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Abstract 

The covariant formalism of the generators for the quantum group 

SLq(2, C) on the quantum spinor space is constructed manifestly, 

very similar to the ones on the quantum group itself proposed by 

Woronowicz through his 4 D+ calculus. Also constructed is the set of 

eight generators for the quantum Lorentz group on the bispinor space. 

In the limit q ---+ 1, these generators reduce to those of the left and 

the right SL(2, C) plus two corresponding Casimirs. 
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I Introduction 

The importance of the idea of the (ptantum groups [I} is now more and more 
extensively understood by most of physicists. This is due to its close connection to 
the Yang-Ba.xter equation [2} which plays a deep role in various physical problems. 
In our opin.ion, as for the classical group, for more direct physical application, the 
view considering the quantum group as the "quantum" symmetry of some basic 
physical objects, or "quantum" space, is more attractive. 

The noncommutative differential calculus over the quantum group itself and 
the generators of the quantum group have been established by Woronowlcz [1}. A 
general construction of quantum group as linear transformations upon the quan­
tum plane has been suggested by Manin[3]. Awl the covariant differential (alculns 
on the quantum plane was developed by Wess and Zumino [4] and generalized to 
the more general quantum spaces including the quantum orthogonal plane and 
symplectic plane[5], and more recently, to the quantum :"Jinkowski space[6]. 

In this paper we would like to give the explicit covariant form of the generators 
of quantum groups SLq(2,C) and SOq(3, 1) on these quantum spaces. The main 
tools are the consistent covariant differential calculus on these spaccs[4.5) and 
the projection operator method developed in Ref[5-7]. vVe start with the linear 
representation of the SLq(2,.,c) on the spinor space in Section II. With the help of 
the differential calculus on the spinor space, we construct the differential realization 
of the cova.riant generators explicitly in Section III, just as the ones for the ordinary 
SL(2, c) group. We have a set of four generators satisfying the relations similar to 
those given by vVoronowicz [8] in considering the 4 D+ calculus on quantum group 
SLq(2, C) itself and by Wu & Zhang recently [12] in developing RTF method [1] 
to discuss the differential calculus on quantum matrix groups. In q ---+ 1 limit 
three of them reduce to the generators of classical SL(2, C) and the fourth is 
connected with the Casimir operator(total angular momentum)[9].Then we turn 
to discuss the counterpart set of generators in conjugate spinor (dotted spinor) 
space in Section IV. Combining these two set \ye get the total eight generators 
of quantum Lorentz group SOq(3,1) in the bispinor space. The action of these 
generators on the spinors as well as the 4-vectors is presented in Section V. 
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II. Quantum Spinors and R Matrix 

We start from two-dimensional q-spinor Uo = (u 1 , (u, v) with its components 
obeying the q-deformed commutation relation 

uv q vu . (2.1) 

This relation is preserved under the transformation of the q-spinor (The summation 
over the repeated indeces is understood throughout this paper) 

M O 
UCX -+ UfO = JufJ, M = (: ! ) (2.2) 

if M is a GLq(2) matrix with its entries satisfying the definition relations 

ab = q ba ac q ca ad da = (q - q-l )bc 
(2.3)

be = eb bd = q db cd = q de 

and commuting with the components of the spinor, i.e., au = ua etc. The relations 
(2.1) and (2.3) can be put into the following form 

uouiJ = q-l RaiJ-roU"'UO (2.4a)1 

Rof3-roM"Y.."Moo, = Mo a,MPj3,Ro'I1'",'5', (R12lvf11\12 = J'vf1 .i.\I2R12 ) (2.4b) 

by introducing the numerical R12 matrix associated with GLq (2) 

o (2.5)R(q) = (R ',.) =rq-t ~ J 
which satisfies the Yang-Baxter equation (in the braid form) 

R12R23R 12 RZ3R12R23 (2.6a) 

and the reduction relation 

(R - q)(R +q-l) = 0 . (2.6b) 


The left-acting as well as the right-acting eigenvalue equations can be written as 


R(qy~/\otm(q?O = q tm(q)"P, R(q)c>P-ro s(q)-ro = _q-l s(q)"P , (2.7a) 
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fm( q)cx13 R(qyf3-ro = q (2.7b) 

Now since the matrix R is symmetric, the components of l'n (q) anci:;(q) may be 
taken thf: same as those of their left-acting cOllnterparts tm ( q) and 8( q), mtmely3 

o
t+(q)oJ3 = (~ ~), =( 

(2.8) 
L(q)C>P I s(q),,:3 = ( 0_ql/2~1)' 

where the q-number is defined as [n] = g;:r:;'. The q-analogue of the Levi-Ch'ita 
symbols t(q)o13 and e(qy~J3 are related to the singlet eigenvectors 

, e(q)"u = (2.Ga)e(q)erJ3 

and are normalized in the way such that 

e(q)o13€(q)13-r = So". e(qy:rf3 e(q)p-r = S°'Y . (2.9b) 

As is used in Ref(6J, and s(q) are grouped together to form the matrix-
valued four vectors 

tlJ.(q) = (to(q). • to(q)ol1 = q .s(q)':>,] ; (2.10a) 

tlJ.(q) = (fl(q), =q-l 

It is easy to check that tjJ.(q) and tjJ.( q) satisfy the following orthonomality condition 

tl-'(qy:r11 f'(q)oJ3 SI-'ll (2.11a) 

and the completeness relation 

tlJ.(q) cxl1 f'(q)"fli = scx-rSJ3s == E o{3_!o . (2.11b) 

The projection operators for the triplet and the singlet can be defined as 

Q(2)(q)"
f3

-rO tm(q) cxt3pn(q)-r.5, Q(l)(q)"l1..,o = s(q)':.i3;S(q)"'6 (2.12) 

respectively, with the properties 

Q(ilQ(i) = SiiQU) , Q(l) +Q('2) = E ~ (2.13) 

3The convention we adopted here is different from that in Ref[6] by exchanging + and ". 
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R matrix and other relevant matrices can be expressed as t.he linear wmbination 
of Q's, 

R(q) = A2Q(2)(q) + AIQ(1)(q) qQ(2) _ q-lQ(1) . (2.14) 

Covers ely, the projectors can be re-expressed in terms of R: 

Q(1) R- ).2E 
(2.15)

Al - A2 . 

From these relations and the Yang-Baxter relation and 
equation (2.6a) we see immediately that 

Q~1R23R12 = R23RI2Q~~ , =Q~2R12 R23 . 

The preservation of the q-commutation relation (2.1) comes from the fact that 
and e(q)aP are the eigenvectors of ~\1 Mwith Detq);1 being the associated 

Ma,.,JvIPse(qpO = DetqM e(qt(3, €(q)0!3Jvl°'"V1\1(3s = Detq~Vf €(q)-.,; (2.17) 

where DetqM ad - qbc is the center of algebra generated by a, b, c and d. For.11 
with Detq_o// 1 we say M is an SLq(2, C) matrix. In this case we see immediately 
from (2.17) that 

8aM O ,.,e(q)'Y6JvIP Sf( q);3aJ ai, (2.18a) 

This that 
= .V-l'Ya, 

Now since e(q)Pa(= -e(q-l )QJ3 =I- -e(q)a,B) is not ordinary antisymmetric with 
respect to a and j3, (M-l)1 t= (l\1t )-I. This fact tells us that starting from the 

abasic spinor u , we can build two different types of lower index spinors. The one 
is 

1£0 == uPf(q) (3a ----;. U,., .0//-1 \ (2.20a) 

and the other 

Uo == e(q)a,BU(3 ----;. (lVft r 1 
a "'u,., (2.20b) 
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So two types of invariants can be formed 

uoU 
o 

----;. U-y.U- 11OIlY/a{Ju!3 (2.21a) 

uaUa ----+ uPlvl1 a -y U-y (2.21b) 

In most of the cases we use lower index 1£01 which transforms contravariantly 
The exception is the derivative spinor acr = 8~a, which 

indeed: 

aa ----+ a'" a,.,. (2.22a) 

Then 

aau(3 (1vll)-la'" a,.,u5]lt/ = (Altrl a'" 8/Jvl l l = 8,/ . (2.23) 

Therefore the derivative spinor with upper index ao €(q)af3 0(3 t.ransformsjust as 
the basic spinoru" does: 

€(q)01'" a,., == Ba ----;. .\;fapaP . (2.22b) 

The components of the derivative spinor obey a q-commutation relation similar 
to 

a2a1 = q al a2 (2.24a) 

which can be re-written as 

For consistent differential calculus, we also need the relations betweell coordinates 
and derivatives. The result is first given by Wess and Zuminor41: 

P !3 (301' !3'aQ U = 801 + C 01(3' 1£ aa l (2.25) 

of the two possible choises in the following discussion we choose C q-I R-1 • 

It can be easily checked that the above relation is covariant with respect to the 
transformation in (2.2) and (2.22) 

The conjugate spinor ua == (ua )*transforms[6] according to the hermitian con­
jugate of the quantum matrix lv,l: 

Ua ----;. Uf3"1\1+ iJ a'. (2.26a) 
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Then 
UO == -U/l:(q/ii, J.VJCx"'l U"i (2.2Gb) 

from a similar relation for ~y as in (2.18). Quantum matrix Jj = 0\1+)-1 satisfies 
the Yang-Baxter relation similar to (2.4b), 

= ivp':r :"'61 

and an additional with j\l/: 

it·iJ",iJAl'",,/iya5 = "16 

Similar to (2.2b), for l¥ = o~Q' we see ao -€(q),'r/)jO transforms just as the 
dotted spinoI' iia does. Now considering q real and taking the complex conjugate 
of Eq(2.1) and (2.24) we obtain that the components of the dotted spinor ua and 
components of the dotted derivative spinoI' l¥ obey the relations 

q[l~8iUiUi = 

which can be recast to the R commutation form 

- - -1 i:n6 -­UiJ?la = q .n,' CxiJUSU"i , = q-l RlY'S"i86[)"i (2.29b) 

Also we have relations among ii,a and aa 
- . . l' 1 . 13' . , ­

U/3ff' = 8'" iJ + q- R- (q)'" (;Q/ii'" 8j , . (2.30) 

In the bispinor comprising both u'" and it", we also need the cross 
commutation relations between '1.1.'" and ita, between 8", and iiQ ([)ir and u"') and 
between a", and [)ir. The results are found to be 

U"'Ua = u/Ju f3 qR-1
( q)periN" , (2.31a) 

~- - MR-- I ( )pa ",!5 a- {3R-- I ( )PO (2.31b)v Uer = 'UiJ'T q /3a' 'U Ver = /J11, q iJer' 

<r8e. = a/3EJ3qR-1(q)~erper . (2.31c) 

The consistency of all these relations can be directly checked by the 
triplet product of operators chosen from ('1.1..:\ 8{3, Ue., 8/J) and alterinl! the order in 
two different ways. 
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Starting from the .:.I, x 4 R matrix (2.5) we can obtain different higher 
dimensional R matrices by using different "fusion": for example 

R"'B~~{3""I'8' = R"'''I"""I,R{35{3's'( = P23R12R34PZ3) (2.32a) 

is the R matrix corresponding to the quantum group SOq( 4), 

= q-lR/hbcit~b q-l R23 R 12R34R231) (2.32b) 

is the R matrix for the quantum Lorentz group 1) and 

R::>B'Zf{3'do l = ",'b.ReSc'o'Rb
' 
c'{3',,/' (= q-2 R23R12R34Rz3) (2.32c) 

represents a reducible R matrix[7,1l]. By multiplying [~5' t~'{3' and tl'S', 

Eq(2.32c) leads to 

[J1.(q) {JEll R::>iJ,"/6 t",'f3't,,/'5'RJ.l.II",\ '" "16 ",'{3',,,/'5' /( >. 
(2.33) 

ROooo EB RmOOI EEl R01'lkO EEl Rm1'lkl . 

Here the reduction of comes from the repeated use of (2.16b), and Rm1'lkl is 
a R matrix associated with SOn:d3). correspondinl! quantum matrix 

Dm k 

Similarly, from Eq(2.32b) we obtain 

J1.11 _ -J1. -II - ",.13,,,/0 ",'f)' ,,/'6' (2.35) 

which is indeed the R matrix for quantum Lorentz group with its singlet eigenvec­
tor 

gJ1.11 ,-1,1, -q) (2.36) 

identified as the q-deformed Lorentz metnclOI. 

n 
W 

,,>. = t"'iJt~6n ""{l'ds,t" t>. 

III. SLq{2, C) Generators on Spinor Space 

Now we are ready to construct the set of generators on the spinoI' space. As for 
ordinary angular momentum operators in the classical spinoI' space[9], we consider 
the combination operators 

L",J = u"';j3 = (3.1) 
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From (2.24) and (2.25) 

Df3Do q-l /[ib a{3DJ)" , + q-Jil-! 

and the important relations 

e(q)P5 flo'"Y 6f3,e(q)-yo (3.2)13'0 = €(q)a's,R
5 
'[J 

we obtain 
ifu,J = e(q)':t/3 + q-2flof3{j'aIU{3'[p' (3.3a) 

ifaP = q-lRap i3'a,(j3' Da' (3.3b) 

rnuPthf'r with the relation 

u"Uf3 = q-lROttJi3'a,uf3'uU:' 

Then a straightforward but tedious derivation we obtain 

La{JL"Yli _ q-1RQ.3·~:'f3"'"'('6,LQ'3' L'"'('5' 
(3.5) 

= q R-l(q)cz/3 a'p,e(q)/3''"'(' R- 1(q)-r5-r's,RczlS' ''1L ('1 + 

where Ra3,-rca'/3',-,'8' is the R matrix defined in Eq(2.32b) which can be transferred 
to nl'lI /(A as in Eq(2.35). As is discussed in Ref[6], the 16 x 16 R matrix R~II".\ has 
three distinctive eigenvalues: the single one Ao(q) q-3, the sixfold one 
_q-l and ninefold one A2(q) = q. 

v(q)~IIRI'III<A 

ums(q)I'IIRI'II /(A = Al(q)Ums(q)/(.\ , (3.6) 

wmn(q)~vRI'III<A A2(q)Wmn (q)/(,\ 

where foru(q), m = +,3, - and s = ±, for w(q) (m, n)= (2,0), (1, (0, ±2), 
±1) and (2,0). To write down the explicit form of R, we order the Lorentz 

index J1. (+,3,0, -) and define a "charge" for each index: c(+) +1, c(-) -1, 
c(3)=c(0)=0. Then RI'III<A is ;;charge" conservative c(p,)+c(v) = c(/'\:)+C(A) = m, 
and breaks into the block diagonal form according to the total "charge" m. 

R(q) = if) $ S~O) ttl S!l) 9 7a) 
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• 
where S~m) is no d X d matrix with total m. The following standard order 
for the indecc~ pair (J1., v) or (fl:. A) is adopted throughout this paper: 

v) = (++) for m = 2, 

v) = (+3, +0,3+,0+) for m= 1, 

v) = (+-,33,30,03,00, m 0, (3.7b) 


(p" v) = (3-,0-, -3, -0) for m= 1, 
(J1.,v) (--) for m 2. 

Then the singlet eigenvector(with total "charge" zero) 

v(q)1'1I = (-q-1, -1,0,0,1, _q)[2J-1/2 , 

is proportional to the Lorentz metric g(q)I'II' And the sextet are 
chosen as 

uH(q)1'1I = (_q-l, q-l, q, _q)[2]-1, 

=(_q-l,_q,q, 

u3+(q)1'1I = (1, q q-l, q-l, -q, 0, 
(3.9) 

u3-(q)1'1I (l,q ,_q,q-l,0,-I)[2]-I; 


u1+(q)1'11 ( _q-l, _q, q, q-l )[2]-1, 


uI -(q)1'1I = (_q-1,q-l,q, 


Then by changing the bispinor index (a, (3) into 4-vedor index J1. and defining 

LI' (3.10) 

we obtain 

LI'LV q-1RI'I! I<ALI< L'\ = fI'll pLP 

[2Jl /2[UI+(q)I'V + ul_(q)I'IIJLI + [2P/2(q q-l)V(q)I'VLO 

where uIS(q)1'1I and are the left eigenvectors of RI'llAn [6] satisfying 

ii.mr(q)I'IIU /s(qYV = 6ml~$ , 

= 1 , 
mru (q)I'Vv(q)I'V = v(q)l'vul$(qyv =° (3.12) 
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and so on. Then Eq(3.1l) can be rewritten in the form 

ul+(q)ILIID"'L"(l + q-2) [2]1/2 LI , 

ul -(q)ILILILL"(l +q-2) = [2]1/2LI , 	 (3.13) 

v(q)ILIILILL"(l- q-4) [2j1/2(q _ q-l)LO. 

Or more explicitly 
= 0, 

q(L3 _ LO)L+ _ q-t L+(L3 _ LO) q[2J1/2L+, 

qL-(L3 - LO) _ q-l(L3 _ LO)L- = q[2]1/2L- , 

L+L- - L-L+ + (q - q-l)L3 (L3 - LO) = q[2P /2L3 , 

-q-1L+L- -L3L3 +LoLO -qL-L+ q2[2P /2Lo. (3.l-! ) 

This set of relations are obviously equivalent to those given in [8] from the -l D+ 
differential calculus on quantum group SUq(2) itself [8]. So the operators LIL 
defined in (3.1) and (3.10) are indeed the derivative realization of the SLq(2, C) 
generators on the spinor space. 

In the limit q ---7 1 , it is easily seen that 

L+ "'" u1a2 , L- ,..., U 2 a1 l 

L3 '" (Ulal - q2u2[h)/J2, LO'" (uta) + U 
2a2)jJ2 . (3.15) 

Thi~ means that Lm are the generators of SL(2, C) and LO an operator related to 
the Casimir operator L2. 

IV. Generators on Conjugate Space 

On the conjugate spinor space, corresponding right-acting generators can be de­
fined in a similar way. Consider 

L/Jo, aiJU& = (LafJt , ( 4.1) 

then we see 

- - -1 ­ - -t &'P'-r'S'
LI;.:yL/J& - q LS'''r,LiN.,'R (q) ~P,"rS 

- ... ( • - - t • , tl' v -1 &'[J'.= LJje.n(q) T/o'''r,R (q)"t "rli q f(q),i"'r,R (q) of) ). -.f(q f)"rLS& 
( 4.2) 
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'1f" 

• ' ,13' 'f~' 
where 'R/( qY' .c:J.~!.5 is the matrix tram;pose of 

i?,t(q) = q-l it;.} Rl:!R~d"{23 

. In deriving (4.2) use has been made of the relations 


1"8 . -- 1-"-­
q- J{'I &;3u Su"r, a/J8c'> q- R'~,..iJDii8.:, . (4.3a) 

= -€(qh~ + l R-l(q)~,,~r 

Therefore by introducing 

£IL = (LIL)* = 

we have relations similar to those in (3.14) 

[£o,£m] = 0, 

q(l3 Lo)L+ - q-) £+(£3 £0) = q [2]1/2£+ , 

q £_(£3 - £0) - q-l(£3 - £o)l- = q [2]1/2£_ , 
(4.5)

£_£+ - £+£_ + (q - q-I)£3(£3 - Lo) q [2]1/2l3 , 

-q£+£_ - £3£3 + LoLo - q-l £_L+ = q2 [2]1/2Lo . 

Now by making use of the relations between one undotted object with dotted one 

ucrU& q R-t(q)JoJ& , 

!:la- - <:'I3R--1( )Bcr cra- a- (jR--l( )Pc>u U& = u/Ju' q fJ&, U ,,= iJu' 'q ,3&, 

aa8& = a/JaP q R-1 (q)BcrtJ& , (4.6) 

we see immediately that 

. ucrEJf38pu& ua lJ/J,EJf3' q R-l(q)/3'{3fJ'/Ju& 


- c"'--l Sa --1 /l'fJ - <::\S--l &'{3'

= 	aj,u R (q) cr'/J' q R (q) f3'/JU&,rT R (q) S& (4.7) 

aSR-I( q/cr c>'/Jlu~lu"tqR-I(q)-rcr'''to' q R-1(q)/J'{3f),pEf R-I(q)':"J'So, 

This gives 

V'PLi>. - L~L"'SR-I(q)"rli."f) .' = 0 (4.8),.,a v, .,S,,,f) 

12 



which means that LL~f3 is R commuting with Here R."'s,LriJe . h is the R matrix 
"10 ,a.", 

given ill Eq(2.32c), which can be transferred to the vect()r iu<i(:x form as in (2.33) 

RJil/ 1<,\ = Roooo?fl RrnOOI.q:; Ron
kO (f) al"lTlI.:I (4.9) 

with R Uooo 1, RmOOI = sm i , ROn kO 8n
k , and a mn 

kl being an SOq2(3) R matrix. 

_q- 1e0 ((1_q-2)()1) q~,) (81)'n1 c '2
(a \d = q2,J:) ( 1 0 Ee -:~:e 1 1 0 ~ q 

o 
where e stands for q2 - q-2. This leads to 

[Ln, L01 = o ( 4.11a) 

and 
LnLI LmLkamnkl. 

The latter relation can be written out more explicitly as follows 

L+L+=q2L+L+ , 


L+ L3 = 


L+ L_ = q-2 L_L+ , 


L3L+ L+L3 , 

L3L3 = eL+L+ + L3L3 , ( 4.12) 

LaL_ = -q- 1eL3L+ + L_L3 , 

L-L+ q-2L+L-, 

L- L3 = -q-1eL+L3 + L3L- , 


L- L_ = (1 q-2)8L+L+ +eL3L3 + q L_L- . 


The relations (3.6), (4.2) and (4.11), or equivalently (3.14), (4.5), (4.11a) and 
(4.12) complete our cross commutation relations for quantum Lorentz algebra. 
Among total eight generators (D', LI-/.), two of them, LO and , are centers which 
must be added to complete the algebra. 

In the limit q -t 1, two of these relations bocome the definiton of LO and to 
which are decoupling from the other six generators and these six generators fall 
into two commuting sets of angular momentum operators. This is just the case 
for classical Lorentz algebra. 
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v. The Action of Generators 

Now we are in the position to give the explicit results when the generators are 
acting upon the spinors and 4-vectors. The cross commutation relations given in 
Section II are enough to give all the following results. 

The action of generators on the basic spinor u'" gives 

=UOt E(q)/3'Y +q-~ ilIJ-' (5.1) 

This yields 
LOu"l = _q-l[2tl/2U"l + q-2u'YLo , (5.2a) 

Lmu"l F(q)a.JUClE(q)IJ'Y +q-2Wm 
l6UoLI (5.2b) 

where R(q)'YmI6 is the R matrix between spin 1 and spin 1/2 . If we set 
R"I~, then 

q 
q-l a 

~(q)m76 = 0 1 (5.3)
1 -a 

[ o q-l J 
where a = (q-l _q)q-l/2[2]I/2, and the indeces pair (m,,) or (1,8) is ordered 

1), (+,2), (3, 1), (3,2), (-, 1) and (-,2). Then (5.2b) can be written out more 
explicitly 

L+u1 q-1u1L+, 

L+u2= q-l/2u1 _ (q q-l)q-5/2[21- 1/ 2UI L3 + q-3u2L+, 

L3U l = q[2tl/2U1 + q-2uI L3, 
(5.2c)

L3u2 _q-l [2]-1/2u2 + (q q-l )q-s/2[2tl/2ulL- + q-2u2 L3 , 

L-ul = ql/2u2 +q-3ul L-, 

L-u2 = q-1u 2 L- . 

The similar results can be obtained when the generators are acting upon the 
conjugate spinor u..y. Indeed we have 

(uOtQi')u..y =q R-I(qiOt QI..y,R"t' IJIJ'''t U6(U a'{j3') . (5.4) 
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This gives 
LOu"l = u"r Lo , (5.5a) 

Lm.-. R~-Ii ·)m.5, - 'LI 
U.., ,q ,),1 Us • (5.5b) 

Here R- 1(qr.5 "rl is the inverse of the R matrix appearing in And 
becomes 

= + (q 

=qUiL+, 

L3Ui q- 1uiL3 (q - q-t)ql/2[2J1/2U2 L-, 

PUi uiL3, 

L-ui q 

= q- 1 u2L- . 

Then when we consider the coordinates 4-vector as product of a basic spinor 
u'r with a conjugate spinor w"r transformed in the same way as u,.: 

",,,(-I ~I (J IJ. ,...., u'rw.y. (5.6) 

We can obtain that 

(u oc 8f.l)(tt'Y u\) 

-2R-f3"1+ q 6­ oe"!lB"R--1( ).50t' R~-l( )"11/3
6a'U WSU CY q a""y' q fJ"":­

(5.7) 

It follows that 
LI'XII = CIJ.~Xu +q-2R;.LV It.\x lt L'\ , 

CI'~ = fl'(q)oci3€(q)f.l')'fV(q)"I-yt(q)~"y . (5.8) 

Both CI'~ and RI'll n'\' are reducible in the same way such that 

RI':>. RO~ ® R'7J7 $ RO~o ffi Rkl , 

CooCl'~ = o EO cm~ ffi Co~ ® cm~ E9 em: 

with 
eOl/u = CIIO = _q-t[2J- 1/ 2 6vu ,

U 

eme; =_q[2J-l/2g(q2)"m , 

e mn liEu (q2)mn
8 [2] s , 
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where g(q2)mn and u,,(q2)mn are respectively the singlet and triplet eigenvectors 
[l1J of the Rm\I' Then Eq(5.8) is equivalent to 

LOxo + q-2xOLO , 


LmxO = _q-l [2]-1/2x m +q-2xOLm , 


LOxn = + q-2xnLO , 


Lmxn -q [2J-l/2g (q2)mnxO + ~U3(q2)mnx3 + q-2Rm\IXkLI . 

The reality of the 4-vector xl' can be expressed as 

(x°)* = xO, (xmt = xng nm (q2) . (5.12) 

And similarly we define 

LO = Lo = (LOt, Lm Lngnm (q2) = (Lm)" . 

Then the action ot the generators LI' on xl' now becomes 

X OLO = _q-l [2J-l/2XO+ 
xn LO= _q-l[2J-l/2xn + q-2LOxn , 

(5.14)
xOLm _q-l[2]-1/2xm + q-2LmxO , 

xn Lm = _q-t[2]-1/2g (q)nm + ~us(q2tmx8 +q-2Rnik£ixk . 

Relations and (5.14) complete the action of whole set of generators on 4­
vectors. 
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In the limit q ---jo 1, (5.13) 

[L+,x+] 0: x+} =0, 

= -::lix+, [L+,x3] 

[L+,x-] = ~(X3 XO), [L+, x-I = 72(:r3 + xo), 

(L3
, x+] = ::lix+. [L 3 ,x+] 

3[£3~ x ] 

(5.15) 
,x-] = 

+ 	 [L-,x+] = - )2(X3 - xO), 

- - 3} 1 ­[L-,x3 } 	 [L ,x = -:;2X , 

[L-,x-] 0, [L-,x-] =0, 

[Lm,xO] = -xm/V2, [Lm,xO] = xm/V2. 

It implies that Jm = )2(Lm+Lm) arethe rotation generators while](m tz(Lm-
Lm) the boost generators. 

Note Added 

After completing this manuscript we saw a paper by W.B. Schmidke et al 
(Z.Phys. C 52(1991)471) in which the ansatz-consistency method is used to give 
the generators of the quantum Lorentz group acting upon spinors and 4-vectors 
similar to those in Section V. We believe that their results will be equivalent to 
ours if they used an ansatz corresponding to the 4 D+ differential calculus rather 
than the 3 D calculus they adopted. This is also the reason why their results were 
less compact and less explicitly covariant. 
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