[

umiiigun

0 1160 000L208 7

CCAST 91-64

Decemnber, 1901

The Generators of the Quantum Transformation
Group on the Quantum Spinor Space !

Xing-Chang SONG

CCAST(World Laboratory}
P.0.BOX 8730, Beijing 100080

Department of Physics®
Peking University, Beijing 100871

Institute of Theoretical Physics
Academia Sinica, Beijing 100080

Abstract

The covariant formalism of the generators for the quantum group
SLy(2,C) on the quantum spinor space is constructed manifestly,
very similar to the ones on the quantum group itself proposed by
Woronowicz through his 4 D, calculus. Also constructed is the set of
eight generators for the quantum Lorentz group on the bispinor space.
In the limit ¢ — 1, these generators reduce to those of the left and
the right SL(2,C) plus two corresponding Casimirs.
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I Introduction

The importance of the idea of the quantum groups [1] is now more and more
extensively understood by most of physicists. This is due to its close connection to
the Yang-Baxter equation [2] which plays a deep role in various physical problems.
In our opinion, as for the classical group, for mnore direct physical application, the
view considering the quantum group as the “quantum” symmetry of some basic
physical objects, or “quantum” space, is more attractive.

The noncommutative differential calculus over the quantum group itself and
the generators of the quantum group have been established by Woronowicz [1]. A
general construction of quantum group as linear transformations upon the quan-
tum plane has been suggested by Manin[3]. And the covariant differential calculus
on the quantum plane was developed by Wess and Zumino [4] and generalized to
the more general quantum spaces including the quantum orthogonal plane and
symplectic plane[5], and inore recently, to the quantum Minkowski space[6].

In this paper we would like to give the explicit covariant form of the generators
of quantum groups SL,(2,C) and S0O,(3,1) on these quantum spaces. The main
tools are the consistent covariant differential calculus on these spaces[4.3] and
the projection operator method developed in Ref[53-7]. We start with the linear
representation of the SL,(2,¢) on the spinor space in Section II. With the help of
the differential calculus on the spinor space, we construct the differential realization
of the covariant generators explicitly in Section III, just as the ones for the ordinary
SL(2,c) group. We have a set of four generators satisfying the relations similar to
those given by Woronowicz (8] in considering the 4 D calculus on quantum group
SL,(2,C) itself and by Wu & Zhang recently [12] in developing RTF method [1]
to discuss the differential calculus on quantum matrix groups. In ¢ — 1 limit
three of them reduce to the generators of classical SL(2,C) and the fourth is
connected with the Casimir operator(total angular momentum){9].Then we turn
to discuss the counterpart set of generators in conjugate spinor (dotted spinor)
space in Section IV. Combining these two set we get the total eight generators
of quantum Lorentz group S0,(3,1) in the bispinor space. The action of these
generators on the spinors as well as the 4-vectors is presented in Section V.




II. Quantum Spinors and R Matrix

We start from two-dimensional ¢-spinor u® = (u',u?) = (u, v) with its components
obeying the g-deformed commutation relation

uv =qou . (2.1)

This relation is preserved under the transformation of the g-spinor {( The summation
over the repeated indeces is understood throughout this paper)

w —u =Mt M= (“ b) (2.2)
c d .
if M is a GL,(2) matrix with its entries satisfying the definition relations

ab=gba ac=gca ad—da=(qg—-q V)b (2.3)
be=cb bd=gqdb cd=gqdc '

and commuting with the components of the spinor, i.e., au = ua ete. The relations
(2.1) and (2.3) can be put into the following form

wu? = g7t R suud (2.40)
Raa,ng-'.,vMsy = Mﬂn'Maﬁ‘Ra'_@"y’é' y (Rnﬂf{]."/fg = .'1’[1 ﬂngn) (24b)

by introducing the numerical R;, matrix associated with GL,(2)

q
-1
B — (Beb ) — g—q " 1 5
Rig) = (R*\) = I (2.5)
q
which satisfies the Yang-Baxter eql.-xation (in the braid form)
Ri2RosRiz = RysRioRos (2.60)
and the reduction relation
(R-q)(R+¢7')=0. (2.6b)

The left-acting as well as the right-acting eigenvalue equations can be written as

R(9)st™(@)" = ¢ tm(0)*, R(9)*%ss s(0) = —¢7's(9)** , (2.7a)

T (QasB(0)*%s = 0 T(q)s « 5o 05 = —¢7 () (2.7h)

Now since the matrix R is symmetric, the components of "(q) and 3(¢) may be
taken the same as those of their left-acting counterparts ¢.,(q) and s{q), namely®

/2y
t,(q)*f = (é g) ,  ta(g = (_q?l/,z % ) (22

0 0 ‘ 0 g2 .
afd . yald . 2 —!/»-‘
t*(?) (0 _1) ) 5((14 (_q}/g 0 i ]

(2.8)

where the ¢-number is defined as [n] = %:T'qi_:;:. The g-analogue of the Levi-Civita
symbols e(q)ap and e(q)*? are related to the singlet eigenvectors

€(Qas = ~[2]'28(q)as . €(9)* = [21"*5(q)as (2.9a)
and are normalized in the way such that

(Q)opel)® = 8," . e(q)*el@)y = 6% . (2.90)

As is used in Ref[6], ¢,,(¢) and s(q) are grouped together to form the matrix-
valued four vectors

tu(g) = (to(g). tmla})) . to(9)*’ =g s(g)*’ ; (2.10a)

#(g) = (®(e), (@), P97 =g 5(gs - (2.108)

It is easy to check that t,(q) and ##(g) satisfy the following orthonomality condition
tu(9)” #(@)ap = 8, (2.11a)

and the completeness relation

tu(9)* P(g)ns = 8%,8°5 = E*.5 . (2.11b)

The projection operators for the triplet and the singlet can be defined as

Q@)™ = ta(0) T (s » QMN@)6 = (0)*°5(g)ns  (212)
respectively, with the properties
QYQY = §iQW | QY +Q®=E, ©(2.13)

3The convention we adopted here is different from that in Ref{6] by exchanging + and -.



R matrix and other relevant matrices can be cxpressed as the linear combination
of @’s, )
R(q) = %Q%q) + MQM(g) = ¢@® — ¢'Q"M . (2.14)

Coversely, the projectors can be re-expressed in terms of R:

QW = R-\ME QW =

R—-ME
A=) )

91z
N (2.13)

From these relations and the Yang-Baxter relation (2.4b) and the Yang-Baxter
equation (2.6a) we see immediately that

QM M, = M MLQY) | ‘ (2.160)
QYQR?BRI'Z = R23R12Qg3? 3 R1‘2R23Q£2 = Q£2R12R23 N (2162’)

The preservation of the g-commutation relation (2.1) comes from the fact that
€(q)ap and €(q)*? are the eigenvectors of M @ Mwith Det, M being the associated
eigenvalue:

M®,MP5e(q)" = Det, M e(q)** |, e(q)apM®MP?s = Det, M e(q)s  (2.17)

where Det, M = ad~ gbc is the center of algebra generated by a, b, ¢ and d. For M
with Det, M = 1 wesay M isan SL (2, C) matrix. In this case we see immediately
from (2.17) that

M*e(q)° MPse(q) o = 6%, (2.18q)
(@) pra M e(q)" MP 5 = 657, (2.185)
This implies that
(0)° MPse(g)pa = M, , (2.19a)
e M ye(0)" = (M) (2.199)
Now ;ince &(q)pa(= —€(¢7 )ap # —€(q)ap) is not ordinary antisymmetric with

respect to @ and 8, (M~')' # (M*)~). This fact tells us that starting from the
basic spinor u*, we can build two different types of lower index spinors. The one
is
Uy = uPe(q)py — u M1, (2.20a)
and the other
o = €(g)apn® — (M) 4, (2.20b)

So two types of invariants can be formed

ugn® — u, M~V MO 5uf = ugu (2.21a)

ui, — u MM i, = WP (2.21b)

In most of the cases we use lower index spinor u, which transforms contravariantly
to u® as in (2.21a). The only exception is the derivative spinor 8, = ;2. which
transforms as in (2.21b) indeed:

8, — (MYH' ) 8, . (2.22)
Then
8o’ = Bt — (MY 7 Al MY = (MY )Y 6, MR =60 (2.23)

Therefore the derivative spinor with upper index 8* = ¢(q)*?9p transforms just as
the basic spinor u* does:

(g)*8, = 8% — M*30" . (2.22b)

The components of the derivative spinor obey a g-commutation relation similar
to (2.1)
8261 =q 6162 (2246)

which can be re-written as
350, = ¢ R(q)as™ 050, . (2.24b)

For consistent differential calculus, we also need the relations between coordinates
and derivatives. The result is first given by Wess and Zumino[4]:

Butt? = 8,7 + C7%y, w0, (2.25)

of the two possible choises in the following discussion we choose C = ¢7'R™! .
It can be easily checked that the above relation is covariant with respect to the
transformation in (2.2) and (2.22)

The conjugate spinor &; = (u®)*transforms[6] according to the hermitian con-
jugate of the quantum matrix M:

Uy — ﬁsM"ﬁd . (226(1)



Then ) ) )
4% = —wze(q)’t — MO @ (2.260)

from a similar relation for M as in (2.18). Quantum matrix M = (M*)~! satisfies
the Yang-Baxter relation similar to {2.4b),

R&B,}éﬂiﬁu\—léé, = M&d:x‘?‘jﬁiﬁd{‘é',;,gf (2.27)

and an additional relation[9] with M:
R Mo NP = MO MPGRY 5 (2.28)
Similar to (2.2b), for 8% = %, we see 0, = ~e(q)‘iljz§3 transforms just as the
dotted spinor &, does. Now considering ¢ real and taking the complex conjugate

of Eq(2.1) and (2.24) we obtain that the components of the dotted spinor i and
components of the dotted derivative spinor 5% obey the relations

@za; = quijiy , 0.0 = ¢8°d (2.29q)
which can be recast to the R commutation form
ﬁ[;ﬁd = q‘lR%sdﬂﬁsﬁ;, s éﬂ(';a = q“lé'éd‘fﬁgsgx’ ‘ (2.298)
Also we have relations among #; and 9
@0 = §%; + ¢ R (q)*% 35,048, - (2.30)

In discussing the bispinor comprising both u® and i, we also peed the cross
commutation relations between u® and i, between J, and @4 (9 and u®) and
between 8, and 8%. The results are found to be

u%ly = ﬁéuﬁqR‘1(q)Bd"§d , (2.31a)
g = ﬁﬂa‘;R'l(q)ﬁdﬁé , ud; = (%uﬁfi_l(q)d&ﬁd , (2.310)
0 = (%a‘aqf{'l(q)édﬁd . (2.31¢)

The consistency of all these relations can be directly checked by considering the
triplet product of operators chosen from (u®, 8%, &4, 9;) and altering the order in
two different ways.

Starting from the given 4 x 4 R matrix (2.5) we can obtain different higher
dimensional R matrices by using different “fusion”: for example

RPN, 5 = Ry R st (= PrsRia Ry Ps) (2.32a)
is the fi matrix corresponding to the quantum group SO,(4),
RO e = 4 RPN Ry R u RN prp(= ¢ " RisRizRuaRy) ) (2.320)
is the R matrix for the quantum Lorentz group S0,(3,1) [6,10], and
Raaﬂiﬂ'n’s' = q RPN R™ oy R s R oop(= q 2 Rys Ria RauRzs) (2.32¢)

represents a reducible R matrix[7,11]. By multiplying ,g, %, t&'% and t]*,
Eq(2.32¢) leads to
'5'

- — - - o 5 tar
R = 8(Qaalys R g stV ]

i

; B 3 (2.33)
= R% @Ry @ R™0@R™y .

Here the reduction of R**, comes from the repeated use of (2.16b), and R™"y is
a R matrix associated with $O,(3), corresponding quantum matrix being[11]
7 D™y = F(Q)ay M sMsti(g)** . (2.34)
Similarly, from Eq(2.32b) we obtain
R o = —iﬁﬂiaRaggfo‘n'ﬁft:wt}'ﬁl ’ (2.35)
which is indeed the R matrix for quantum Lorentz group with its singlet eigenvec-
tor
. Guvr = (g+-:933. 900, §t) = ("‘q_lv'ls 1,-q) (2.36)
being identified as the g-deformed Lorentz metric[6].

ITII. SL,(2,C) Generators on Spinor Space

Now we are ready to construct the set of generators on the spinor space. As for
ordinary angular momentum operators in the classical spinor space[9], we consider
the combination operators

L = u*d® = u®(g)M8, . (3.1)



From (2.24) and {2.25)
aﬁa{’ = q—!Rﬂ,b‘ﬂdaﬁaﬁ , Bau:} - 5“_{3 + ’!-IR-!-{’”‘,Q',,&‘”‘L&J.

and the important relations

e(q)’”R"l"m;e(q).m = qR'l(q)’a"'ﬁ,G = e(q)lyvvcll?ydu,,'ﬁ(q)""" (3.2)

we obtain
8“7,&3 - E(q)a,ﬂ + qv2Raﬁﬁ’a,ud‘au' (3'3(1)
8 = ¢ R0, P (3.3b)

together with the relation (2.4a}
uuf = q_iR’wwa,uﬁ‘u"' (3.4)
Then by a straightforward but tedious derivation we obtain

LeAL — VRO, L Lo L
} ) ] (3.5)
=g RHq)Parge(q)” " R (q) "5 R u L& + e(q)" L7

where R .5 .50 is the R matrix defined in Eq(2.32b) which can be transferred
to R* ¢, as in Eq(2.35). As is discussed in Ref[6], the 16 x 16 R matrix R*" . has
three distinctive eigenvalues: the single one Ao(q) = ¢7>, the sixfold one A\;{g) =

—q~! and ninefold one Ay(q) = q.

ﬁ(Q)uV/,é‘wm\ = /\0(9)5(‘?)5\ .
™) R* o = Ai(@)T™ (@) - (3.6)
TMg)u R* r = Ag(@)0™" ()

where for @i(g), m = +,3,~ and s = %, for ¥(q) (m,n)= (2,0), (1,£1), (0,£2),
(0,0),(1,%1) and (2,0). To-write down the explicit form of R, we order the Lorentz
index p = (+,3,0, ~) and define a “charge” for each index: ¢(+) = +1, ¢(—) = -1,
¢(3)=c(0)=0. Then R* _, is “charge” conservative c(g) +c(v) = c(x) +c(A) = m,
and breaks into the block diagonal form according to the total “charge” m.

Rig)=SP 25 550 0 5P 5 57 (3.7a)

»
where S,(,'"} is a d x d matrix with total “charge” m. The following standard order
for the indeces pair (u,v) or (., ) is adopted throughout this paper:

() =(++) for m=2,

(#,v) = (+3,40,3+,04) for m=1,

(l”"ﬁ V) = (+~133, 30& 03700v _+) fOT m= 07 (375)
(.u’ V) = (3_10_1 _3v "0) fOT m= I’

(u,v) =(~=) for m=2.

Then the singlet eigenvector(with total “charge” zero)
6(‘1);“/ = (—q-ls —11 Os 0: 17 —Q)[ZJ_Uz 3 (38)

is proportional to the Lorentz metric ¢(g),,. And the sextet eigenvectors are

chosen as .y .
BN = (¢ 90,92

(P = (=g =972
@) = (Lg—g¢" ¢ ~¢,0,-1))[2]",
@ (Qw =(1,9~¢7" ~¢,¢7",0,-1)[2]7";
(@) = (—¢7" ¢, 0,972,

ﬁi‘(‘])u" = (“q_lvq-lx ‘A —Q){g]—i N

(3.9)

Then by changing the bispinor index (e, 8) into 4-vector index x and defining
L* = t(q)apL? (3.10)
we obtain
LFLY — g \RM G LFL) = fo,L¢
(3.11)
= (21w (9 + wi-(g)* 1L + [21%(q — g Yoy L°
where u,(¢)* and v(g)* are the left acting eigenvectors of R**\. [6] satisfying
A (Q)uuis(Q) = ™18
H(Quwo ) =1,
T Quv(@) = W@uus(e)” =0 (3.12)

10




and so on. Then Eq(3.11) can be rewritten in the form
@@ LI (1+¢7%) = 221!
@ (Qu LY (1 +¢7%) = [2)/2L (3.13)
W) L L(1 g7 = [2]"*(q — g™ L .
Or more explicitly
fLO’ Lm] = 0 )
q(L® = L)L* — g7 'LH(L? — L°) = ¢[2]'/°L* ,
qL™(L® - L% - ¢""(L* - L°)L™ = q[2]'/’L" ,
L*L™ = L7L* + (g - ¢ IA(L® = L%) = q[2]' 217,
—qYLYL™ = [3[3 4+ [°L° — gL~ L* = ¢*[2]*/*L° . (3.11)
This set of relations are obviously equivalent to those given in [8] from the 4 D,
differential calculus on quantum group SU,(2) itself [8]. So the operators L*

defined in (3.1) and (3.10) are indeed the derivative realization of the SL,(2,C)
generators on the spinor space.

In the limit ¢ — 1, it is easily seen that
L+ ~u‘32 N L™~ Uzal N
L3~ (u10, — 20 /VE, L0~ (u'd; +u?n)/VE . (3.15)

This means that L™ are the generators of SL(2,C) and L° an operator related to
the Casimir operator L%,

IV. Generators on Conjugate Space

On the conjugate spinor space, corresponding right-acting generators can be de-
fined in a similar way. Consider

= Jyug = (L), (41)

then we see

!

i, S A I Ll Ak
#5Lga — 4 Ly L3 RHq) ;5,-,5 (4.2)

= EﬁéR(q)éﬁd"'y’ R—!(q);”&;’g q e(q)ﬁ..-,.f?'l(q)&'ﬁldg — ()5, Lss

11

&334
’ilﬂf‘;{!é/'

- & BAE . . =
where R'(g)* Jd'g;s is the matrix transpose of R(q)

RYq) = ¢~ 'Ry RiaRoiltas
. In deriving (4.2) use has been made of the relations
s = ¢ R sy, 830, = g RY 5500, . (4.3a)
ﬁjé& = —€(q);, + qzé'l(q:)'j’d'déa;oﬁﬁ, . (4.3b)
Therefore by introducing
L, = (L") = d;i5(q)ss (4.4)
we have relations similar to those in (3.14)
[-Z'Ov zml =0 >
q(Ls — Lo)Ly — q ' Ly(Ls — Loy = q [2]'L, ,
¢ L(Ls—Lo) - g7\ (Ls = Lo)L- = ¢ [29/’L-,
L.Li-LiL +(¢-q")Ls(Ls—Lo)=q [2"°Ls
—qLyL_ — Lyl + LoLo — ¢ 'L Ly = ¢* [2]'L, .

Now by making use of the relations between one undotted object with dotted one

(4.5)

uily = ﬁau'g q R—l(q)dajd ,

0ty = 5gd R(9) s, uds = 03u" R (g% .
8705 = 9;0° q R@)%s (4.6)
we see immediately that
3 u"aﬁé‘éﬁd = u“gé,aﬁ' q R‘I(q)é'ﬂﬁ,éﬁé
= 0™ R™(9) e ¢ R7(9) gy R (9 (4.7)
BB (0)% g R (9) e @ RN 550 R0 s

Qi

This gives

LLs, ~ L LR (g) 720 =0 (4.8)

¥6a8

12



which means that L% is R commuting with Lé(y Here l-:{""s'“fa b is the R matrix

given in Eq(2.32c), which can be transferred to the vector index form as in (2.33)
me\ = Roooo B Rmom SR ® R™y (4.9)
with RUDQO =1, Rm()O‘ = ‘Sm“ ROnka = 5“;“ and Rmnkl being an 5042(3) R matrix.

) o1 (1-¢8 —g'6 ¢* 91\ .
(R'""k,):q25’9(1 0)@ —g-16 10 (1 0)%« (4.10)

q? 0 0
where 8 stands for ¢ — ¢~2. This leads to
[L° Lo) = [L*, Lo) = [L°, L] = 0 (4¢.11a)
and
L"L; =L, L*R™ . (4.11b)

The latter relation can be written out more explicitly as follows

L+iv+ = q2z+L+ s

“LtLy = LIt
LtL. =q?[_L*,
L, =L, I3,
L®Ly = 6L, L* + L,L3 (4.12)
L’L. = —q 6L+ + L_L*,
L-L,=q¢L,L,

L-Ly=—¢ 6L L%+ L.,

L-L =(1-¢?6L, Lt +6L;3+qL_L .
The relations (3.6), (4.2) and (4.11), or equivalently (3.14), (4.3), (4.11a) and
(4.12) complete our cross commutation relations for quantum Lorentz algebra.
Among total eight generators (L¥, L,,), two of them, L® and Ly , are centers which
must be added to complete the algebra.

In the limit ¢ — 1, two of these relations bocome the definiton of L® and L,

which are decoupling from the other six generators and these six generators fall

into two commuting sets of angular momentum operators. This is just the case
for classical Lorentz algebra. ‘
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V. The Action of Generators

Now we are in the position to give the explicit results when the generators are
acting upon the spinors and 4-vectors. The cross commutation relations given in
Section IT are enough to give all the following results.

The action of generators on the basic spinor u” gives

(WO = ure(g)f + Ry RS0 (5.1

This yields
Lou” = —g7 Y2 V" 4 ¢ 2" L0 (5.2a)
L™u” = 1"(g)ogue(q)’” + ¢ PR su’L! (5.2)

where R(q)™ s is the R matrix between spin 1 and spin 1/2 . If we set R(q)"™}; =
R™, then

R(g)"} = . (5.3)

—a
0 ¢!
q
where a = (g7! — ¢)g~/?[2]'/?, and the indeces pair (m,v) or (I,6) is ordered
(+,1), (+.2), (3,1), (3,2), (-, 1) and (—,2). Then (5.2b) can be written out more
explicitly

Ltu' = ¢ 'L+,

Lru? = g7Vl — (q - q7")g P27/ *ul L + =%’ LY,

L3l = g2 V2! + ¢! L2, |
L3%? = -q41[2]—1/2u2 F(q - q g P L+ LR, (5:2¢)
L ul = ¢'?u? 4 ¢~%ulL",

L u?=q¢ L.

The similar results can be obtained when the generators are acting upon the
conjugate spinor #;. Indeed we have

()i, = g Rq) i B sy’ . (5.4)

14




This gives
Lol—b'Y = ﬁ.’,LO ) (5.3a}
L7a, = R-K(Q)'"é&tﬁsL' - (5.55)
Here R'l(q)”“éﬁ, is the inverse of the R matrix appearing in (5.2b). And (5.5b)
becomes
L9 = Lt + (g - g 2 D,
Ltuy = qusL*,
LPaj = ¢7'a; L% ~ (g - ¢™"g"*[2]Va, L7,
L3y = 4, L3,
Lu; =g gL,
L'ﬁi = q_lﬁiL_ .
Then when we consider the coordinates 4-vector as product of a basic spinor
u” with a conjugate spinor @ transformed in the same way as is:
X' =0,"z" ~uMD; . {5.6)
We can easily obtain that
(ud®)(w" ;)
. e L . (5.7)
= uBse(q)?" + g 2R o B s tfu” 8% R™Y(q)* sy R(q)" ? sy

It follows that
L¥g¥ = C* 2% + ¢ 'R™ z"L* |

C*, = (Qase(@) T (9)st() - L (58)
Both C*, and R* , are reducible in the same way such that
R*, =R ORY 9 R% 3R
C¥ =C% e pCmraC™! (5.9)
with )
C'Oug - CV?’ = _q—l[z]——l[?auo s
Cmy = —q[2 7 2g(g®)™" (5.10)

1/2 .
oy =Hru g,

15

where g(¢%)™ and u,(¢*)™" are respectively the singlet and triplet eigenvectors
[11] of the R™",. Then Eq(5.8) is equivalent to

LOxO - _q—l[gl—l,/?zlf) + q—ZzOLO N

Lmz® = __q—l[zl—l/Ql.m + q—-2z0Lm ,

L0z = _q-l[é]-l/2$n + q-2ano , (5.11)
L2 = —g [2]g(a?)™ a0 + W u ()™ + R
The reality of the 4-vector z* can be expressed as
(@) =2, (&™) =2"8am(d") - (5.12)
And similarly we define ‘
°=I,= (L%, _Em = L"gum(d®) = (™). (5.13)
Then the action o{ the generators L* on z¥ now becomes
2010 = —q 1 [2]7/220 4 ¢72[%°
2" L0 = —g 2" V2" 4 g2 [0 |
(5.14)

zozm — _q—1[2}—1/2zm + q~2Em$O ,
nfm - - m 2 nm “2Rm T
L™ = —¢7[2]"V2g(g)"" + B%ﬁ*u,(qz} 2’ + ¢ 'RV Lg%

Relations (5.11) and (5.14) complete the action of whole set of generators on 4-
vectors.
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In the limit ¢ — 1, (5.13) gives

[L*,2%] =0, (E*,2*] =0,

[L*, 2% = — (L 2] = —gzz™,

L.z} = -vl,—i(z:‘ - z%) [Lt,z7] = ﬁ(r‘ + z%),

[LSY$+} = 715113+. {1_-’373:1-} = 7151"+‘,

{Lsrxal - “ﬁzo’ [Ea’ 53] - %TO

(L z7] = ~Lz- [3 2~ = -t~ (5.15)
3 =T [ y & ]— ﬁf s

(L7 2%] = =Z(z® + %), [L 2] = (2 ~ %),

[L-,2%] = —I\E.’I:_, [L-,2%] = %:c‘,

[L-,27] =0, [L-,z7] =0,

(L™, 2% = —z™ /3, [Lm, 20 = 2™/ V2

It implies that J™ = —\}5(["‘4-1—;”‘) are the rotation generators while K™ = J=(L™—
L™) the boost generators.
Note Added

After completing this manuscript we saw a paper by W.B. Schmidke et al
(Z.Phys. C 52(1991)471) in which the ansatz-consistency method is used to give
the generators of the quantum Lorentz group acting upon spinors and 4-vectors
similar to those in Section V. We believe that their results will be equivalent to
ours if they used an ansatz corresponding to the 4 D, differential calculus rather
than the 3 D calculus they adopted. This is also the reason why their results were
less compact and less explicitly covariant.
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