Fermiiab Libr:

CAST- 92 =

CHST - 44-1(1/
(Ilmllllllllllillllllll!l
0 11t0 0015139 3

o

INSTITUTE OF THEORETICAL PHYSICS

ASITP

ACADEMIA SINICA

AS-ITP-92-20

THE SYMMETRIES OF Z, x Z, BELAVIN
MODEL

Rui-Hong YUE

Yi-Xin CHEN

s xk«k;‘f
2N
‘Q\,’ > 3
AN Cf))!,.
© > N :\5
L) q N ’
W&

_‘W I

T "ROUE {0

e st 7

I
e

P.0.Box 2735, Beijing 100080, The People’s Republic of China

Telefax : (086)-1-2562587

Telex : 22040 BAOAS CN

Telephone : 2568348

Cable : 6158




ASTTP-92-20
CCAST-92-11
ZIMP-92-05

March 1992

The symmetries of Z, x Z, Belavin model !

Rui-Hong Yuet§ and Yi-Xin Chen {1

tCCAST (World Laboratory)
P.0.Box 8730, Be?jing 100080, China

§institute éf Theoretical Physics, Academia Sinica
P.0.Box 2735, Beijing 100080, China ?

fInstitute of Modern Physics, Zhejiang University
Hangzhou 310027, China®

Abstract

It is shown that theré ezist some new symmetries in Z, x Z, Belavin
maodel. These symmetric properties can be used to consiruct the new
exuctly solvable statistical model with nontrivial boundary terms.
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1. Introduction

The quantum Yang-Baxter equation(QYBE) was discovered by Yang [1] and
Baxter [2]. The solutions of QYBE have been classified as rational, trigonometric
and elliptic according to their dependence of spectral parameters [3,4]. A host of
investigation revealed that QYBE has played an important role in quantum field
theories [5-7] and integrable statistical models [8-11]. Much attention wa;s recently
paid to the systems on a finite interval with independent boundary conditions on
each end proposed by Sklyanian [12], Mezincescu and Nepomechie [13]. For a
given trigonometric solution of QYBE based on the classical Lie algebra except
An(n > 1), it has been shown that the system with special boundary condition has
the quantum group symmetry [12,13]. The trigonometric solution of the QYBE is
a limit case of elliptic case. Minimal models in conformal field theory are closely
related with the critical states of the elliptic RSOS [8]. The trigonometric limit of
the Boltzmann weights for the elliptic case are identical with the fusion and braid-
ing matrices in the minimal conformal field theory, which are the Racah coefficients
of quantum group {5-7]. The Belavin's Z, symmetric solution of QYBE is related
with Af“_’, algebra, which may be used to study the systems with Uy(An-1) svm-
metry. This interesting relation motivates us to study the Belavin Z, symmetric

model with nontrivial boundary condition.

The symmetry of the solution of QYBE plays a key role in procedure of study-
ing the systems on finite interval with independent boundary condition on each
end by means of the method proposed by Sklyanian {12] and developed by Mez-

incescu and Nepomechie [13]. The Z., elliptic solution of QYBE associated with
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the Belavin Z, x Z, symmetric model. which is the generalization of the Baxter's
eight-vertex model. Some symmetries of the model was revealed in ref.{14]. The
structure constants, both for the classical and for the quantum algebras, and fusion
representation in this model were discussed {15]. Hou et al [16] had shown that
there exists the quantum symmetric algebra in the Z, elliptic solution of QYBE
under the trigonometric limit. The trigonometric solution of QYBE based on the
algebra A,{n > 1) does not satisfy the restrictive conditions suggested in [12] and

(13].

The purpose of this paper is to show some new symimetries and useful properties
of the Z, elliptic solution of QYBE, which can be used to investigate the Belavin

Zn X Zn symmetric model with nontrivial boundary condition.

2. Belavin Z, x Z, symmetric model.

The Belavin Z, x Z, symmetric model is the elliptic function solution of QYBE.

There exist two equivalent forms of its expression [10,14]

R(u) = exp{—imu}- 5. Wa(u)l. DI}
- a€Z2 (1)
2. S(u) Ew ® Ejp,

Gy
where, superscript h stands for the Hermitian conjugation. Ej; and I, = h™g™

are n X n matrices with the matrix elements

(Eij)u = 0kidjts (2j
(h)'J = x(mod nj? 9 = "“'.::6‘1" (3)
«w is equal to e\p"' Yand a = {a;, a2),a; =0.1.---,n—1. The coefficient S(Lt}f}

in Eq.(1) is called the Boltzmann weight and can be parametrised in terms of

Jacobi theta function
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In another expression form, W,(u) in (1) reads
+32
> RN
Wa(u) 2 ay * - . i3)
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The definition of Jacobi theta function is given by
9 [ (; J (u,7) = Z exp{irT(m +a)® +i27(m + a)(u + b)}. (6
mez
R matrix (1) satisfies the QYBE
Ria(u — v)Rig(u)Raa(v) = Ras(v)Ria(u)Rya(u — v). (N
Introducing an operator
L{u) = Z Wa(u)l,S,, (3)
a€Z?
we can rewrite the QYBE as
Rya(u = v) LN (u)L¥(v) = LHv) L' (u)Rya(u — v). (9)
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The relation (9) is equivalent to
Z u(""”")('a-a’)‘v‘,g,(u, 0)Sasg-rSy =0, (10)
vE€Z3

here

pVad'.v(uﬁ U) = PV.,_‘,(U - U)I‘Vai-ﬁ—‘r(u)lv'/(v) - IVS—‘V(“ - v)nlw(u);vt!#-ﬂ—v(v)' (11)

In order to simplify the equation (10), one can introduce the formal solution of
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It can be shown that the constant C,s,(u,v) is independent of the spectral
parameters u and v [13]. Hence, Eq.(10) can be rewritten as the following algebraic
relation

Y CapySassrS,=0. fora,3 € Z} (13)
~

Since Eq.(13) can be reduced to the Sklyanin algebra when n = 2, it is regarded

as the generalization of the Sklyanin algebra.

3. The symmetries and the properties of the Belavin Z, x Z,

symmetric model.

Richey and Tracy [14] had discussed the symmetries based on the invariances
of the model. These symmetries are not enough to construct the exactly solvable
statistical model with nontrivial boundary conditions. We must investigate new

symmetries and some useful properties of R matrix of the model.

By directly calculating, one can show the relations R(0)4 3 BR(0) = n*(B 5 4)

and R3(0) = n?, in which A and B are two arbitrary n X n matrices. From these

relstions, we have the following consequence:

Proposition 1. The value of R(u) at u=0is in proportion to the permutation

operator

I
R(0) = nP (14)
Proposition 2.
PiaRua(u)Pry = Ri3™(u) (15)

where, k; represents the hermitian conjugation of the i-th vector space and Py,(u(d

b) =b®a.

This property of the R matrix is obvious. It means that the Z, elliptic solution

of QYBE possess the PT invariance

Proposition 3. The matrix R(u) has the unitary property
Ruz(u)RMM(—u) = N(u,r)id (16,

here, id stands for the identical operator and

9[ ](u+w,r)9[ ](—-u-}-w,f)
SRR
’ M("”)

Proof. According to the definition of R(u), the left hand side of Eq.{16) is read

PRI
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N(u,7) = n?



as

Ria{u)RY™(—u) = T Wa(o)Ws(—u) I} 3121,
ad

S W () V(=) Loy B Ih_pu1Pr=onh
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I

(18)
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b Lz Wopa(u)Ws{ ~u w9293t | [ o 2,

a€Z} (pez?
Because of Z, symmetry it is sufficient to consider 532, , defined by (4), for a,b €
Z,, or 5%* as we shall henceforth abbreviate. From (1) and (2), we have
1 ~a.c, be
W(,,,b)(u, T) = - Z ST, (19)
n c€Zn

Thus, (18) can be rewritten as

1
R;z(u)Rf}h'(—u) = - }: w™{ Z 5"(""°)""'b(u, w,T)- 3"_6‘"5""‘(——u,w, )}

" nmezy  gezd
(20)
Let
Poal() = Z 5'(""')"""’(1;, w,T)- 5’"5'""""(—11, w,T). (21)
Jez

Now, we want to determine the explicit expression of 2,,+(«), which can be ob-
tained by exploring the properties of its zeros. By means of the transformation

properties of the theta function, one can show that

S Y u+ &1 =&, w,7) = exp{—i2wlir — i2x&(u + 244 -;-)}
22
(M2 GOy, 7)
N Cl >
Syt ST+ Gy w,7) = exp{—i27 D u} 150y e, ) (23)

n

Combining (22) and (23) with (21), we get the transformation relations of 2,q/(u)

Yoor(u+1) = W“’%’W‘(“) (24)

g1 + n7) = ezp{—i2m(n*r + 2nu b0 (1) £ 23)
i
It is an elementary complex aaalysis argument that if fis entire. not identicaily
zero, and satisfies

flz + 1) = exp{—27i(4 + 42)}f(2),

flz +1) = exp{~—271B} f(z).

Then necessarily 4 is a positive integer, and f has zeros in A, with
1
yzero= A+ Br—4  (mod i),

where, A, = {67 + &6, & € Z} the lattice generated by 1 and 7. We apply this

t0 Yaor(u) to conclude that there are 2n zeros in A, with sum

Zzero =nu-nir-o'r (mod Ap,) . (26

In order to determine @gq(u) , we must find the locations of the 2n zeros. It is

from the $%%(0,w,7) = 0 for b # 0 and the relation (22) that
§kr,w,7) ~ S*E(0) =0 for k # —b(n) . VT

This means that @, (k7) (k = 0,-+-,n — 1) is identically equal to zero unie:s
o' = 0. By using of (25), one can write Yoo (u) at u = —w + k7 as
Goo(—w + k1) = exp{—i2axk’r — 2z{kT — w)}

. Z Sa~v‘—b.b+k(__w’ w, T)Sa'-b'-b-"‘_k(w, w, )
[

Recall the $%*(u) is zero at u = (a —b)r —w. Thus the first factor in each term in

the sum of (28) is zero if b+ k = o — o’ — b. The b satisfies this condition. which



is read as

Yo —k—o')(mod n), forg—o' ~k=cven, andn = odd or even
i

jlo— o' —k(mod n)], for 0~ o' -k = even, and n = even
fn+to-k-d), foro—0d —k=o0dd, andn = odd,

no solutioqs, ' for 9 —d'—~k=o0dd, andn = even.
(29)

The ¥'s values of the remaining nonzero terms in the sum are expressed by {b €

Zp|2b # 00—k} = UF(b;, —0’'—b;+0), where £ = [3] ifnisoddor2b = o—0o'+4&
has no solutions or r = [%} = 1if2b =0 ~0' — k. Thus the sum in (28) can be

rewritten

Z So—a‘—b,b+k(__‘w' w, T)Sv—b,—b—o'—k(w’ w, T)
3

- b : 3 3\ - - - -
= ZS’ 7 "““"“(—w,w,r)S” bivmby o k(w, w,7)
5

+ Z 5k+h.,a—v'—5:(_w, w, T)Sk-{-a'-\\-b..b,'-a(w’ w, ‘_).
s

(30)
Noting the fact that
S*¥(~w,w,7) = =S (~w, w, 1)
and
S5**(w,w,7) = =5 (w.w, ),
we obtain that
Poo(mwtkr)=0, k=0 1..-.n-1 e

From the equations (27) and (31), we immediately see that Poor{4) has the 2n

zeros with the sum n{n = 1)r — nu if o’ # 0. Comparing it with (26), we conclude

9

that
Vaq(u) =0 k=0,1,---,n~1 (32)
that is
Poo(8) = 851 0950(u) = by 0 Z 570y, w, )5~ w, ) (33)
bEZ,

In order to calculate ¢,q, we introduce a function
"pcv‘(u) = ‘r’ao(u) - ‘90‘0(“)

Because (,0(u) and p4+(u) have the same transformation properties, ¥,,+(u) has 20
zeros with ¥ zero = 0 mod A,,. On other hand, at u = k1, ¥,,+(u) is equal to zero.
By using of (31), one can see that 1,,+(u) has 2n zeros with the sum —nu mod ..
This results in that ,,.(u) is independent of o. From the definition of p,u(2), it

is obvious that ¢, has the following transformation properties

goolu+1) = woolu), -

ool +27) = exp{—i2a(dr + 4u)}so(u). ;
Hence, there are four zeros of y,o{u) with ¥ zero = 0 mod .\s,. Two zeios are
determined by Eq.(31), which are —w and —w + r. By using of the properties of
S$%%(u,w,7), one can show that u = w + 7 is the zero of Poo(u). The condition
3 zero = 0 results in that the rest zero is w. It is now straightforward to prove
that V(u,w,r) has the same transformation properties and zero set as ol
By applying the elementary arguments of the entire function, we knuw thae the
difference between p,u(u) and N(u,w, 7) is a scalar factor, which does not depend
on the spectral parameter u. The factor is obtained by comparing ,.o(0) with

N(0,w, r). The result is 1. Now, (16) follows immediately.

10



Proposition 4. The R matrix satisfies the crossinz unitary symmetry

(RS RN (~u - nw)]™ = M(u,w, 7)id, (35)
where,
1
J : }(u,r)@ ](——u—nw,r)
M(u,w,7) = nPexp{irnw}—2 . (36)

(w,7)

[ Ty P
| SRE——
ETE T

d

The proof of proposition 4 is very similar to that of proposition 3. We shall
omit some analogous to above but rather long calculation.
Proof. Recalling the definition and some algebra properties of the R matrix, we
can write the left hand side of (35) as

rhs of (35) =33 Wi (W) Wy(—u — nw)L, 3 IM. (37)
v 3

Substituting (19) into (37), we find that
Fu) = Y Wap(u)WWs(~—u — nw)
3
(38)

1
= = Z S_J"""“(u)S"‘}""‘(—u — nw)w 7,
o

The following conclusion can be obtained by applying the some formulas in Ref.[14]

and performing the same procedure in the proof of proposition 3, which is
F(u) = M(u, w, 7)8,, 06, 0. (39)
Inserting (39) into (37), we get (35).
A direct corollary of propos.icion 4 is read as
RM(u)RM{~u - nw) = M(u, w, 7)id. (40)

11

4. Remarks.

Sklyanin's method [12] and its generalization.can be used not only to solve the
exactly solvable models on a finite interval with independent boundary conditions
on each end, but also to construct the statistical systems with the quantum group
symmetry. It plays an important role in Sklyanin's formalism that the solution R
of QYBE satisfies the symmetric properties. Sklyanin as.sumes

Pi3Rya(u)Prz = Ria(u),
R(u) = Rijy(u),
Ru(u)Rm("u) = p(ulid,
Ryy(u)Riy(u — 2n) = p(u)id,

(1)

where ¢; denotes transposition in the ith vector space. The p(u) and i) are
some scalar functions. Mezincescu and Nepomechie [13] extend Sklyanin’s formal-
ism to the case of a ‘non-symmetric’ R matrix, which satisfies the less restrictuve
conditions e

Py Rygp(u)Pra = Riy*(u),

! t2 ‘—l
Rn(“) =V R}(—u— 7]) | 2
Ria(u) Ry (—u) = p(u)id,

Ri(w) M R(=u=20) 31 = plu + n)id,
here 1}' =V @1 and the forth relation can be derived from the second and thivd
relations. Comparing the propositions shown by us with (41) and (42), we can sce
that the Z, symmeiric elliptic solution of QYBE does not satisfy (41) and (42}
Hence, the symmetries (13), (16) and (35) can be regarded as the starting point
to construct the exactly solvable Belavin’s model with nontrivial boundary terms

to solve it by means of the quantum inverse scattering method. It is emphasized

12



that for the case of the trigonometric limit the Hamiltonian of this system should

have the quantum group symmetry of Uy An-; ). The detail is reported elsewhere

{17).
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