
i 
, 


CCAST !H-G3 
November, 19l)!-­ o 

Covariant Differential Calculus on Quantum Minkowski 
Space and The q-Analogue of Dirac Equation 1 

Xing-Chang SONG 

CCAST(World Laboratory) 
P.O.BOX 8730, Beijing 100080 

Department of Physics2 

Peking University, Beijing 100871 

Institute of Theoretical Physics 
Academia Sinica, Beijing 100080 

Abstract 

The covariant differential calculus on the quantum Minkowski space 

is presented with the help of the generalized Wess-Zumino method 

and the quantum Pauli matrices and quantum Dirac matrices are 

constructed parallel to those in the classical case. Combining these 

two aspects a q-analogue of Dirac equation fo11O\\'s directly. 
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L Introduction 

In recent years, the concept of quantulll group has extensively entered the phys­
ical literatures. This is due to its close connection to tht' Yang-Baxter equation 
which plays a deep role in various physically intere:;ting models and theories. The 
mathematical structure of the quantum group has been progressively clarified by 
Drinfcld [lJ, Jimbo[2] and Reshetikhin et al [3J. The connection with noncommuta­
tive differential calculus was elaborated by Woronovicz[4J. A general construction 
of quantum group as linear transformations upon the quantum plane was suggested 
by Manin[5J. And the differential calculus on the quantum plane was developed 
by Wess and Zumino[6J. 

On the other hand, it is also interesting in considering the deformation of 
our physical space-time. It seems that the four-dimensional smooth manifold is 
a good model of our space-time only in the macro-scale. In the sub-macro le\'el. 
the description of the space-time may need new tools. In this direction the idea 
that the symmetry of the space-time in the sub-macro scale is described by a 
quantum group is very attractive. The first step was put forward by Podles and 
vVoronovicz[7], who constructed a one-parameter deformation of the Lorentz group 
and discussed various aspects about its properties. The tensor representation of 
the quantum group SLq(2, C) was investigated by Carow-Watamura et al [8J. and 
the quantum Minkowski space _vIq was defined, upon which the quantum Lorentz 
group SOq(3,l) is acting. 

In a recent paper[9], with the help of the quantum Pauli matrices we intro­
duced and the projection operator method, the covariant spinor analysis of S~-q(2) 
was developed. These methods are taken over in Section 1 and 2 to discuss the 
SLq(2, C) and quantum ~v1inkowski space A1q without any difficulty. Then by using 
the approach proposed by Wess and Zumino [6J and generalized in recent papers 
[10,111, we discuss the differential calculus on Mq in Section 3. Combining these 
two results we construct the q-deformation of the Dirac equation in Section 4 in a 
manifest way, which is, step by step, parallel to the one in the classical case and 
hopefully more familiar to most of physicists, 

The quantum group SLq{2, C) is characterized by the R matrix satisfying the 
Yang-Baxter equation 

R12R23R12 = R23R12R23 
and the characteristic equation 

(R-q)(R+q-l)=O. 
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For COnv( 'uience we \vill take the standard form of R = P R 11-<; gi ven in 

1/q 0 0 0)• - - oJ] _ 0 q - q-t 1 0 
(R) - R('1 ) ')0 - 0 1 0 0 . r,

( 
o 0 0 q 


The left-acting as well as the right-acting eigenvalue equation can be written as 

[9] (surrmmtion over repeated indices is understood unless otherwise stated) 

R(qy>JJ'Yotm(q)"fS :::: q t"..(qY,{3, R(q)'XI\os(qyvs:::: _q-J,':l(q)"{3, 


[m(q)o{3R(q)OP'Y6 :::: q fm(q)'Yo, s(q)oJ3R(q)')I/3'Yo = -q-1:S(q)')o . (4) 


with m :::: +,3, - and ():, (3 == 1,2. Now since the matrix R is symmetric. the 

components offm(q) and sm(q) may be taken the same as those of their left-acting 

counterparts tm(g) and sm(q): 

( ) ot3 (-1 0) _+(t+ q == 0 0 = t q)olJ, t3 ( q)cr/3 :::: (.. 0 ~t) f2J-t :::: P(q)op, 

a/3 _ (0 0) ___ 
q-~ 

(5)
L(q) - 0 1 - t (q)op, s(q)'>1J = ( q-~)0.1 

=:: 8(q)0,6;-q2 o 

where the q-number is defined as [nJ = ~:q":.~n. The q-analogues of the Levi-Civita 

symbols f(q),,/3 and f(q)oP are related to the singlet eigenvectors 


f(q)"p = -[21h'(q)op, e(q)"P:::: [2]fs(q)"f3 . 
(6) 


They are normalized in the way such that 


f(q)"pf(q)P'Y :::: 0" 'Y • 
(7) 

For later use we group t(q) and seq) to matrix-valued four-vectors 

tj>(q) =:: (to(q), tm(q» , to(q)"f3 == q s(q)"P , 

[j>(q) = ([O(q), F(q») , fO(q)op:::: q-1s(q)"p . (8) 

It is easy to see that tj>(q) and fl-'(q) satisfy the following orthonormality condition 

tj>(q)"/3f"(q)"p = 81''' 
(9a) 

and the completeness relation 

tj>(q),,(3fj>(q)')/j == EOP'Yo = 8(\8P
6 • (9h) 

In discussing the quantum group SUq (2), two conjugate sets of the quantum Pauli 
matrices are introduced [91 

Tj>(q)"j3 = tj>(q)a-Yf(q),)iJ, fj>(q)P a = e(q)lhf"(q)"... 

which also satisfy the orthonormality and completeness conditions 

Tj>(q)"/3f"(q)!3" = 81'''' Tj>(q)"iJfj>(qP6 = E o 'Y s{3 = (ll) 

In discussing SLq(2, C) case we must consider the basic (undotted) spinor u" 
as well as its conjugate (dotted spinor) (u")" == ua. (We mainly follow the notation 
in Ref[12J for classical spinors with a little modification) 

u" ---+ M(q)" IJUfJ , Uo. ---+ upM+(q)P '" (12) 

where j\;[ is a 2 x 2 matrix with its entries taking values on a non-commutath'e 
algebra, and J//+ its hermitian (transpose complex: conjugate). Further defining 
M(q) :::: M+(q)-l, and considering the fact that the Levi-Civita symbols are in­
variant under SLq(2, C) transformations [7,8,9J (unimodularity of M and ~'i1) 

e(q)~;s == f(q)apM"-ylv/f3s, e(q)"fJ = MO)'vlPSf(qr" , 

- a - /J o/J - a - /J .:..8e(q).yt == e(q)opM ,,1111 6' e(q) = M ",1\11 6f(q) , (13) 

we can define the undotted spinoI' with lower index and dotted spinor with upper 
index 

up(q) == u a(q)e(q)a{3 , U.6(q) == uo(q)e(q)o.B (14) 
¥- :. <\' .... t. ,'.' , ~ 

'w}.iich tr8.nsf~;~ ~unde.r Lotentz group :as 
. . I 

~' ~l (J 
. uai ---+upM'; (q) a , uo. ---+ M(q)o.puP . (15) 

The qu~ntum matrices M and M s~tis!y the following Yang-Baxter relations 
. , 

R(q)"p,,'iJ,M(q)Q:'-yM(q.)!3.'6 i= M(q)" ad"vJ(q)fJ(JIR(q),,'!J'-yo , 

R12 J.'41 M2 = J.'41i'vf2 R12 , 

R(q)o.O&'/JtM(q)l.';'Jii('IJ)p'6:;: M(q)Cx o,M(q)iJ/J.R(q)o.
1

iJ'.y6 , 
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R12 ,"tf1j\12 = l'vf1"\12 Rl'l . (lG) 

And also a relation between .:.\1 and iii must be add(·cl 

R(q)0f3oi;M(qr'''Ikf(q)j5 = i\1(q)0;,M(q)/3d1(q)"r6-Y5 ' 

R121\Ift,Iiit2 = 1Vft,:.l12R12 , 	 (17) 

where all the R matrices with undotted or dotted indices have the same matrix 
form. Besides the t JJ (q)o/3 and fi-'(q)",{J we also use their dotted and mixed coun­
terparts tJJ(q)oii and [JJ(q)oii : tJJ(q)",j and [JJ(q)o:p ; and t JJ (q/rI3 and [I'(q)aii . In a 
similar way the quantum Pauli matrices with dotted and mixed indices, 7 1.(q)'" ,1, 

1'JJ(q)0;3 etc. are also introduced. 

As in the classical case, a quantity XO: 0, transforms like uO:(V", is said to belong 
to the representation ct, ~), which transform as 

x OCr ---+ M(q)O /3Xf3 i1M+(q)iJ Cr 	 (IS) 

and which can be converted to a 4-vector with the help of matrices and 

xJJxo:" = 7 JJ (q)0: "xJJ, = fJJ(q)O OXD.:. . 

We will see later on that x JJ transforms as a Lorentz vector indeed. Raising the 
dotted index we see that X°Cr(=x o iJ€(qiO) will transform as 

X OtJ ---+ M(q)" o.M(q)PalXol/JI T(Di;\Oli;I)XOI/)I. (20) 

It has been pointed out that [8,9] Yang-Baxter relation for T(12) = Tt;::p." can be 
- - - - - -1'

obtained, with the R matrix given by R(12)(34) = R(23)R(12)R(34)R~3)' ;.e., 

- (oiJ)(-y5) - 6-y - f3 - '6 --1( P'':''
R(q\O/~/)h'5/) = R(q} f3.:yR(q)" ol{3,R(q)"! "y'5IR q) . Pi", . 

And by using Eq(l) repeatedly, we can show that R(12)(34) also satisfy a new Yang­
Baxter equation 

(22)R(12)(34)R(34)(56)R(12)(3>1) R(34)(56)R(12)(34)R(34)(56)' 
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2 . .k matrix for quantum Loreutz group 

The R matrix thus obtained is really the R matrix for quantum Lorentz group. 
To explore this fact more manifestly, we transi t thcst: equations from the bispinor 
form into the vector form by making use of the t..(o) matrict:s. Define 

[JJ(q) .}.;JO! 1\1£lj = ii2il11J\12t~2 (23)o:il ",' 

and 
R(q)JJV",\ 

(24) 
q-l[ii3ll(12)(34)t!2t~4 , 

then we can show directly 

R(qtv",\1\"pA\. = AJJ"Av.\R(q)"'\O' (25) 

and 
n(q)JJV JJ'v.R(q t'''P'O'n(q)JJlp',\p = R(qt"1.I/r<.n( q)ill.l' ,\pln( q y',,1 pO' . (26) 

The R(q) obtained in Eq(24) has block diagonal form. To write it down more 
explicitly we order the Lorentz index J.L = (+,3,0, and define a "charge" for 
each index: c(+) +1, c(-) -1, c(3) = c(O) = O. The R(q)JJI.I",\ matrix is 
"charge" conservative, i.e., c(J.L) + c(lI) = c(",) + c(,\) m, and breaks into the 
block form according to the total "charge" m: 

R(q) =SI EBS4i:BS6EB54 51 	 (27) 

where Sn( 5n) is an n x n submatrix. The double "charge" sectors comprise two 
single block: 

SI R(q)++ ++ 51 R(q)-- __ = 1 . (28) 

The single "charge" sectors are two 4 x 4 matrices 

-dq 	 dq 2 
dq dq-l dq )

S4 = 54 = -;q 	 (29) 
- dq-1 d(q +2q-l) -d~-1 [2tl

( 
-dq h dq-l dq 

where d q q-l and h q2 +q-2, and the index pair (J.L, I) taking the values 
of (+3,+0,3+,0+) for the positively "charged" S4 and (3-,0-,-3,-0) for the 
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negatively "charged" S~. The neutral sector is a 6 x 6 matrix 

d -d -d d 2 
4-h d2 d2 dq-l 1 jQ-' 1d -d(2 +q-2) 

[ d0 dq h-~ l (30)S6= d -~ h dq ° =~ [2r 
dq-l ° dq-'zh 

[2]:-1 -d(2 +q-2) ° d ° d dq-2 ~q-l[2] 

and the index pair (fJ., v) = (+-,33,30,03,00, -+). Throughout this paper we 
will adopt the order of the index pair given here as the standard order for the sub­
matrices. The total 16 X 16 'k(q) matrix has three different eigenvalues: the single 
eigenvalue Ao(q) q-3, the sixfold one Al(q) = _q-l and the nonet '\2(q) = q. The 
distribution of the eigenvalues coincides with that of SOg( 4) [3], corresponding to 
the decomposition in the product representation 4 ®.4 = 1 tf\ 6 ~ 9, 6 being anti­
symmetric while 1 $ 9 symmetric in the classical case. Corresponding to the single 
eigenvalue Ao(q) = , we have the left-acting eigenvector v( q)J.'I/ and right-acting 
one v(q)J.'1I 

v(q)J.'1/ = (-q,-1,0,0,1,-q-l)[2r1 , 

v(q)1'1I = (-q,-1,0,0,1,-q-l)[2r1 (31) 

where 33,30,03,00, -+). We will scale them to give the metric 
g( q)1'1I = g(q)J.'1I = [2]V(q)J.'II. We can easily see that 

g(q)J.'lIg(q)"A =8\ = g(q)},lIg(q)l/J.' (32) 

but 
g(q)1'1/ = g(q-l )IIJ.' =f. g(q)l/J.' . (33) 

It can be directly checked that gJ.'1/ and gJ.'1/ are invariants, i.e., 

g(q)J.'IIAJ.'",All A =g(q)",A, AJ.'.;AII},g(q)"'A = g(q)J.'1I , (34) 

Therefore ,VII is the q-deformation of the Lorentz transformation and g(q)J.'1/ the 
q-deformation of the Lorentz metric. 

Now from the definition of "VII and the completeness condition (9b) we see 
immediately that 

MOl /3 M/J c>tll ( q)/36 = tJ.'(qtPAI'I/(q) (35) 

and then 
M 0 /3TII (q)/3/31'J+/3& = TJ.'(qtc>AJ.'I/(q) (36) 

7 
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from (10) and (13). Thil; implies that under the LOl'f~ntz t.ransformation (18) 

xJ.' ---+ AJ.'Aq).r" (37) 

as expected. Notice that, we can use the metric to raise or lower the Lorentz ind.ex 
as in the classical case. But, now, since the metric is not symmetric, we must take 
care of the order. The convention we adopted is 

rJ.'(q)" c> = rl/(q)"c>gl/J.'(q), TJ.'(q)C> a 

and 
XJ.' = g(q)J.'I/X Il 

, OJ.' = g(q)l'lIol/ . (3Sb) 

The eigcnyectors Urns associated to the sixfold eigenvalue _q-l are 


Ul+(q)1'1/ (q, q, _q-l, _q-l )[2]-1 } 

in S4 sector

Ul_(q)J.'1/ (q, _q-l, -q-l,q)[2t1 


Uo+(q)J.'1/ (-1, d, q, _q-l, 0,1 )[2J-l 

m S6 sect<!r (39)

uo-(q)J.'1/ (-1, d, _q-l, q, 0,1)[2J-l } 

( )J.'I/ ( -1 q-l q)[':IJ-l } _
Ui+ q q, -q ,- ,. - in S4 sector 

Ui_( q)J.'1/ (q, q, _q-l, _q-l )[2]-1 

with m the total "charge" and s = ±1. Correspondingly the right-acting vectors 
can be identified as 

fil+( q)1'1/ = (q, q-l, _q-l, -q)[2]-1 , fil-(q)1'1/ = (q, _q, _q-l, q-l )[2]-1 , 

fiO+(q)J.'1I (-I,d,q-\-q,0,I)[2J-l, uO-(q)J.'1/ = (-1,d,-q,q-I,0,I)[2]-1 , 

fiI+(q)J.'1/ (q, _q, _q-l uI-(q)J.'1/ = (q, q-1, _q-l, _q)[2J-l 

Also we have nonet eigenvectors corresponding to A2(q) q 

'k(q)I'I/"'AWmn(q)"'A = A2(q)Wmn (q)1'1/ , 

wmn(q)J.'II'k(qtl/"'A = A2(q)Wrnn (q).;}, 

where (m, n) (2,0), (1,1), (1, I), (0,2), (0,0), (0,2), (i, 1), (1, I) and (2,0), and 
m is the total "charge". We will not list them out for simplicity. 

All these eigenvectors are chosen in such a way that the orthonormality condi­
tions 

CA (q)J.'I/CB(q)1'1/ = 8A 
B , CA(q)J.'I/CA(q).;}, = 81'.;81/ A (42) 
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are satisfied, where CA(q) ia an abbreviation of (v(q), awl 

iim"(q), 


Now we can define the projection operators projectiug onto subspaces with 
different 

Q(O) (q)iJ./.I KA v(q)iJ./.IiJ(q)",\ , 


Q(1)(q)Il/.l KA Uma(q)iJ./.IUmS(q)K'\ , (43) 


Q(2)( q)iJ./.I KA wmn(q)iJ./.Iliimn(q)K'\ , 


which the relations 

Q(i)Q(j) = + Q(1) + Q(2) = E. (44) 

Then n matrix and other relevant matrices can be expressed as linear combination 
of Q's, e.g., 

n(q)iJ./.I K,\ = \(q)Q(i)(qt/.l",\ , 

n-l(q)iJ./.I "A = Ail(q)Q(i)(q)iJ./.I "A • (45) 

The projection operators Q(i)(q)iJ./.I "A as well as the n matrix have a lot of useful 
symmetries, among which the most important ones are 

Q(i)(q)iJ./.I "A Q(i)(q-1tiJ.,\" , 

n(q)iJ./.I ",\ n-1(q-l tiJ. AK , 

g( q)piJ. n(q)iJ./.I K'\ n-1(qtUp"g(q)UA , 
(46) 

g(qy""n(q)iJ./.I K'\ n-l(q)UiJ. Apg(q)P/.I . 

3. ~ovariant Differential Calculus on .\;fq 

The covariant differential calculus on the quantum plane was first discussed by 
Wess and Zumino [6] for the A type plane in which the corresponding R matrix 
has two different eigenvalues, and then generalized to more general cases where 
the quantum orthogonal plane (B,D type) [10,11] or quantum symplectic plane(C 

[10] is considered and the associated R matrix has three or more different 
eigenvalues [10]. We only sketch the main procedure here. On a quantum 

9 

the coordinates xiJ., their differentials d.r!' = ~I" and derivati1;(~s OiJ. = are all Ilon­
commutative. Suppose the cross commutation relations among these quantities arc 
expressed 

- B12)XIX2 = 0 : (E B)iJ./.I "AX"X'\ = 0 , 

0201(E12 - Bn) = 0 : O/.l0iJ.(E - B) 1>/.1 "'.\ 0, 

(E12 + D12 )66 = 0 : + D)iJ./.I KA~Ke = 0 , 

x16 C126x2: xiJ.~/.I CiJ./.IKA~KX\, 

OK.riJ. = tiKI' + C"/.I ",,\XAO/.l I 

0t<~iJ. = DiJ./.I t<AeO/.l , 

where B, C, D are numerical matrices to be determinc(llatcr. The consistency 
conditions can be summarized in the following relations 

(E12 - B I2 )(E1'2 + C12 ) = 0, D C- I 
, 

(E12 B 12 )C23C12 = C23C12(E23 - B23 ), 

D23C12C23 C12C23D12' (48) 

For the case where the n matrix has three different eigenvalues, the solutions to 
these consistency conditions are given by 

(E - B) bQ(l\q). C = -Al(q)-ln(q) (49) 

(Alternatively C = -Al(q)n-1(q») with b a free parameter, which can be chosen 
as 1 for simplicity. Then the first three relations in Eq( 47) are given 

Q(1)(q)12XIX2 0201Q(1)(q)12 = o. Q(Ol(qh266 = Q(2)(q)126~2 = 0 , 

which can be rewritten in the simple form explicitly: 

x+XO = xOx+, x3XO = xOx3 , x-xo = xox- , 

qX+X3 _ q-1X3X+ (q q-l)XOX+, 

x+x- - x-x+ (q - q-l)X3(X3 - XO) , 

qx3x- _ q-1x-x3 = (q _ q-l)X-XO ; (51) 

10 
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0+00 000+, ~Oo oofh, 8ou- fLuo, 

q- 10+03 q~O+ (q - q-l )80u+ , 

0+0_ 0_0+ = (q-l q)~(O.j + 80) , 
q-lfho_ - qO_ 03 = (q q-l)o_80; (52) 

~+~+ = 0, ~o~o = 0, e-e- 0, 

~+e- +e-~+ 0, e~o + ~oe = ee 
-~o~o (q q-l)C~+, qe~++q-l~+e 0, 

qCe + q-1eC =0·, e~+ + ~+e = ~o~+ + ~+~o , 

ce+ ec = ~- ~o + ec . (53) 

The next three relations in Eq( 47) are much complicated. By raising the index 
of the derivatives 01-' = gI-'II(q)Oll and using relations in (46), we can bring them to 
the following form: 

g(q)I-'"(XI-'~" - q-2~I-'X") 0 , 

ums(qL"(xl-'~" + ~I-'X") = 0 , 

wmn(qLII(xl-'e" q2~I-'X") = 0 j 

g(q)I-'"(OI-'~" q-4~1-'0") = 0 , 

um'(q)I-'"([}I-'~" +q-2eo") 0, 

wmn(q)I-'"([}I-'~" - eo") = 0 ; 

g(q)I-'"([}I-'x" _q4x~0") = [2] , 

um"(q),,"([}I-'x" + lXI-'O") = 0 , 

wmn(q)I-'"(o"x" - Xl-'O") = 0 . (54) 

11 

Here g(q)/w, ijms(q)J'" andli,mn(q)~11 are indeed the quantum C-G coefficients of 
SLq(2, C), some of which ha\'e been presented in Eqs(31) and (-10), To giyc an in­
sight what these relations are, we list here the cross commutation relations between 
the coordinates and the derivatives as follows. 

[2]0+x+ + q2x+o+) + {-X303 + xo~ x380 + x°80}dq:.! , 


[2Ju+x3 = 2qx30+ - dxoo+ + dqx-~ + dqx-80 , 


[2]0+xo = -dq2x30+ + q(q2 + q-2)xOO+ + dqx-~ + dqx-80 , 


o+x- = x-o+ ; 


[2]iJ:Jx+ = 2qX+03 + dx+oo + dqx30_ dqxOo_, 


[2]03 X3 = [2J + d(q2 + 2):1:+0+ - (q3 - 4q + q-l )X3~ +dq2xOfh - dq 2x300 


+dq2x°80 - dq2.1:- 0_ , 

[2]03 XO= dx+o+ - dq 2x3fh + q(q2 + q-2)XO~ + dx380 - dq2x-o_ ,. 

[2]03 X- = -d(2q + q-l )x30+ + dqxoo+ + 2qx-~ - dq2x- 00 ; 

[2]00x+ dq2X+~ + q(q2 + q-2)x+8a - dqx30_ + dqxOo_ , 

[2]00x3 = -dx+o+ + dq2x303 + dxofh + q(q2 -+ q-2)x380 + dq2[0_ , 

[2]80xO = [2] + dq2x+o+ + dq2x3~ + q(q2 + q-2)x08a + dq2x-o_ , 

[2180x- dqx30+ +dq-lXOO+ -dx-~ +q(q2 +q-2)x-80; 

o_x+ = x+o_ , 

[2]0_X3 = -d(2q + q-l )x+fh - dqx+80 + 2qx30_ + dq2xOo_ , 

[2Jo_xo -dqx+~ +dq-lx+80 + dx30_ + q(q2 + q-2)xOO_ , 

[2]0_x- = [2J(1 + x+o+ + q2x-o_) + d(q2 +2)x3~ dxo~ + dx380 + dq 2x°80 . 
(55) 

The relations(51) among the coordinates coincide with those given in Ref[l1J, and 
all others are new. 
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4. Quantum Dirac Equation 

Now we are ready to set up the q-deformation of the Dirac equatioll 011 the non­
commutative quantum Minkowski space l\lq. As has been shown in Eqs( 18) and 
(36), the bispinor Xc> i> transforms under the Lorentz transformation (\$ (i, i) rep­
resentation 

X C> MC> x{;I M+ iJ 
a- {;I /J a' 

As in the classical case we may use the e-symbol to raise and lower the indices on 
XC>cir(or equivalently on T#C>o): 

-T#(q)C>O€(q)c>{;I€(q)oiJ f#(q-1)/Jp . 

Corresponding to the transformation (56), it will transform as 

- ( -l)iJ M-1 "Y - ( -1)-"1 M- /1T# q P - pT# q .y"y 

which can not be written as Mf#(q-1 ),M-l as in the classical case, since now the 
entries of i\;[ and Q are not commuting. Instead we can check that 

'" == R(q-l)'!tfJ f-:10-( )/1 M- 1fJ 
- ~v, /JT q iJ '" 

as desired. Then we see immediately that 

[T#(q)fv(q)]'" fJ - M'"",,[T#(q)fv(q)]""fJ1(M-1l'p , 

[f#(q)Tv(q)]o. /J - Q&Dr/[f#(q)Tv(q)]O' (58)iJ· 
So they transform as (lEEl 0, 0) and (0,190) respectively. We list here the concrete 
matrix form of the matrices T#(q)'" & and f#(q)/J {;I 

(0 q-t) (0 -q-~)T+(q) f+(q)o 0 ' o 0 ' 

T3(q) (6 _~-l) [2]-t, f3(q) (-q 0)o q-l 

T-(q) (qO~ ~), f-(q) (-~~ ~), 
TO(q) (~ ~)q[21-!, fO(q) (~ ~) q-I[2]-L 
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Then it follows from a tedious but straightforward calculation that 

A#V(q)'" /1 

)#V + 

B#V(q)O /J _ 

[2]112Tm( q)'" jUm -(q-l )#V + Dc. /Jfi (q-l )I'V . 

It implies that 
)I-IV, 

Q(2)(q-l)l'v".\A"'\(q)C>a OJ 

Q(O)(q-l )I'V".\A"'\(q)'" J 

(61) 
Q(O)(q-l )I'VI{,.\Bs'\(q)Q B Dc. /J V( q-1 )j.tV , 

Q(2)(q-l )I-IVI{,AB"'\(q y'x iJ O. 

Define 

(}'I-IV(qY'J == Q(1)(q-I)I-IV".\A"'\q)"'a = [2j1/2Tm(qtiJ Um+(q-I)I'V , 

ijI'V(q)o.J == Q(ll(q-l)l-Iv".\B"''(q)&iJ [2j1/2rm(q)Dr;}itm_(q-l)I'V, (62) 

and we see that they are nothing but the q-analogues of Lorentz gcnerators[12] ill 
the n, 0) and (0, ~) representations respectively. The relations in Eq( 61) can be 
rewritten in a more compact form: 

+q-1R(q-l)I-IVK.\T"(q)f\q)]"'{;I q g(q-1tVO"'fJ, 

+q-lR(q-l)#V.o<.\f"(q)T.\(q)l"iJ = q g(q-1)I'VO"'iJ. (63) 

Now since the derivative operator 01' behaves as a four-vector, we can put it 
into the spinodal form as in the classical case 

aoc. = (}'1J.(q)'" '/)IJ.' fir", = ;'#(q)Cx ",81-1 (64) 

where we have scaled the TI' and fl' to the conventional normalized ones (}'IJ. 

and ;'1-1'= [2J1/ 2fl-l. Then 

8 ---t M8A1+, 8 _ ,lI18j\;[-1 . (65) 
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To set up the field (~qllation for particles with spin ~ and llOllYanishillg rest mass 
we mllst introduce a pair of elementary spinors v:;/~ and xc, 1 which arc independent 
to each other. By making use of the spinorial derivative opera.tors we may set 

ial'(qtc,OIJ.X" -m(/", i(JIJ.(q)" OtOlJ.rpOt -mx'; (66) 

with m the analogue of the rest mass. This set of equations is manifestly comriant. 
It is the q-Dirac equation in spinorial form. To bring it to the customary form we 
group !.pOt and together to form a four-component spinor, or Dirac spinor 

~ = ( ~~ ) = ( ~: ) 	 (67) 

and define 
aJ1. (68)0) (0 -1 )aIJ. = ( 0 (JIJ. . (3 = -1 0 

Then Eqs(66) can be rewritten as 

iaIJ.olJ.lp mf3~' 

Or by introducing ,IJ. = (3aIJ., it becomes 

(i[IJ.OIJ. m)1jJ = 0 (70) 

where 
0=(3 0 (0 _q-l) - _ (3- (0 if) (71), a _q 0 ,/ - a -if 0 

axe the Dirac matrices in the chiral representation. It follows from Eq(63) that 

/IJ.(q)-y"(q) + q-1n(q-1t""n"(q)r\q) = (1 + q2)g(q-1t" . (72) 

A similar relation has also been obtained by Zumino in a completely different 
consideration[13}. This can be considered as the definition relation for the quantum 
Clifford algebra. Eq(72) can also be written in the projection form: 

Q(O}(q-l)IJ."KnK(q)-y"(q) = g(q-It", Q(2l(q-l)IJ."",\/K(q)r"(q) = 0 (73) 

while 

[2tlQ(I)(q-l)J1."",,/"(q)r"(q) = (a-J1.~(q) aIJ.~(q)) L;IJ."(q). (74) 
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Now by applying a operator (-i,IJ.oJi. - m) on Eq(70) we can easily see that 
each component of l;.' satisfies a q-deformed Klein-Gorden equation 

(0"0" + m2)~ = 0 . 	 (75) 

which is invariant under the quantum Lorentz transformation (37). Here we ha"e 
inserted a complete set of projection operators to obtain 

iJi.OIJ.'''O" = OIJ.O" (Q(O)(q-l) + Q(l)(q-l) + Q(2\q_l)YV ".\I"y' (76) 

and noticed the relation (73) and the fact that 

OIJ.OvQ(l)( q-l yov",\ = 0 , 

from (46) and (50). Equation (70) or (75), together with the cross commuta­
tion relations given in Section 3, constructs the basic equation in the quantum 
Minkowski Space. 

The details of these results and related topics will be published elsewhere. 
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