
1 

I. 
I 

.."..,.,.::........."'... -""'.....-::'..".""~..,...-~~.~'" .~ .. ~.•. 

:. ~ ~i ~:'. ~. ~. \. 
" '\ ~ i fi 
i.' ~ "j..\ 
\• ~. \ ~.~ 'r~.!-! 

, :1'." I· 
~ r: ,~ 

~. 

~ 
~ 

\ 

....... ' .....-;-.~ 


""_' J'•. ,~ 

/ 
.' ) 

\~ 

CC .4ST- 92-/9 ~\ 
CCAST-92-191111•••illlll ----....-,o llbD DD1'17b 1 

Quantization ot lJlasslcal Systems 

without Lagrangian on Phase Space 

Dehai Bao and Zhong-Yuan Zhu 

CCAST (World Laboratory) 

Institute of Theoretical Physics, Academia Sinica 

P.O.Box 273.5, Beijing 100080 

Abstract 

The existency conditions of Lagrangian on phase space for general classical 

namical systems are reformulated with symplectic geometry language. For those 

classical systems that hav.e no Lagrn.ngian discription on phase space, the corre­

spond1:ng quantl£m systems can not be by ordinary qnantization methods. 

To quantize such systems, super-phace-,~pace discriptions of classical systems are 

,~ introduced and quantiza.tion is pe1jormed in the super-phaSE-space with the aid of 
i 

Dirac '3 technirrnes of treating constrained .,ystems. 
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1. Introduction 

A classical dynamical system is determined by a set of differencial equations. 

In this paper, we will discuss a large class of dynamical systems, Newtonian sys­

terns, which cover most of physically interested dynamics. The set of diffcrendul 

equations determining a Newtonian system can always be expressed as follows: 

Xi = !i(X, i = 1,2, ... ,d. 

where Xi (i=I, ...,d) are coordinates of system's configuration space Q and Ii are 

some smooth functions over phase space TQ with coordinates 

For a general Newtonian system, it is not garranteed that the system could get 

a Lagrangian discription on phase space TQ. That is, for a general Newtonian 

system, it is usually impossible to find a Lagrangian L( x, :i:) on TQ such that its 

Euler-Lagrange motion equations are equi\-allent to the given set of equations 

This aspect of interest has been investigated by many people and various forms 

of existency conditions for Lagrangian on phase space( usually named as Helmhotz 

conditions) have been proposed(I-5]. However, in order to make this paper self-

contained, we will reexamine the problem briefly in section two and give a condce 

form of Helmhotz conditions in term of symplectic geometry language. 

'When a given Newtonian system has no Lagrangian discription on phase space 

TQ, all existing quantization methods can not be directly used. Then, how can we 

establish the corresponding quantum mechanics for the given system? In section 

three, we will introduce super-phase-space TTQ and prove that any Newtonian 

system, whether it has Lagrangian on phase space TQ or not, can always be 

described via Lagrangian formalism in the super-phase-space TTQ. Since the in­

troduction of TTQ effectively enlarges the number of freedom of the given system, 

what we have to treat will be some constrained system in the super-phase-space. 
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When n Ncwtollian system is ,-icwcd as a constrained system ill TTQ, its quan­

tum mechanics can be with those wdmiqucs deyelopf'd by Dirac. In section 

four, we will demonstrate the procedure of l)Ul' supel'-phuse-space (luuntizutioll with 

two simple bllt nontriyial exampl{~s. 

The last section will be de"oted to conclusions and final discussions. 

2. Geometric Discription of Helmhotz Conditions 

Given a d-dimensional Newtonian system as follows, 

Xi li(:e.x) i = 1,2, .... d (2.1\ 

the conditions concerning whether there exist some Lagrangian L (:r:, x) on phase 

space such that the Euler-Lagrangian motion equations coincide with are usu­

ally named as Helmhotz conditIOns! In this section, we will derive a geometric 

discription of the conditions. 

Suppose there is a Lagrangian .i') with its Euler-Lagrangian motion equa­

tions as follows: 

!!..( OL) _ oL = O. (2.2)
dt ox) 

Namely, 

+ 0, (2.3) 

In order that equations (2.3) are equiyallent to (2.1), following conditions are to 

be met: 
o2L 

Det( ) =/; o. (2.4.a) 

o2L. oL 
--x­ (2.4.b)
oxJJ;i'j J 

Now, let us define a I-form on space TQ as, 

(2.5j 
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The exterior derivative of the I-form induces a. 2-forIU as follows. 

a2 L 
WL = dOL = ~. dx, /\ d.T) + /\ d.!:)" (2.6)-a 

X,v.Tj 

It is easy 'to prove that conditions call be reexprel;:ised geometncail 

as: 

Det(wd i= o. (2.:-.a) 

itWL +dhL = O. (2. "i.b) 

where T is the vector tangent to the dynamical trajectories in phase space TQ 

with expression as follows, 

a a 
(2.8)T = + flax,' 

and is defined as, 

. aL L. (2.9)hL = Xi ai~i 

From its definition (2.6), we know that ",-'L is a closed 2-form while condition 

implies that it's also nondegenerate. Therefore. WL will be a symplectic 

structure on TQ. Furthermore, from condition (2.7 it's easy to prove that -;-his 

symplectic structure must be vanished by Lie derivative associated with t. e. 

.LtWL = O. As a result, we can draw a concice theorem concerning the existency 

of phase space Lagrangian as follows: 

Theorem: The necessary condition that a given Newtonian "ystem ha.s La­

grangian discription on phase space TQ is that there exist a symplectic structure 

W on TQ Juch that .Ltw· = 0, where T i..'l the vector tangent to d!lna.mical trajtcin­

Ties in TQ of the given 31ptem. 

Here, a few more words deserve speaking: Above necessary condition:" are 

also sufficient when the foundamental group of thp. space is tri·,·ial. 

Since if we have found a symplectic struturc "",; on TQ satisfying = O. we ·.\-ill 
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have O. According t.o Poincare theorem [6] , when the foundamental group 

is trivial, any closed form must be exact. As a result, there will exist a function h 

such that = dh. Let L = h, we will get a phase space Lagrangian L 

whose Euler-Lagrangian motion equations coincide with ones (2.1). This 

Lagrangian L is called being induced from the symplectic structure w. If 

we have found a symplectic structure w satisfying LtW 0, then any w' = o'w 

with a being constants is also a symplectic structure satisfying LtW' = O. The 

Lagrangians induced from wand ;"v' satisfy following relations: 

' dgL =O'L+-. 
dt 

which are well-known equivallent Lagrangians. (iii). Not all Lagrangians 

are trivially Namely, we find two or more symplectic strutures, 

say c...:1 and wz, both satisfying = 0 while WI i= O'wz. In this case, Lagrangians 

Ll and L2 induced from ':""'1 and -'2 have no longer relation like (2.10), though 

lead to the same motion equations as (2.1). 

As a conclusion of this section, we stress a fact that, for a general Newtonian 

system, the existency of phase space Lagrangian is not garranteed, but determined 

by the theorem stated above; on the other in the case that the existency 

conditions are obeyed, there usually exist many phase space Lagrangians, some of 

them are equivallent, the others not. 

As well-known, quantization starting from different Lagrangians which are 

equivallent at classical level usually lead to nonequivallent quantum theories. This 

is one of many ambiguities in quantization procedure which deserve more discus­

sions. However, this paper is devoted to another part of the problem-if a given 

Newtonian system has no Lagrangian on phase space at all, how can we quantize 

the system and get a corresponding quantum mechanics system? In next sec­

tion, we will introduce super-phase-space discription of Newtonian systems, which 
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makes the problem become tractable. 

3. Super-Phase-Space Discription of Newtonian Systems 

As discussed last section, it is not that a Newtonian system 

has no Lagrangian on phase space this fact is 

due to that second-order differencial equations have no minimum varia­

tional principle. However, as point out by a set of first-order differencial 

equations always has minimum variational This observation make the 

introduction of super-phase-space a natural attenptidn. Since through appropri­

ately enlarging the set of variables, second-order differcncial equations can be 

reexpressed as first-order ones under new set of variables. Therefore, according 

to Havas, any Newtonian system can be described by some Lagrangian on super­

phase-space, no matter whether it has Lagrangian on phase space. 

let us give the idea a concrete formulation. 

Given a general Newtonian system as follows, 

Xi i) 

where Xi (i = 1,2, ... ,d) are coordinates rnnfi"'l1r~t1nn space Q, are 

some smooth functions over system's space TQ with coordinates 

If we define qi = Xi, qi+n = Fi qi+n and equations can be 

rewritten as following first-order forms: 

. qa Fa{q). (a 1,2, ... ,2d) (3.2) 

The coordinates of phase space TQ are now represented with qa's instead of original 

Regarding TQ as a new base manifold, the tangent bundle TTQ over the 

base manifold will be called super-phase-space with coordinates (qa, qa). 
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Now let us look !'or Lagrangian q) on super-phase-space TTQ such that 

Euler morivn equations coincide with (3.2), 

ai =0. 

of with shows that q) must ha\'e forms 

as, 

q) + 

while La's obey restrictions, 

Det::':lO =I 0, (3.5.a) 

i::l.abF~ = aLo (3.5.b). aqa:' 

where .6.!l? is defined as, 

.6.a:b = aLa: _ aLb. (3.5.c) 
oqo aqrl 

According to theorem[7]' for any Lo(q), we can find a solution for La(q) 

from (3.5 L Henceforth, Leq, q) always exists. This is a main advantage of super­

onlase-~m,~ce Ql:5CI'lDtlCln of ~ewtonian systems over ordinary discription on phase 

space. 

HO'I.ve\'er. the adoption of super-phase-space means that we have hired more 

variables than necessary. In other words. the Newtonian system must be a con­

strained system on TTQ. This point will become more apparent 

if we ".,,, ....,,~,O',, Hamiltonian formulation of the system. 

ccnrrhnO' to we have the conjugated momenta of qa's and the system's 

Hamiltonian follows: 
01. 

Pa = oq'1 = 

H = Paga - 1. = 
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where Pa's and qa's are conjugated in the sence of Poisson bracket defined as, 

{A,B} = aA aB _ an aA (3.7)
aqa Gpo. aqa apa . 

From (3.6.a.), it is obvious that there are 2d primary constrains, i.e. ¢a = 

Po. La. In order to search for other possible constrains, let us use Dirac's tech­

niques[8,9] and modify the Hamiltonian by introducing Lagrangian multipiers as 

follows, 

H- H +)..0.90.' (3.8) 

The consistency conditions of constrains read as, 

¢o. {¢a,H-} ~ O. (3.9) 

which can be envaluated explicitively as, 

aLo 
Llab)..a + -a = o. (3.10)

qb 

where Llab is the one defined previously in (3.5.c). 

The fact that no trivial identities appear in (3.10) means the system has no 

secondary constrains. Therefore, all constrains the system subjects to are those 2d 

primary ones. Further, it is easy to verify that these 2d constrains are all belong 

to second class in the terminology of Dirac, since {9.y.l 6d -Llo.& with DetLl :f:. O. 

In this case where all constrains are second class, the Hamiltonian formulation 

of the system can be most easily described with the aid of Dirac' bracket defined 

as follows: 

{A,B}- = {A,B} - {A, {cPa, <Pb} -1 {9b, B}, 

= {A,B} + ~a}Ll;bl{Ob' B}. (3.11) 

The time evolution of any quantity on super-phase-space can be generally ex­

pressed via Dirac's bracket as, 

A {A,Hr· (3.12) 
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As a conclusion of this section, we hayc introduced super-phase-space La­

grangian discription for classical systCl1ls. by which any )J'e\vtonian 8yst('m can 

be viewed as a contrained sysrem in the super-phase-spClce. The sup<,r-phuse­

space Hamiltonian formulation of the systems has been established with the aid 

of Dirac's techniques. At this stage, super-phase-space canonical quantization for 

the systems can be easily realized following Dimc's proposition. In next section. 

we will demonstrate the quantization procedure with two examples. 

4. Super-Phase-Space Quantization of Newtonian Systems 

After viewing Newtonian systems as second class contrained systems in super-

phase-space, canonical quantization for the systems can be easily achieved, fol­

lowing Dirac's proposition, by replacing Dirac's brackets with commutators of 

corresponding operators. Namely, 

{A, BY *[.-L (4.1) 

where t represents the operator corresponding to function F. 

The quantum evolution equation is Schrodinger-type as fo11O\vs, 

ih~lt/J >= Ifl~ > (4.2) 

where Hamiltonian operator If according to (3.6.b). 

Since there are only qo. operators in If, it is enough to investigate only Dirac 

brackets and corresponding commutators among qa'S. Referring to (3.11), it is 

straightforward 

qbt 9"} + OJ~~;l{<Pddd = -Ll;r (4.3) 

Henceforth, according to the quantum ~omml1tators of corresponding oper­

ators are as follows, 

[iia, = i1i~;bl. 
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The algebra of commutators (4.4) pIns quantum evolution equation will de­

termine a quantum system quantized from the given Newtonian system. In fact. 

all we really need is the expression of Lo(q), since H = -Lo and according to (3.5), 

.6.ab can be calculated out if Lo is k~own. 

Since -Lo is the Hamiltonian of the system to be quantized, looking for the 

expression of Lo is actually looking for the expression of system's total energy from 

the given set of motion equations. Generally speaking, this is not a simple work. 

Anyway, let us demonstrate our super-phase-space <l.uantization procedure with 

following two simple but nontrivial examples: 

Example One: One dimensional conserved systems with motion equation as 

follows, 

x= -V'(x). (4.5) 

This system has Lagrangian discriptioll on phase space and can be easily quantized 

through ordinary canonical quantization procedure. HO\vevcr, we will demonstrate 

that the method of super-phase-space quantization will lead to the same result. 

Through introducing super-phase-space with coordinates where qa are 

defined to be ql x, q2 = i:, the motion equations of the system can be rewritten 

in super-phase-space as: 

ql = Q2, q2 - V'C q.). ( 4.6) 

According to (3.4), the super-phase-space Lagrangian i(q, q) will has the form as, 

L(q, q) = qlLl(q) +q2L2(q) + Lo(q)· ( 4.7) 

where Lo(q) must be the minus of system's total energy, which is obvious for the 

conserved systems: 
2 

Lo(q) -(~ +V(qd)· (4.8) 
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Substituting (4.8) into (3.5) with those Fa's determined by (4.6), the ~ matrix 

can be calculated out as follows, 

1
.6.- (~~1) (4.9) 

Therefore, according to (4.4), the quantum commutators between qa's will be, 

[lit , iii. (4.10) 

with others being zero. Or expressed with original variables as, 

[x,1J = iii. 

with others being zero. 

The Hamiltonian operator in Schrodinger equation (4.2) is nO\v, 

A2 ~ 2 

II -Lo(q) = ~ + V(qd = ~ + Vex). (4.12) 

In coordinate representation the differencial realization of 1 can 

be derived from the commutation relation as, 

8
i = -iii8x' (4.13) 

As a result, Schrodinger equatiou for the system in the coordinate representation 

will be, 
. 8 (ini 82 

zli at1!{1:) =[2 8x2 + (4.14 ) 

which is the same as the result quantized via ordinary phase space quantization. 

Example Two: Let us consider a two dimensional system described by fol­

lowing motion equations: 

x+ y 0, ii + y o. ( 4.15) 

This system. which is belong to case III-b in Douglas' classification[l], has no 

Lagrangian discription on phase space. If we want to get the quantum mechanics 
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of this system, t.he method of super-phasc-space quantization discussed above has 

to be hired. 
By tntroducing super-phase-space with coordinates eqa' qa) where qa's are de­

fined as q1 :::: X, q2 == y, q3 == x and q4 == y, the motion equations (4.15) can be 

rewritten in super-phase-space as, 
(4.16)

41 = q3, 1.12:::: q", 43:::: -q4' q4 == -Q2' 


According to (3.4), the su per-phase-space Lagrangian £eQ, 4) will be,
.. 
(4.17)" i(q,4) :::: L: 4aLa(Q) + Lo(q)· 

0.=1 

where Lo(q) must be the minus of system's total energy. 

However, except the cases of conserved systems where systems' total energy 

are well-defined to be the sum of kinematic energy and conserved potential, the 

definition of "total energy" of a general Newtonian system is proved to be trou­

blesome. An:pvay, following adoption of Lo(q) might be a correct one, since it is 

the simplest motion integral which looks like energy: 

(4.18)
1(Z 2Lo(q):::: 2 Q4 -Q3 2q2q3)' 

It can be readily proven that ~Lo == 0, which means that Lo is indeed a motion 

intergral. 
Now, substituting above expression of Lo(q) into (3.5) with those Fa's deter­

mined by (4.16), the Dr. matrix can be calculated out as follov . .'s: 

o -1 00)
l (4.19)Dr. -1 == 1 0 0 1 

o 0 0 -1 
o -1 1 0 

Therefore, according to (4.4), the quantum commutators between qa's will be, 

(4.20)
== -in. [ti3, q4J == in.{til, qzJ :::: in, [qZ, 
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with others being zero. 

Expressed with original variabks, above eommutators becoIll\." 

Yl = in. yJ = -iii, yJ = in. (4.21 ) 

with others being zero. 

The Hamiltonian operator in Schrodinger equation (4.2) is now, 

- L (-) 1 ( -2 -2 '). - )H -0 q = 2" q3 q4 + -q2q3 . ( 4.22) 

or expressed with variables as, 

- 1 -2·2 • 
H = 2(x - iJ + 2YX). (4.23) 

As 11 result. we haye finished the super-phase-space quantization procedure for 

the given Xe\vtonian system (4.15) uncleI' the definition of total energy 

(4.18). The resulting quantum system I:> completely determined by Schrodinger 

equation (4.2). Hamiltonian operator (4.23) and commutation relations 

The differential realization of operators can be achieved by choosing a particu­

lar representation. For example. since yJ = 0, we may choose the representation 

space to be the one spanned by common eigenstates of i and y. ~amely: 

x7jJ( x. u) = x¢(x, u), {pH x, u) = ut/J( x. (4.24) 

The differential forms of operators y and.~ can be easily derived from commutation 

relations (4.21) as, 

• .'f:( a a ~ 'f: a ( ')"')
y = -If! aX + au)' x = w ' 4._;)ou 

As a result, Schrodinger equatipn of the system nnder the representation chosen 

above will be. 
uZ. a (it~)2 02e' OZ1jJ 

tn-Ij) = ---(- + 2--) - -'!/J. (4.26)
Ot 2 Oll2 altOX 2 
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5. 	Conclusions 

Motivated by Feynman's idea which was published recently under the name of 

Dyson[lO], we have discussed some problems concerning the quantization proce­

dure from classical dynamical systems which are basically determined by a. set of 

differential equations to corresponding quantum systems. 

The existency conditions of phase space Lagrangian are derived in terms of 

symplectic geometric language. When there exist no phase space Lagrangian for 

a given classical system, all existing methods of quantization can not be directly 

used to get the corresponding quantum system. In order to quantize such systems. 

super-phase-space discription has been introduced, in which any ::l"ewtonian system 

can be viewed as a second class constrained system in the super-phase-space. ,\Vith 

the aids of Dirac's algorithm, we have established a formulation of super-phase­

space quantization \vhich is applicable to the most general ~ewtonian systems, no 

matter whether their phase space Lagrangian exist. 

As a final remark, we believe that to generalize the discussions of this paper 

to more general classical dynamical systems would be an interesting work. 
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