional to number density of particles and their energy spectrum is dis
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crete, unlike the single-body spectrum of ideal gas of hosons and fermions. 

As for the concept of the mean field, it is still worth studying further. An 

immediate, but unphysical conclusion of the mean field theory is that there 

docs exist a nonzero Hall conductivity in an ideal anyon system, this is only 

because in classical sense no Lorentz force arises between anyons, even if 

they projected into Fermi representation and oppositely in the mean field 

theory every particle moves in a uniform gauge magnetic field. Thus we 

have to discussed this theory again. In this paper, we made a different 

approach to study the properties of ideal gas of anyons and found some 

different results opposite to the mean field theory. Using the plain wave 

as the perturbative expansion bases, we found no Meissner effect in the 

random phase approximation. Thus an ideal gas of anyon may not be su

perconducting. 

In Section II, we discussed the properties of the gauge vector potential, 

which transmutes the statistics of anyons to fermions or bosons and gave 

a compact form of Hamiltonian as a starting-point to study the system in 

the perturbed method. In Section III. we introduced the random phase 

approximation in anyon system. In Section IV, we introduced the linear 

response theory of anyon system in random phase approximation briefly. 

In Section V, we listed the results of the random phase approximation in 

anyon system. In Section VI, we gave some discussions on the mean field 

theory. In Appendix, the detailed calculation of current-current function 

of ideal two-dimensional fermion gas were presented. 
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§2. Hamiltonian of the system 

As usual, we start from the Hamiltonian for an anyons (obeying p

statistics) in the Fermi representation[llJ 

~ 1 e 2
H = L -(P, + -A;) 

i In e 

where .-li is the gauge vector potential originating from statistical trans

mutation from anyons to fermions. Such a potential has special property: 

its corresponding gauge magnetic field is closely relat,ed to the density of 

particles 

B; Vi x.-l; 
lie N 

(1 - v)-L o(r: - ij) 
e #i 

lie (_
(1- v)-p r;) (2) 

e 

Obviously, this field has a lot of singularities in the configuration space. If 

we denote the ground state wave function of the system by <P(rl,"', r.v), 

the principle of identical particles must forbid all the diagonal elements in 

the configuration space of wavefunction[131: 

l'lt(· -. ,r;, -.. ,ij = r:), - _1 2 == 0 (3) 

In another word, we have excluded the possibility that two identical parti

cles occupy the same site. By using this properties, we obtain the expecta
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tion of the gauge magnetic field on the ith (for instance, i = 1) particle: 

Bl === Jdr2'" drNB(rl)lw(i) , "', 

o (4) 

coinciding with the common sense of no classical Lorentz force experienced 

by any particle. Usually, an anyon can be regarded as a magnetic flux-tube 

carrying charge, which radius is zero. Thus, the magnetic field carried by 

the tube is restricted within the tube. Out of the tube, there is, obviously, 

no magnetic field, of course, though there does exist a vector potentiaL 

Therefore, in such a system, it is not strange that every particle is not 

affected the magnetic field, though the vector potential does exist. However, 

for an arbitrary position in space deviated from particle position we obtain 

a finite nonzero magnetic field 

H(r) (1- v)'he Jdr2'" drN L 6(f' - fi)I'l1(rl,"', 
e i 

'he
(1 - v)-p(Fj (5) 

e 

Here p(i) = p is the particle number density of the anyon system, i.e. the 

probability of a particle appearing at an arbitrary position r in the many 

particle distribution. Based on this result, several authors have calculated 

the collective mode and linear response in the random phase approxima

tion, which is called the mean field (average field) theory[7]. In this case, 

every particle moves in a uniform gauge field, which is rigorously related 

with the density of the particle. For some special systems v = 1 - !, the n 

Landau level is fully filled, which leads to diamagnetism for the system. 
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Now we try to give another approach to study the properties of anyon 

system. We accord to the fact of Eq.(4). by choosing the phase wave

function as our pertllrbative expansion .base and in the second quantum 

representation. The Hamiltonian can be written as 

H Ho+HI 

where 

~,

J<J
dr 

Ho 'l1t(Fjp2(r2)'l1(i) ( I, 
_m 

1 J 1 ........

HI - dr-'l1t(i)(P(i)· a(i) + a(i) . P(r))'l1(Fj

2 m 
1 J 1 ........
+ 2 df';;'l1t(Fja(r2). a(r2)'l1(f) (8) 

where 'l1 is the spinless Fermi field operator and a is the gange vector 

potential 

J .... f'-r' .... .... 
(9)a(i) = (1- v)'hz X dr' If_ Til2 wt(r')w(rl 

) 

The perturbative part of Hamiltonian contains a two-body interaction and 

triple-body interaction. The two-body interaction can be reduced into a 

compact form: 

(10)HlI = ~ JdrdTiUi(i)viO(r - r/)jo(Ti) + jO(i)VOi(r - Ti)jjCTi )} 

where 

ii(i) = ~{'l1t(?)Pi(i)'l1(i) - 'l1U')Pi (i)'l1 t(i)}, i = 1,2; (11) 
2 m m 

io(r) = 'l1t(rj'l1(Fj; (12) 

... .... .... eij(f - r/)j
ViO(r - r/) -VOi(f' - r') = (1 - v)'h ... ... . (13)

Ir - r/12 
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The triple-body interaction is 

H12 = 21 . (1 - v)2/i
2 j dfd;:'idr"jo(r) (~ r). r: -~7') jo(;:'i)jo(i") (14) 

m Ir - r'I21r - r"F 
Let us reorganize H12 into two pieces, using 

jo(f) Po + (jo(fl - (15) 

The first term of resulting expression is expected to dominate, when fluc

tuation in density are relatively small. Its meaning becomes transparent 

upon doing the integral 

f - r' r - r" -j df--_- . --_- = -27r In Ir' rill + constant (16)
If r/12 If r"F 

The triple-hody interaction is approximately reduced to an effective repul

sive Coulomb interaction: 

H12 ~ ~ j dfd?jo(flvoo(f - ?)jo(?) (17) 

where 

- Po voo(f - r/) = -27r-(1 - V)21i2In If - r'1 (18) 
m 

Thus, we are left wi th a compact form of the interaction only 

HI = ~ j dfd?jiflv/,,,(f - ?)j,,(?) (19) 

In the Fourior space, v takes a simple form 

jd l "( - ') iq.(f'_,."'ljv( if) = rvr-r e 

~(1 - v)21i2 (27r)2 0 
m q2 

o 0 
t!~].(1 (20) 

[ i27r
-(1-1I)1i- 0 

q 
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Here we take the momentum vector if with component only in x-direction. 

Obviously, we have a relation 

m 
V02 • V20 = -VOO (21) 

P 

§3. Random phase approximation in anyon system 

In this section, we discuss the mechanics of calcula.tion in the random 

phase approximation (RPA). As we have shown in Section II, the interac

tions of anyons system contains an effective repulsive Coulomb interaction, 

which suggests the importance of summing bubble graph. In general elec

tron gas, the density-density correlation plays an important role in the 

calculation of the effective interaction, from which we can get the collective 

mode. Before we discuss the correlation function of j in anyon gas, we 

just give the form of effective interaction in random phase approximation. 

Using the rules for evaluating Feynman graphs[14), we have 

v(f, f, q,w) = v(k, f, if) +2: v(k,p+if, if)fI(i+ if,ff, if,w)v(p, f, if,w) (22) 
p 

The equation above is an integral equation. As v has the form 

kn- ~ k ) kill + k' 
v(k, f, if) __2, -.:!:....v(if)(I, ..l:.l (23) 

m m m m 

Thus, the integral equation is reduced into an algebraic equation: 

v(q,w) v(fJ + v(if)· iIO(q,w)' v(q,w) (24) 
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where 
k q k' q 

... ... II - -2 k II + - k'
1}(J..~,k',q,w) (1,---, ....!:)v(q,w)(I,----.2.,--±'f (25) 

m m m m 

and 

q . q 
A J dp kll + 2 kJ,. T( kU + 2 kJ,.) n('" ......... ) (26)
n(i,w) = --'2(1, ,-) 1,--, - x p+q,p,q,w

(2/T) m m m m 

The simplest form of n(q+p, p, q, w) is 

n(q+ p,p,q,;.;) JC:W2'" Go(p + q, w +w')GO(p, w') 
l 7'i 

9(1;; +q1- kF )e(kF - k) 9(kF -Ik +q1)9(k kF) 

w - c(k+ if) +c;(k) + iO+ w - c(k + if) +c(k) - iO+ 
(27) 

After tedious algebraic, the matrix of n(q, w) has the form 

ngo(q,w) ng1(q,w) 

fi(q,w) = n~o(q,w) n?l(q,W) (28) 
( 

o 0 ll1,C:,W) 1 
The detailed calculation of ftcq, w) is presented in the appendix. 

In this approximation, IIO(q, w) is not but the unperturbed current

current correlation function and can be expressed in this way 

no (... ) -;--2 < 01' ('''' ')' ( ... ')10>. (29)Jdw'/Jvq,w= j/Jq,w+W)v-q,w
l 7'i 

Define the current-current correlation function as 

ITI'V(i,W) =J,~~~ < 4I1i/J(q,w +w')j.,( -q,w')I4I > . (30) 
l_Ji 
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we can obtain a Dyson equation about n/Jv(q, w) in the random phase ap

proximation 

fi(q,w) = fiO(q,w) + fiO(q,w)v(q)fi(q,w) (31) 

Its solution is 

fi(q,w) [1- ftO(q,w)v(if)r1fiO(q,w) 

n&, n?o 
1 II&,V02 IIg2 1 

-(_) x n~o nit II~ot'o2IIg2 P2)c q,w ( 
n~2V20n &, ng2V20n gl n~2 - II&,vo2ng2 

where 

c(q,w) = 1- n~(q,w)voo(q) - n~2(q,W)V20(if)n~(q,W)V02(if) (33) 

and 

nrl(q,W) e:(q, w )n?l (q, w) + n~o(q, w)Voo(if)IIg l (i w) (34) 

+ II~o(q, w )V02( if)II~2(q, w)V20(q)IIg l (q, w) (35) 

Hitherto we have calculated the current-current correlation function fi( q, w) 

in random phase approximation, but it is not quite object we want in the 

linear response theory. The physical current density in anyon system is 

J = j + a, not only j. Fortunately, they are closely related. 

§4. The electromagnetic response kernel I(J.'v( if, w) 

In the linear response theory(15], consider a system in the presence of a 

weakly external applied electromagnetic field described by the vector and 
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scalar potential A.(r, t) and <Per, t), respectively. For convenience, we write 

(36)AI'(x) = {C<p(X), p. = 0 
Ai(X), p.=i=I,2 

where x = (r, t). In the anyon system, the paramagnetic current is defined 

as 

i:(x) = { j~(xh;(X) + ~ca;(x)jo(x); (37) 

Jo = Jo(x) 

and the diamagnetic current density jd is given by 

j:(x) = { :cjO(X)A'(X); (38) 

Thus, the physical current density in the presence of A. is the sum 

(39)
jl'(X) j~(x) + j:Cx) 

In the linear response theory, the expectation value of the current density 

JI' can be expressed by 

c (40)
JI'(X) == - 41r ~JKI'II(x,x')A II(x')dx' 


where the electromagnetic response kernel KI'II is given by 


i41r < iPli:(x)j~(x')liP > B(t t')

KI'II(x. x') 

(41)41r2 < iP\jo(x)jiP > S3(X - x')SI'II(I- SIlO) 
mc . 


In Fourier space, 


(42)
KlJvCf,T) = 4: RI'II(ij,T) + 4\pOSI'II(1-SvO)

c mc 
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where 

RI'II(if,r) = -i < <)/j~(q,T)j~(-if,O)I~ > 8(T) (43) 

The paramagnetic kernel RI'll can be given in tenn of the time-ordered 

quantity 

1
+00 . 

PI'II(if,W) = -i -00 < iPIT{j~(if, T)j~( -tj, on liP > elW

1' dT (44) 


where T is the time-order operator. Their relations are 

ReRI'II(if,w) RePI'Aq.;,;J); (45) 

ImRI'Aq,w) sgn(w)ImPp.II(if,w). 

Now, we come to calculate Pij(ij, w). According to the definition, it can be 

written as 

Pi)(1.2) =: -i < iPIT{[ji(l) + jo(1)ai(I)]U)2) iiP> (4T) 

Approximately, using Po instead of JOt one obtains 

Pij(if,W) IIij(q,w) + '£'vio(t]jIIoj(q,w)
m 

2 

+ '£'niO(q,·JJ)VOj(q) + ~vio(q)IIoo(if,;')UOj(qj (48) 
m m* . 

Thus, we have 

Pll(if,w) 
0'" II?o(q.w)IIg1(if,w). ~(q,w) -1; 

II l1 (q,w) + n80(q,;.) c(q,w) 
(49) 

P12(if,W) pn~o(q,"';)V02(q). 
m c(q,;.) , 

(50) 

P21(ij,W) 
P V20( qjTIgl (q, w) 
m c(q,w) 

P22( if, w) 
p ng2 ( if,;.) ) + .£. 

--+ m 
(52 ) 
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§5. Results of the random phase approximation calcu

lation 

In anyon system, one of the problem we are interested in is whether 

Meissner effect does arise, which can judge the ground state of anyon gas 

is superconducting. In the mean field theory, Fetter et al and latter Chen 

et a1l1] have discussed this problem and found some evidences to sipport 

the existence of this effect. Their physical pictures is that the gauge field 

is considered as a uniform magnetic field, approximately. Every particle 

moves in a uniform magnetic field and interacts with a residual potential. 

In the case of v = 1 - ~, the n lowest Landau levels are filled fully. Their 
n 

unperturbative base is Landau level, which is every different from the plane 

wave as we used. 

As Schafroth{16\ has shown, the lv'Ieissner effect requires that the trans

verse part of the kernel Kj,LI/( if, w) remains finite in the long wavelength limit 

q -+ 0 for frequency w = O. In this limit, we find 

Pll(if,w =0) --,p 
(53) 

m 

Pdq,w = 0) P21 tq,W = 0) = 0; (54) 

pIp q2
Pdif,w = 0) --+-.--- (55)

m 6 m (1 - V)2' 
1+-1-2

Putting them into K ij , we obtain 

Kij(q,w = 0) = (8;j qi;j )K(q) (56) 
q 
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where, unfortunately, K(q) has the form in the long wavelength limit 

p q2 
K(q,w = 0) = m (1 _ V)2 -+ 0, as q2 -+ 0 (57) 

6+--
2 

h r (c qjqj). 1':" h R~ . I
T e ractor ~()ij - 7 lfi .fijj guarantees t at ij IS a pure y transverse 

in this case. Therefore, we find no Meissner effect in anyon gas in our 

approximation. Another interested quantity is the collective mode, which 

is related with the pole in the response function. From appendix we derive 

e(q,w) = 1--- - -0(-:-) 

in the limit q -+ 0, 

n~(if,w) ~ 
m q2 q2
-'-+0(-);
7r IN' w2 (58) 

n~2(q,W) ~ 
1 q2 q2

-'-+0(-).
4m7r w w2 (59) 

Then, 

(1-v)2 1 q2, 
2 w 2 w2 (60) 

There is evidently a pole at the point, 
w

22 
w ~ (1 - V)2 + O( q2)' as q2 -+ O. 

W (61) 

which means that the collective excitation spectrum has an energy gap in 

the limit q2 -+ O. This result coincides with two-dimensional electron gas 

with a logarithmic interaction. 

§6. Conclusion and discussion 

In this paper, our approach is very different from that of mean field 

theory as we have chosen the plain wave instead of Landau level as the 
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perturbed expansion basis. We have not obtained some results of the mean 

field theory. No meissner effect and Goldstone mode were found in such a 

perturbative approach, and the anyon gas does not manifest the superflu

idity in the ground state. 

In the mean field theory, some conclusion s are obviously unphysical, 

one of which in the nonzero Hall conductivity(1). It is impossible that there 

is a nonzero Hall conductivity because no magnetic field in an ideal anyon 

gas. One of important evidences to support anyon superconductivity in 

the meanfield theory is the exsitence of full diamagnetism. Unfortunately, 

in the same approximation, no any phase transition was found at any fi

nite temperature. Therefore, in the sense of the mean field theory, such 

kind of superconductivity (even if possible) might be only regarded as an 

anormaly, just as the two-dimensional system of ideal bosons, in which 

there is no Bose-Einstenin condensatoin at any finite temperature(l7J• It 

is impossible that this mechanism should occurs in the high-Tc materials. 

Another of important evidences is the existenc of a linear Goldstone mode. 

According to the Landau theory of superfluidity, it should be no doubted 

correct. But some results of interacted anyon system indicates that there is 

no relation between full diamagnetism and linear Goldstone mode. In the 

anyon system with Coulomb interaction (!), Yang et allIS] found that the 
r 

collecti\'e mode is proportional to .;q in the long wavelength limit, and the 

ground state is still of full diamagnetism. Thus in the mean field theory of 

ideal anyon gas. the coexistence of full diamagnetism and Goldstone mode 

16 

belongs to coincidence. Recently, we found that the collective excitation in 

a short wavelength limit approaches to a constant quantity, and unexpectly 

is restrictly stable in the mean field theory. The minimum of i is zerol19J. 

Thus according to the Landau's theory of superfluidity, any small £:low of 

such fluid, suppose its velocity v, will lead to some excitation with w < uq, 

which will cost some energy to make the flow slower[20! 

Since we just make a random phase approximation in our approach, 

we can not draw a final conclusion that the ground state of anyon gas is 

not superconducting. The validity of the mean field is still worth studying 

further. Now we are devoting ourselves to do a more complicate calculation 

in a high-order approximation in order to understand this problem. 

Appendix: The Detailed Calculation of the Current

Current Correlation Function 

Here we present the detailed calculation of the unperturbed correlation 

function II~,,(q,w). From the definition of II~,,(tf,w) we can write it 

o .. J dk - q .. if
III',,(q,w) (21r)2(k +2)I'(k +2)" 

X {9(lk + qJ - k~)9(kF - k) _ 9(kF -Ik +~)9(k - kF) } 
w +e:(k) - c(k +if) + iO+ w +e:( k) - e:(k + if) - iO+ 

(62) 
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\,. 

where 

k _ {I, # = 0 
(63)/l- k" 

;;;, #=;=1,2 

Using the formula, 

_1_ = p! =F i1l"6(x) (64) 
x ± iO+ x 

Then, the real and imaginary part of II~..(q,w) can be written as 

if {... q ... q (}( kF - k)
ReI1~" (q, w) P j (211")2 (k + 2)/l(k + 2")" w + c:(k) - c:(k +V 

... q ... q (}(kF -Ik - q1) } 
(65)+ (k-2")/l(k-2")"w+c:(k_V_ e(k) 

and 

,... j dk ... q ... q
1m~JI~q,w) = -11" (211")2 k/Lk,,6(w + c:(k - 2") - e(k + 2» 

f 
x 9(ik

... + -1-q 
kF )8(kF -Ik

... 
- -I)

q + 8(kF -Ik
... 

- -1)8(lk
q -+ 

- -1-q 
ki~ ){ 2 222 

Take Fermi momentum kF and Fermi energy C:F = ;~ as units: 

k" w
ki~ .-.!..jw-+

kF eF 

We now precede to evaluate each component of I1~v (q, w) in turn. First 

Icc Re 11° ("'w)-?mj dk ( 6(I-k) _ 8(I-k) ) 
00 q, - - (211")2 W - 2kqcosip - q2 w - 2kqcos,p + q2 

r kdk {l1r dtp (1 1)
mIn 211"q Jo 211" kcos<p - a+ - kcosip + a_ 

_~ {I kdk { 1 a+ 8(a2 _ k2) + 1 a_ 8(a2 _ k2)} 
27rq Jo Ja~ - k2la+1 + Ja:' - k2la_1 

18 

r:;--; a+ fJ( - c:;--:; a_ fJ( )-m { Va=+- - 1- Q+2·1) - a+ + Va:.. - 1- a_2 - 1 - a_ } 

211"q la+ I la_I 
m m { ~ a+ 2 c:;--; a_ 2 }-- + - Va=+- -1-(}(a -1) + Va:.. -1-(}(a_ -1)
211" 27rq la+ I + la_I 

(67) 

where 
q2 ±w 

a±=-- (68)
2q 

The imaginary part of 1180(q, w) is 

1m I180(q,w) = -211"m j ~!6(w - kq cos <p) 


... "q ... q ... q ... q}

x (}(lk + -1- 1)(}(1 -lk - -I) + fJ(lk - -1- 1)(}(1 -Ik + -I){ 2 2 2 2 

--mj kdk 2 
w2 

fJ( 4k2q2 - w2 
)

211" J4k2q2 
W q2 W q2 W q2 W q2 

x 
{ 

8(k2 + - + - - 1)8(1 - k2 + - - - ) + 8( k2 
- - + - - 1)8( 1 _ k2 

- - - - )
24 24 24 24 

(6 

As I180( q, -w) = 1180(q, w), we just take w as positive 

1mII80(q, -w) = 2~{ /1 - a~(}(1 - a!) - /1 - a:'8(1 - a:)} (70)
1I"q 

kl
Now we pass to other component of I1~". As k/l=o = 1 and k/l=l = -, then 

m 

Re I1~o(q, .... ) 

dk { k cos r.p + ~ k cos tp - ! } 
2 - - 8(I-k)j (211")2 w - 2kq cos r.p - q2 w - 2kqcostp + q2 

jw dk (1 1)()( k)

2q2 (211")2 kcoscp-a+ - kcosip+a_ 1

~ReI180(q,w) (71)
2mq 
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x 

and 

J dk 
1m n~o(q,w) = -211" (211")2 kcOl:l 'PS(w 2kqcos:p) 

... q -- q ... q - q}
9(\1.: + -I - 1)6(1 - Ik - -I) + 9(lk - -1-1)6(1 -Ik + -I)

{ '2 2 2 2 

w Imn~(q,w) (72)
_mq ,? 

Similarly, 

___ 1 + w2 
R 0 (73)

411"m 4q2m2 enoo(q,w)j 

w (74) 

Ren~l(q,W) 

Imn~t(q,w) - 4q2m2Imn~(q,w). 

As for ng2 , 

Re n~'2( q, w) 

_ __ k SlO - 6 1 - k2 J dk 1 
m (211")2 

2' 2 
cos 'P - w - 2kq cos r.p + q2) ( ) 

2 

_ 2 J_ dk__ 1 (-a _ a + a
2 - - k

2 
- a+ - p 6 1 - k 

m (211")22q + - kcos:p + a_ kcosy - a+) ( ) 
3 

1 1 2 - a+ 2 3 _---- (a -1)2-9(a -1)-a
41!"m 611"mq { + la+ I + + 

+ (a'. _ 1)i 1:=18(a'. -1) - a:} (75) 

and 

3 3}1 - - (76)Imn~2(q,w) = 61!"mq (1 - a!)20(1 - a!) - (1 - a:J29(1- a:){ 

20 

Summarily, the results of calculation are listed as following 

Ren~(q,w) = 


m m{~a+ 2 ) ~a_ 2
--+- Va+ -1-6(a+ -1 + Va~ -1-6(a_ - I)}
211" 211"q la+ I la_1 (77) 


Imn)k(q,w) = 


m {Ja~ - 16(a! - 1) + Ja: - 16(a: - 1) } 
21I"q 

Ren~o(q, w) = 

w W { ~a+ £I 2 ~a_ 2
-- + --2 Va+ -1-u(a+ -1) + Va~ -1-,9(a_ I)}

411"q 411"q la+1 la_I (78) 

Imn~o(q,w) = 
~{Ja~ -10(a! -1) + Ja:' -19(a: -I)}
411"q 

Ren~l(q,W) = 
1 w2 r:::;--; a 

- 411"m + 811" 3 {Va~ -1 :+ 6(a! -1) + Ja: -1--,6(a: - 1) - a+ - a_}
q m 1 +1 la_I C9

Imn~l(q,w) = i ) 

2 w ~ 
811"

q
3
m 
{va~ -16(a! -1) + Ja: -16(a: -I)} 

Reng2(q, w) = 
3 

1 1 {3 3 2 Jrac32 a+ (2 ( '2 -2 a_ 2_- +-- a+ +a_ - (a+ -1) -9 a+ -1) - a_ -1) -6(a_ -I)}
411"m 611"qm la+ I la_I (~ 

Imn?l(q,w) = 
3 3 

1 - 
--((a! -1)29(a! -1) + (a: -I)26(a: - I)}
61!"qm 
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There exist some relations, 

2wRen~o(if,w) = Ren~lif,w), Imn~o(if,w) == 2
w 

Imn~(ij,w)
qm 2 	 q~ (81) 

{ Ren~l(if,w) == -~4 + 4~ ~Rcn~(if,w), ImII~l(if,w) == 4~ 2ImII~(q,w)
1rm q m-	 q m 

where a± == q2 ±w2q 	 . 
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