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Abstract
The ezistency conditions of Lagrangian on phase space for general classical dy-
namical systems are reformulated with symplectic geometry language. For those
classical systems that have no Lagrangian discription on phase space, the corre-
sponding quantum systems can not be gdine(l by ordinary quantizaetion methods.
To quantize such systems, super-phace-space discriptions of classical systems are
introduced and quantization is performed in the super-phase-space with the aid of

Dirac’s techniques of treating constrained systems.
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1. Introduction

A classical dynamical system is determined by a set of differencial equations.
In this paper, we will discuss a large class of dynamical systems, Newtonian sys-
tems, which cover most of physically interested dynamics. The set of differencial

equations determining a Newtonian system can always be expressed as follows:
Z; = fi(z, 2). 1=1,2,...,d. (1.1)

where z; (i=1,...,d) are coordinates of system’s configuration space @ and f; are
some smooth functions over phase space T with coordinates (z;, ;).

For a general Newtonian system, it is not garranteed that the system could get
a Lagrangian discription on phase space TQ. That is, for a general Newtonian
system, it is usually impossible to find a Lagrangian L(z, %) on TQ such that its
Euler-Lagrange motion equations are equivallent to the given set of equations (1.1).
This aspect of interest has been investigated by many people and various forms
of existency conditions for Lagrangian on phase space(usually named as Helmhotz
conditions) have been proposed[1-5]. However, in order to make this paper self-
contained, we will reexamine the problem briefly in section two and give a concice
form of Helmhotz conditions in term of symplectic geometry language.

When a given Newtonian system has no Lagrangian discription on phase space
TQ, all existing quantization methods can not be directly used. Then, how can we
establish the corresponding quantum mechanics for the given system? In section
three, we will introduce super-phase-space TTQ and prove that any Newtonian
system, whether it has Lagrangian on phase space TQ or not, can always be
described via Lagrangian formalism in the super-phase-space TT'Q. Since the in-
troduction of TTQ effectively enlarges the number of freedom of the given system,

what we have to treat will be some constrained system in the super-phase-space.

When a Newtoulan systemn is viewed as a constrained systemn in TTQ, its quan-
tum meclianics can be gained with those techniques developed by Dirac. In section
four, we will demonstrate the procedure of our super-plmsefspa‘ce quantization with
two simple but nontrivial examples.

The last section will be devoted to conclusions and final discussions.
2. Geometric Discription of Helmhotz Conditions

Given a d-dimensional Newtonian system as follows,
;= filz. 2) 1=1,2,....d (2.0

the conditions concerning whether there exist some Lagrangian L(x,%) on phase
space such that the Euler-Lagrangian motion equations coincide with (2.1) are usu-
ally named as Helmhotz conditions{1]. In this section, we will derive a geometric
discription of the conditions.

Suppose there is a Lagrangian L{z, t) with its Euler-Lagrangian motion equa-

tions as follows:
4oL o
dt* 0z, Oz; -
Namely,
&L PL oL
oA d e e e I 5
2508, o0z, "oz, (2.3)

In order that equations (2.3) are equivallent to (2.1), following conditions are to

be met:
Det(f%;) #0. (2.4.a)
2 ‘ 2
a_f%r - g'_[* - ”a%L— : (2.4)
Now, let us define a 1-form on phase space TQ as,
6, = gf:dr,. (2.5;
3



The exterior derivative of the 1-form induces a 2-form as follows.

o

de A dz, + L i A de,. (2.6)

w = diy = 1,0z,

L
O0z,0%;
It is easy to prove that conditions (2.4.2)(2.4.b) can be reexpressed geometricaily
as:

Det{wy) # o. (2.7.aj
tpwg + dhp = 0. (2.7.0)

where T is the vector tangent to the dynamical trajectories in phase space TQ

with expression as follows,

. 17, Ié]
i 9 (2.8)
T I!al’,’ + fx 61‘, }
and hy is defined as,
oL .
=z;— — L. 2.9
hL 1'6.1‘; L (2.9)

From its definition (2.6), we know that wy is a closed 2-form: while condition
(2.7.a) implies that it's also nondegenerate. Therefore, wy will be a symplectic
structure on TQ. Furthermore, from condition (2.7.b), it's easy to prove that this
symplectic structure must be vanished by Lie derivative associated with T. ie.
Lswy = 0. As a result, we can draw a concice theorem concerning the existency
of phase space Lagrangian as follows:

Theorem: The necessary condition that a given Newtonian system has La-
grangian discription on phase space TQ is that there exist a symplectic struciure
w on TQ such that £T~u;'= 0, where T is the vector tangent to dynamical trajecto-
ries in TQ of the given system.

Here, a few more words deserve speaking: (i). Above necessary conditions are
also sufficicnt when the foundamental group of the configuration space is trivial.

Since if we have found a symplectic struture w on TQ satisfying Lrw = 0. we will
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have d(i;w) = 0. According to Poincare theorem(6], when the foundamental group
is trivial, any closed form must be exact. As a result, there will exist a function k
such that ijw = dh. Let i;é’;"‘: — L = h, we will get a phase space Lagrangian L
whose Euler-Lagrangian motion equations coincide with original ones (2.1). This
Lagrangian L is called being induced from the symplectic structure w. (ii). If
we have found a symplectic structure w satisfying L;w = 0, then any ' = aw
with « being constants is also a symplectic structure satisfying £;w’ = 0. The

Lagrangians induced from w and w’ satisfy following relations:

dg
! = L + . .
U'=al+y] (2.10)

which are well-known trivially equivallent Lagrangians. (iii). Not all Lagrangians
are trivially equivallent. Namely, we might find two or more symplectic strutures,
say «; and ws, both satisfying Lfw; = 0 while w; # aw,. In this case, Lagrangians
L, and L, induced from w; and ., have no longer relation like (2.10), though they
lead to the same motion equations as (2.1).

As a conclusion of this section, we stress a fact that, for a general Newtonian
system, the existency of phase space Lagrangian is not garranteed, but determined
by the theorem stated above; on the other hand, in the case that the existency
conditions are obeyed, there usually exist many phase space Lagrangians, some of
them are trivially equivallent, the others not.

As well-known, quantization starting from diﬁerent Lagrangians which are
equivallent at classical level usually lead to nonequivallent quanturn theories. This
is one of many ambiguities in quantization procedure which deserve more discus-
sions. However, this paper is devoted to another part of the problem—if a given
Newtonian system has no Lagrangian on phase space at all, how can we quantize
the system and get a corresponding quantum mechanics system? In next sec-

tion, we will introduce super-phase-space discription of Newtonian systems, which




makes the problem become tractable.
3. Super-Phase-Space Discription of Newtonian Systems

As discussed last section, it is not unfrequent that a given Newtonian system
has no Lagrangian on phase space TQ). Mathematically speaking, this fact is
due to that second-order differencial equations generally have no minimum varia-
tional principle. However, as point out by Havas{7], a set of first-order differencial
equations always has minimum variational principle. This observation make the
introduction of super-phase-space a natural attenptic;n, Since through appropri-
ately enlarging the set of variables, second-order differencial equations can be
reexpressed as first-order ones under new set of variables. Therefore, according
to Havas, any Newtonian system can be described by some Lagrangian on super-
phase-space, no matter whether it has Lagrangian on phase space.

Now, let us give the idea a concrete formulation.

Given a general Newtonian system as follows,
;= fi(z. ) 31

where z; (i = 1,2, ...,d) are coordinates of system’s configuration space @, fi’s are
some smooth functions over system’s phase space TQ with coordinates (z. £).
If we define q; = i, Giyn = 24, F; = qiyn and Fiyn = fi, equations (3.1) can be

rewritten as following first-order forms:
da=Flg).  (a=1,2,..,2d) (3.2)

The coordinates of phase space T'Q are now represented with g,’s instead of original
(zi, ;). Regarding TQ as a new base manifold, the tangent bundle TT'Q over the

base manifold will be called super-phase-space with coordinates (¢a, ga)-

Now let us look for Lagrangian L{q.¢) on super-phase-space TTQ such that

following Euler motion equations coincide with (3.2),
—(z=) =7 =0. (3.3)

Straightforward comparing of (3.2) with (3.3) shows that L(g, §) must have forms

as,

L{q,9) = L.(q)da + Lo(q)- (3.4)

while L,’s obey following restrictions,

Det A,y # 0. (3.5.a)
8L,
s = . 5.5
JAWEY 90 (3.5.5)
where A, is defined as.
oL, OL,
Ay = - . 5.
’ aQD aQu (3 5 C)

According to Koeing's theorem|7], for any Lo(g), we can find a solution for Le(q)
from (3.5). Henceforth, L(q,¢) always exists. This is a main advantage of super-
phase-space discriprion of Newtonian systems over ordinary discription on phase
space.

However. the adoption of super-phase-space means that we have hired more
variables than necessary. In other words, the Newtonian system must be a con-
strained system on super-phase-space TTQ. This point will become more apparent
if we investigate Hamiltonian formulation of the system.

According to (3.4). we have the conjugated momenta of ¢,’s and the system’s

Hamiltonian as follcws:

oL
D= 7. = L,{(q). (3.6.a)
H= paéa - j: = "LO(Q}- (36b)



where p,'s and ¢,’s are conjugated in the sence of Poisson bracket defined as,

0A OB 08B d4
B =G o " non

From (3.6.a), it is obvious that there are 2d primary constrains, ie. ¢, =

(3.7)

Pa — La. In order to search for other possible constrains, let us use Dirac’s tech-
niques[8,9] and modify the Hamiltonian by introducing Lagrangian multiplers as
follows, '

H* = H+ M\ (3.8)

The consistency conditions of constrains read as,
$a = {85, H'} = 0. (3.9)

which can be envaluated explicitively as, °

9L,
AgpAe + = =10, 3.10
b aqb ( )

where A, is the one defined previously in (3.5.c).

The fact that no trivial identities appear in (3.10) means the system has no
secondary constrains. Therefore, all constrains the system subjects to are those 2d
primary ones. Further, it is easy to verify that these 2d constrains are all belong

to second class in the terminology of Dirac, since {¢,, } = —A,, with DetA # 0.

In this case where all constrains are second class, the Hamiltonian formulation

of the system can be most easily described with the aid of Dirac’ bracket defined
as follows:
{4, B} = {4, B} ~ {A,du}{0s, s} ' {», B},
= {4, B} + {4, 0.} 25 {04, B}. (3.11)
The time evolution of any quantity on super-phase-space can be generally ex-

pressed via Dirac’s bracket as,

A={AH}) (3.12)

As a conclusion of this section, we have introduced super-phase-space La-
grangian discription for classical systems. by which any Newtonian system can
be viewed as a contrained system in the super-phase-space. The super-phase-
space Hamiltonian formulation of the systems has been established with the aid
of Dirac’s techniques. At this stage, super-phase-space canonical quantization for
the systcms can be easily realized following Dirac’s proposition. In next section.

we will demonstrate the quantization procedure with two examples.
4. Super-Phase-Space Quantization of Newtonian Systems

After viewing Newtonian systems as second class contrained systems in super-
phase-space, canonical quantization for the systems can be easily achieved, fol-
lowing Dirac’s proposition, by replacing Dirac’s brackets with commutators of
corresponding operators. Namely,

1

{A,B}" — 5[4, B. (4.1)

where F represents the operator corresponding to function F.

The quantum evolution equation is Schrodinger-type as follows,
L, 0 f
th=—v >= Hly > (4.2)
ot
where Hamiltonian operator H = —Lo(g) according to (3.6.b).
Since there are only g, operators in Hitis enough to investigate only Dirac

brackets and corresponding commutators among ¢,’s. Referring to (3.11}, it is

straightforward that,
{90} = {0} + {@a: 2} 3T {0, 8} = =B (4.3)

Henceforth, according to (4.1). the quantum commutators of corresponding oper-

ators are as follows,

[da- @] = 1A (4.4)



The algebra of commutators (4.4) plus quantum cvolution equation (4.2} will de-
termine a quantum system quantized from the given Newtonian system. In fact.
all we really need is the expression of Ly(q), since H = ~ Ly and according to {3.5),
Agp can be calculated out if Ly is known.

Since —Lg is the Hamiltonian of the system to be quantized, looking for the
expression of Ly is actually looking for the expression of system’s total energy from
the given set of motion equations. Generally speaking, this is not a simple work.
Anyway, let us demonstrate our super-phase-space quantization procedure with
following two simple but nontrivial examples:

Example One: One dimensional conserved systems with motion equation as
follows,

= -V'(a). (4.3)
This system has Lagrangian discription on phase space and can be easily quantized
through ordinary canonical quantization procedure. However, we will demonstrate
that the method of super-phase-space quantization will lead to the same result.

Through introducing super-phase-space with coordinates (¢..¢,) where g, are
defined to be ¢, = z, q; = Z, the motion equations of the system can be rewritten

in super-phase-space as:

=0 ¢=-Vin) (4.6)
According to (3.4), the super-phase-space Lagrangian L(g,¢) will has the form as,
L(9,4) = ¢1Li(q) + G2La(a) + Lo()- (4.7)

where Ly(g) must be the minus of system’s total energy, which is obvious for the

conserved systems:

2
Lo(q) = ~(5 + V(@) (48)
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Substituting (4.8) into (3.5) with those F,’s determined by (4.6), the A matrix

can be calculated out as follows,

_ 0 -1
A1=(10) (4.9)

Therefore, according to (4.4), the quantum commutators between §,’s will be,
g1, G2] = ih. (4.10)
with others being zero. Or expressed with original variables as,

[5,3] = ik (4.11)

with others being zero.

The Hamiltonian operator in Schrodinger equation (4.2) is now,

. & 3
B=-1f)) =2+ V@)= 5 + v, (412)

In coordinate representation fv(a) = r¥(z), the differencial realization of z can

be derived from the commutation relation (4.11) as,

&= —ih%. (4.13)

As a result, Schrodinger equatiou for the system in the coordinate representation
will be,
(th)? &*

ih%g’:(m) =[5 + V). (4.14)

which is the same as the result quantized via ordinary phase space quantization.

Example Two: Let us consider a two dimensional system described by fol-

lowing motion equations:
EF+y=0 §+y=0. (4.15)

This system, which is belong to case III-b in Douglas’ classification{1], has no

Lagrangian discription on phase space. If we want to get the quantum mechanics

11



y 3 or-phnases P > 2t h
h { up gua 1zation ijscussed a ove has
Of t}hlS system ”le met ()(l o1 § er hasc-space uant 10 d d b

to be hired.

W i fa) W ’s are de-
By tntroducing super-phase-space ¥ ith coordinates (Fa+Ta) ¥ here oS
Y

d y,ga =& and ¢4 = j, the motion equations (4.13) can be
fnedas u =2, @2 =¥, B 7
rewritten in super-phase-space as,

7 Gy = — 4.16)
41 =G> Gp=q B= -4 D= 02 (

ian L(g,q) will be,
According to (34), the super-phase-space Lagrangxan‘L(q,q) wi :

E(g.d) = 3 daLalg) + Lo(a)- (4.17)

where Lo(g) must be the minus of system's total energy.

L vV W y tems’ tOta} energv
HO\ ever, exCept the cases Of conser ed SyStEmS here VA

ene s (l conse ved po!en 1 e
Well deﬁned 4 be the sum Of kﬂlematlc nergy an! 11ser t al, t}l
are ¢]

y sy trou-
(&) Newtonian s stem 1S ptO\ed to be TO
deﬁnltlon Of tOtal energ f a general IN€

g t one, since it is
blesome. Anyway, following adoption of La(4) might be a correct on

the simplest motion integral which looks like energy:
Lo(g) = 2(‘1«2; 93 — 293)- ( : )

. d . : P .
It can be readﬂy pIOVeﬂ that "Lg = 0, \\hlch means that LO 1S lndeed a Inotlon

intergral.

i ] F,’s deter-
Now, substituting above expression of Lo(q) into (3.5) with those

m; ed by (4.16), the A matrix can be calculated out as follows:
in .16),

0 -1 0 O

A 1001 (4.19)
=1pop 0 0 -1
0 -1 1 0

( v §,'s will be,
Therefore according to (4.4), the quantum commutators between da
- ’

A 4.20
[éh‘izl = ih, [‘jb‘jd = "Zh' [q31 q4] = th. ( )
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with others being zero.

Expressed with original variables, above commutators become,

[2.5] =ih. [9.9] = ~ik, [#,9] = ih. (4.21)

with others being zcro.

The Hamiltonian operator in Schrodinger equation (4.2) is now,

. o 1 “ B
H = -L0(‘]) = ;(‘ﬁ - ‘142 + 2G243). (4'22)

or expressed with original variables as,
fy 1.2 22 A%
=3(& —y +297). (4.23)

As a result, we have finished the super-phase-space quantization procedure for
the given Newtonian system {4.15) under the definition of system’s total energy
(4.18). The resulting quantum system is completely determined by Schrodinger
equation {4.2). Hamiltonian operator (4.23) and commutation relations (4.21).

The differential realization of operators can be achieved by choosing a particu-
lar representation. For example, since [3. y] = 0, we may choose the representation

space to be the one spanned by common eigenstates of £ and y. Namely,
oz u) = (e, u), gl/)(l‘, u) = uyp(z.u). (4.24)

The differential forms of operators § and 7 can be easily derived from commutation
relations (4.21) as,
7] 0 .
§ = —ih(z— + =), T=ih—. 4.25
v (B:c i Bu) du (4.25)
As a result, Schrodinger equation of the system under the representation chosen

above will be,
(ih)? 020 o 62?,/} u2

lh_U T e i

ot 2 (oa P Phuas) T2V (4.26)
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5. Conclusions

Motivated by Feynman's idea which was published recently under the name of
Dyson{10], we have discussed some problems concerning the quantization proce-
dure from classical dynamical systems which are basically determined by a set of
differential equations to corresponding quantum systems.

The existency conditions of phase space Lagrangian are derived in terms of
symplectic geometric language. When there exist no phase space Lagrangian for
a given classical system, all existing methods of quantization can not be directly
used to get the corresponding quantum system. In order to quantize such systems.
super-phase-space discription has been introduced, in which any Newtonian system
can be viewed as a second class constrained system in the super-phase-space. With
the aids of Dirac’s algorithm, we have established a formulation of super-phase-
space quantization which is applicable to the most general Newtonian systems, no
matter whether their ;;hase space Lagrangian exist.

As a final remark, we believe that to generalize the discussions of this paper

to more general classical dynamical systems would be an interesting work.
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