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Abstract 

In this paper, we discuss the bicovariant differential cal
culus on quatum Lorentz group, and provide corresponding 
de Rham complex and Maurer-Cartan formulae. 

'Suppofted in paft by Natufal Science Foundation of China and the Foundation of Institute 
of Theoretical Physics, Academia Sinica. 

§o. Introduction 

Quantum groups and quantum Lie algebras as deformed Lie groups and Lie algebras 
have been studied extensively following the pioneer papers of Drideld, Jimbo, Faddeev 
et al[l). It is also very interesting to study the quantum groups from geometrical point 
of view[2J. i.e. to find its relation with non-commutative geometry(3). Although the 
bicovariant differential calculi on quantum groups have been provided by Woronowicz[41, 
their concrete constructions still attract much attention. So several groups have been 
working on this question on different subjects, for example, the differential calculi 
on quantum planes[51. on quantum groups[6,7,8) as well as on quantum groups with 
multi-deformed parameters{91, one can also find many results in the review paper of 
Zumino[lol. 

The construction of quantum Lorentz group was first given in [11J by PodlE!s and 
Woronowicz, and then discussed by Drabant et al.!12), Carow-Watamura et aLl13} and 
others(14I. Following the works 0([11,12J, the main purpose of this letter is to discuss the 
bicovariant differential calcuJus on quantum Lorentz group based on the method given 
in [7,8,91. The results we obtained include the bicovariant first order and high order 
differential calculus on quantum Lorentz group, the quantum Maurer-Cartan formulae. 
i.e. the deformed de Rham complex on quantum Lorentz group as following sequence 
of bimodules of quantum Lorentz group 

0- nO ~ nl --!.. n2 ~ .... (0.1 ) 

Summation convention will be used in this paper. 

§1. Quantum Lorentz group: no 

It is well known that the quantum matrix group S L'l(2) is generated by four ele
ments which can be written into a 2 X 2 matrix T = (ti;)iJ:::l,2 and also satisfy the 
following rela.tions, 

RTIT2 =T2TlR, Det? T =tlltn - It12121 = 1, (1.1 ) 

where 
000
 

R = -1/2 011 1 0 0 ) 
 1 =q - q-I, q E 1R •
11 011 0 ' 

( o 0 0 q 

For qua.ntum Lorentz group SLq(2. C), we need to introduce tij (i, i = 1,2), the con
jugates of elements tij (i,i = 1,2), and generators ti; (i,i = 1, 2) as 

T =(tr,ki:1.2, tu = (S{tji)t, 



where S is the antipode. With a few ca.lculation, we have 

RTd, =T/i\R, DetqT = tnt~~ - qtr2tn = 1, 

or 
(R+)-ITtT2 =T,1\(R+)-1, DetqT == tnt~2 - qtutn == 1. ( 1.2) 

The commutation relations between iii and tl1 are defined asl111 

RTIT, = T2TIR. (1.3) 

Then we can simplely rewrite (1.1), (1.2), (1.3) as 

n7iT2 == T27in, (1.4) 

wh~re 

T=(T 1'), 

R :::: (7l~~)a.b.<o.d=I.2.f.2' 

Rij Rij 
"'kl == kl' '''ki = kl' /"II == kl' '''Ji:1 = kI' ',),., = , , nij -nil (R+)-I)ii'l"llj '1>11 «R+)-I)ij .. k I l2 

ilnd other elements of n are zeros. It can be checked that n satisfies the Yang-Baxter 
"qnatinn. 

Definition 1.1 

F'lIn(SL'1(2, e»:= e{tjj,tr,J/{n1iT2 =T21in, DetqT = 1, DetqT = I}. 

SL'1(2. C) can be understood as the direct sum of two copies of S[''1(2)[11,121, so the 
comuitiplication A, the counite e and the antipode S on S Lq(2, C) can be naturally 
iudllced from those operators on SLq(2). Therefore, Fun(SLq(2, e» is a Hopf algebra. 
For simplicity we denote Fun(SLq(2,e)) by no as the first bimodule of the de Rham 
comph·x in to.1). 

Now we can introduce two sets of linear functionals on no by 

(L- 1-)'£+ == (L+ l+)' £- = 

whPf(' rJ == (It)i.i:::: t •2 , 1,% = (1~)i.j=I.2' 
Defiuition 1.2 

< l;b' ted >= (n%)bj, a, b, c, d = 1,2, 1,2 

where n+ == P'RP, n- == n-1 and P is the permutation matrixlll/121. 
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Definition 1.2 can be also write down as 

< 1~,tkI >= (R+)~', i.e. < L+,T >= R+, 

< l~,tn >= (R+)~', i.e. < L+,T >= R+, 

< f!j, tlcl >= (R-)f1, i.e. < l+,T >= a-, 
<It,tn>=(R-)~~, i.e. < 1,+,1' >= R-, 

< Iij, tkl >= (R-))t, i.e. < L-,T >= R-, 

< lij,tn>= (R+))t, i.e. < L-,f >= R+, 

< lii,tkl >= (R-)j7, i.e. < Z-,T >= R-, 

< I;;, tn >= (R+)j', i.e. < Z-,T >= R+, 

where i, j, k, I == 1,2. From the above, we see Iii and Iii have the same definition, so we 

may assume Ii] = Ii]. 
By general theory of quantum groups, we know 

n+c,tc,~ == £~£tn+, n+c,tc; == c,;:c,tn+. (1.5) 

(1..5) can also be written as 

R+LrLi = L~LtR+, R+LrZi == Z~LrR+, 
R-ZrL~ == L~ZrR-, R-Zti~ == iiZtR-, 
R+ LtL; == L;: LtR+ , R+ LtZ;: == Z;:LtR+ , 
R- ZtL;: == L:; Zt R-, R-ltZ; =Z;:1,tR-, 

Denote FU1l;;{SL'1(2, C») the associate a.lgebragenerated by Lt and L~ (i,i == 1,2). 
The comultiplication ~.. the counite E'" and the antipode S'" can also be defined on it. 
It is clear that Fun(i(SLq(2, e» is a Hopf subalgebra of Fun-(SLq{2, C»), the dual of 
no. 

The main results in this section have already appeared in (121, here we use a different 

convention used in this letter. 

§2. The first order differential calculus: 0 1 

Assume A is an associative algebra with unit. The first order dHferential calculus 
on A, which is denoted by (r, a), consists of a bi-module r of A and a linear operator 

asatisfying 
(i) Leibnitz rule 

~(xy) == (6x)y +xay, Vx,y E A, 

(ii) for arbitrary element p in r, there always exist some elements Xk, Yk E A 
(k = 1,2,·'" N) stlch that 

tV 
P == L XkOYk. 

k:1 
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Now we introduce the convolution "*tl on no. For / E Fun'"(SLq(2,C», the con
volution "*" from 0° to no is defined by 

/ * (x) =(id ®/)6z, z E Fun(GLq(n», (2.1 ) 

where id is the identity operator on 0°. Furthermore, we introduce two sets of func
tionalll on 0° as follows: 

1 
Vab:= X(S*(I;e)l~ - 60:/)c:), 

BBbed := S"(l;)ltd, 

where a, b. c, d =1,2, 1,2. 
Proposition 2.1 For "Ix, y E 0°, a, b, c,d,e, / = 1,2, i, 2, we have 

(i) 	 V",b(l)==0, Ba6ed(1)=60:c66d, 
(ii) 	 6"V..6=V"I®Be/Bb+c:®Vab, 

6 "B0:6cd == Babel ® Be/cd, 
(iii) 	 V0:6 * (xy) = (Vel * x)(Be/a6 * y) +X(Vab * y), 

Babed * (xy) =(Bo:be! *x)(Be/ed * y). 

The proof of Proposition 2.1 can be found in {S). Let n1 be the Jeft module generated
ij lhy I'ight generators w , wl1 , (i, j =1,2), and define the right mUltiplication on n by 

wab'X=(Oabed*X)Wcd, "Ix E n°, a,b,c,d=1,2,I,2. 

TIJPr('f')rl~. nl becomes a OO-bimodule. 
Definition 2.1 

dz:= (Vab * x)wab , Vz E OO,a,b =1,2,1,2. (2.2) 

It is pasy to check 

d(xy) = (dx)y + xdy, Vz, y E nO 
ijTo prove (ot, d) is a. differential calculus on no, we must show that each of w , wr;, 

(i,j == i, 2) can be represented by 

N

L X"dYlo X", y" E n°. 
k=t 

We have for i,j,k,l,u,v=: 1,2, 

Vij(tH) 	 l(S"(l~)I;!"j - 6ije)(tu) 
H< S"(l~),tkli >< l;!"j' tfir > -6ij 6kl] 
H«R+)-l )~u(R+)ii - 6ij6",] 
o. 
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Similarly, we have VI1( tid) O. Therefore, we have for i, j, k, u, v = 1,2, 

S(til.)dtkj == 	 Vuv(tij)WUV 
, 

V as( tl1 )w lillS( tal )dtl; == • 

Now we can treat the representation of wi; and w"G, (i,j =1,2) seperately, therefore 
we have 

wI == [q3(tndtll - q- 1t12dt'2t> - (q3 - q - 1)( -qt'l1dt12 + tlldt'22)]/(q3 - 1), 

w'2 =q(-qt2Idtll +t1l dt2t}, 

w3 == q(t22 dtl2 - q-1t12 dt22), 


4w =[q2(tn dt ll q-1t12dt2t} +tf( -qt2t dt t2 + tlldt22))/(q3 - 1), 

wI =[(t~~dtn - q-1tndtn) +q( -qt~Idtu +tiIdt~~)J/( q3 1), 

w~ == _q-l( -qtiidtn + tndtu), 

w3 = _q-l(t2~dtn - q-tti~dt~~), 

w4 = [(q3 +q2 _ 1)(t~2dtn- q-Itr~dt2Il +(-qt~idtn + tndtflH/(q3 - 1). 


By result of [8], the differential calculus provided above on quantum Lorentz group 
is bicovariant. 

Let C== S*(.C-).c+, i.e. L = S*(L-)L+, L = S"(i,-)L+, 

.c= - (L L_), 
we have 

nc1n+C2 = l2nlt'R.+. (2.3) 

We can also write (2.3) as 

RLtR+L2 = L2RLt R+, (R+)-tLtR+L2 =L2(R+)-tL1R+, 

RL tR-L2 = L2 RL1R-, (R+)-IL1R-L2 = L2(R+)-lLtR-. 


Since 


Lij = (AVij +6ijC:), Lr; = (AVr; + 6ijc:), 


by the results of [i), we have the commutation relations of derivatives Vo:l> (a, b 
1,2, i, 2) on quantum Lorentz group 

Vee l V tid' - vaa' Vbb' R~~}~: = V eel F~~:ddt , (2..1) 

where 
R::,'.;~: =< 8?,o'dd', Tc"S(Tb'c') >, 

F::':cc' =A< Vce', TcaS(T..,c') >, 


a,a',b,b',c, c',d, d',e, e' == 1,2, i, 2, and R is a 256x256 matrix satisfying Y·B equation. 
(2.4) give the commutation relations of V (16 (a, b = 1,2,1, 2) which are shown in Table 
1. 

5 



Table 1 

(i) 	 V2Vt - q2Vt V2 = (q2 - I)V2. 
V':J V t - q-2V t V2 = (q-2 - I)V3, 


V'"Vt- VtV" =0, 

Va V2 - V2Va + (1 - q-2)V"Vt -"(1 - q-2)Vt Vt =(1 q-2)(Vt - V,,), 

V4V2 - V2V" + (q-2 -1)Vt V2 =(1-q-2)V2, 

V" Va - V3V" +q-2(1 q-2)V t V3 = _q-2(1_ q-2)V3, 


(ii) 	 v~Vf - VjV2 + (q2 1)V2v :t =_(q2 - I)V2, 
VjVf VIV~ - (q2 - I)V4V~ = (q2 -l)V~, 
V~VI - VrV4 =0, 
VjV~ - V2\7j + (q2 - 1)\7IV;f - (q2 - l)V~\74 =_(q2 - 1)(\7i \74)' 
\74v2 - q-2v~\7:t = (q-2 -1)\72, 

V;j\7,j - q2\7,jVi =(q2 - 1)\7,j, 


(iii) 	 \7j\7 1 = \71\7, + q2(q2 -1)\73\72' 

Vi V2 = _(q2 - l)Vt \72 + \72 Vr +(q2 - 1)\74V2, 

ViVa = V3 \7r, 

VjV.j =_(q2 -1)V3V2 +V.j\7ft 

v~\71 = V,\72, 

V'iV2 = q-2\72V 2, 


V'iV3 = q2\7aVh 

\7~V4 = \74V2, 

VjV'1 = V,V'j - (q2 - 1)V'3Vr + (q2 - 1)V'3V~, 

\7jV2 = (q2 - t)\7 t VI - (q2 - I)Vt V4 +q2V2V,j 


+(ql - 1)(1- q-2)V3 V2 - (q2 -1)\7"VI + (q2 - I)V4 V:j, 
VjV3 =q-2 V3 Vj, 

VjV'1 =(1- q-2)V3Vf - (1- q-2)VaV:t + V4 Vj , 

V1Vt = VtVl- (q2 - I)V3v2, 

V.j V2 = (1 - q-2)VIV~ + V2 V:t - (1- q-2)V4 V2, 
V1 V3 = Vavl' 

v.jV4 =(1 - q-2)V3V2 +V" V:j. 


For simplicity, in Table 1 and following two tables we write "'1,2,3,4,1,2,3,4" instead 
of "tt, 12,21,22.n.i2,2i,22" respectively. 

By result of [71, we also have the deformed Jacobian identities satified by Vab and 
O,.'wd tor~ether with (VI) 

VaadJwr.c' = tJbb'dd' \7ee,R~~:~:, 

Raa'bb' Jl Jl Jl II Reel//'


,,,'If'fll''e'cc'fllJ'dd' = flaa'ee'flb/,'IJ' cc'dd" 

FdJ:u,tJdd'bb,(J",e'cc' +9aa ,bb'Vcc' =Vdd,9aa'ee,Rtt:;' + (Jaa'dd'Fgt~c" 
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§3. High order differential calculus: 0" 

As Woronowitz pointed out in [4J. the high order differential calculus 0" is con
structed as follows 

0" =O@IN, 0" =Oe"INk, 

where 
o@ = E9:'oO®ft, O® = E9:=oO@ft, O®o = 0 0 , o®t =0 1, 

Nand N" are the two-sided ideal generated hy ker(l- 0-) in O@ and O®k respectively, 
0- is an automorphism on ot ® ot, compatible with left and right group actions, and 
also satisfies the braid relation. 

By the result of [8}, the automorphism 0- on 0 1 ®0 1 can be constructed as 

o-(Xllalbb'Wlla' ®WOb') ::: Xall'bo'R~:'}l;(wCC' ®wdd'), 

TlXna,bb' E 0°, a,a',b,b'::: 1,2,i,2. 

Therefore, we obta.in 0", the external algebra of quantum Lorentz group and Ok, 
the bimodules in (0.1) of de Rha.m complex of quantum Lorentz group. By some 
calculations, we obtain the minimal polynomial of R as following, 

(t - 1)(t + 1)(t +q2)(t +q....oz), 

so that N is generated by following elements 

[(R + I)(R +q2)(R +q-2)J~:'}~:(wcc' ®wdd'), a, a', b, b', c, e', d, d' = 1,2, i, 2. 

Therefore, we ohl:tin an {'qui valent relation on 0 1 ® 0 1 which are shown in Table 2. 
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Table 2 

(i) 	 w2 /\w2 -=W3 /\W3 -=W"/\W" =0, 
w3 /\ w2 =_w2 /\ w3, W" /\ w2 =_w2 /\ W" , 
w·{ /\ w3 = _w3 A W" , 

w2 /\w 1 = _q-2w1 /\w2 _ q-2(q-2 _ 1)w2/\w", 
w3 /\ wi = _q2w1 A w3 +(q-2 _ 1)w3 /\ w4, 
w"/\ wI = -wI/\w" +(q-2 _ 1)w2/\ w3, 
wI /\ wI = (1 _ q-2)w2/\ w3, 

Oi) 	 wI /\wl -= w~ Aw" = w3 /\w3 = 0, 
w'J. /\ wi -= _wI /\ w", w:l/\ wi =-wi /\ w3 , 

w~ /\ w'J. = -w~ /\ w3, 

w,j /\ wI =_wI 1\ w4 - (q2 - 1)w~ /\ w3, 

w4 /\ w2 = _q2w'i/\ w. _ q2(q2 _ l)w f /\ w'J., 
w,j "w3 -= ":q-2w3 /\w. +(q2 _ l)wI /\ w3, 

w" A w1 -= (q2 - 1)w'i /\ w3, 

(iiil 	 wi" wi = -wl/\w f +(1- q-2)w2 /\wj 
, 

wi /\w2 =_w2 Awi, 
wi" w'l = _w3 "w f _ (q2 _ Ijw t /\ w3 + (1 _ q-2)w4 /\ w3, 

wi /\ w·, = -w·' "wi - (1 J.. q-2)w2 /\ w3, 
4w'i "wi = -wi "w'i. _ (q2 -Ow2 /\ wI + (1 _ q-2)w2 /\ w , 

w~ /\ w2 = :"'q2w'l/\ w'i, I 

w~ /\ wJ = (q2 _ 1)w1 A wI _ (1 _ q-2)w1 /\ w4 - (1 _ q-4)(q2 1)w2 /\ wj 

4 ._q-2w3 /\ W" +(q-2 1)w" /\ wI +q-"(q2 - 1)w4 /\ w , 

;.,;2/\W·' = (q2 -1)w2 Awi +(q-2 _ 1)w2 /\W4 _w"/\w2, 

w3 " Wi = _w1 /\w:l 
;.,;3 /\ w2 = _q-2w2 /\'w3, 
w:J /\ w3 = _q2w:l /\ w3, 


.....:J "w.t = -w l /\ w3, 


"",4" wi = -wi /\w l +(q-~ _ 1)w2 /\w'J, 

4"",.j "w2 = _w2 Aw , 


wi" w = (1/2 - IJw l /\ wl _ w3 /\ w4 + (q-2 - 1)w" /\ w:'i, 

"'"1 "wi = (J _ q-2)w2/\ w3 _ w" A w4• 


We can also obtain quantum Maurer-Cartan formulae which are shown in Table 3. 

Table 3 

3dwi = q- l w2 /\ w , 
4dw2 =q-tw1 /\ w2 +q-3w2 /\ w , 


dw3 = _qw 1 /\ w3 - q- 1w3 /\ w4, 

dw4 -= _q- 1w2 /\ w3 , 


dwI = _qw'J. /\ w:J, 

dw'J. =_q3wI /\ wi _ qw'J. /\ w4, 


dwj = qw i A w3 +q- 1w3 A w4, 


dw:i = qw2 /\ w3• 


Based on the quantum Maurer-Cartan formulae, it is possible to construct the de 
Rham cohomology on quantum Lorentz group which will appear in a seperate paper. 

Remark .After the present paper was finished, we received a very nice preprint 
titled "Vector Fields on Complex Quantum Groups" by C. Chryssomalakos, B. Dra
bant, M. Schlieker, W. Weich and B, Zumino. Although the vector fields related to 
bicovariant differential calculus on quantum groups including quantum Lorentz group 
is discussed in this paper, the main results of our present paper on quantum de Rham 
complex of quantum Lorentz group are still useful. 
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