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. In recent ycars, the concept of quantum group has extensively entered the phys-
Covamant Differential C&ICUIUS . ical literatures. This is due to its close connection to the Yang-Baxter equation
Space and The -A 1 on Q'uant um MlnkoWSki which plays a deep role in various physically interesting models and theories. The
g-Ana ogue of Dirac Equation 1 mathematical structure of the quantum group has been progressively clarified by
. . Drinfeld [1], Jimbo[2] and Reshetikhin ¢t ol [3]. The connection with noncommuta-
Xmg—Chang SONG tive differcntial calculus was elaborated hy Woronovicz[4]. A general construction
cca ST(World L of quant.um group as linealxr transformations upon the quantum plane was suggested
P.0.BOX 8735 B .E.l_bﬂratory) by M‘amn[5}. And the differential calculus on the quantum plane was developed
) » Beying 100030 by Wess and Zumino|[6].
\Department of Physics? On the other hand, it is also interesting in considering the deformation of
Peking University, Beijing 100871 our physical space-time. It seems that the four-dimensional smooth manifold is
Institute of Theoretical Physics a good m'odfel of our space-time only in the macro-scale. In ?he .sub-}uacro lzf\'el.
Academia S; nica, Beijing 100080 the description of the space-time may need new tools. In this direction the idea
that the symmetry of the space-time in the sub-macro scale is described by a
quantum group is very attractive. The first step was put forward by Podles and
Woronovicz([7], who constructed a one-parameter deformation of the Lorentz group
and discussed various aspects about its properties. The tensor representation of
Abstract the quantum group SL,(2,C) was investigated by Carow-Watamura et al [8]. and
the quantum Minkowski space M, was defined, upon which the quantum Lorentz
irhe covariant differential caleulus on the qu; i ; group S0,(3,1) is acting.
1s presented with the help of the generalizzgn\t;m l\glnkf)\vskl space . In a recent paper[9], with the help of the quantum Pauli matrices we intro-
and the quantum Payjj matrices and quant els)s'- uanoe m ethod duced and the projection operator method, the covariant spinor analysis of ST (2}
constructed parallel to those in the classical :;nse x(r:ac I;l.at'l’lces are was developed. These methods are taken over in Section 1 and 2 to discuss the
two aspects a g-analogue of Dirac equation follows: dix:nzl ining these SL,(2,C) and quantum Minkowski space M, without any difficulty. Then by using
— cuy- : the approach proposed by Wess and Zumino [6] and generalized in recent papers
{10,11}, we discuss the differential calculus on M, in Section 3. Combining these
Fo ) two results we construct the ¢g-deformation of the Dirac equation in Section 4 in a
= H manifest way, which is, step by step, parallel to the one in the classical case and
& hopefully more familiar to most of physicists.
& z The quantum group SL,(2,C) is characterized by the R matrix satisfying the
T ;., § ) o Yang-Baxter equation o o
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For convenience we wi =
, onvenience we will take the standard form of R = PR as given in Ref[3)]
&= ¢ 211 ) o {

¢ 0 0 0

(By=R(gps = |9 ¢~a7' 1 0
““lo 1 o o (3)

0 0 0 ¢

The left-acting : i i
o (sumum”oi :f well as the ‘rxg.ht-ac.tmg eigenvalue equation can be written as
on over repeated indices is understood unless otherwise stated )

R(q)°% 5t (g)" = ¢ ta(9)*®, R(g)* 4s(q) = —g7"s(g)°?,

(@)as R(9)*7 5 = g 27(g), QasB(9)%15 = —q75(q), . (4)

with m = —

componeut:o,fstl’“(;;nfng’gvﬁ ? 172‘1) Now since the matrix ¢ is symmetric. the
’ may G . X

Counterparts tn(g) and bm(q)q y be taken the same as those of their left-acting

- L
2

t(q)""’z(1 O):‘ n 0
+ 0 0 t+(Q)a,@a tS(Q) o = (q—lz- 0 ){2]“21 = P(Q)oﬁs

oy

w [0 0) _ N (3)
t—(q) 4 - (0 1) =t (Q)aﬂv S(q)ma = (_(;% 902) {2}‘% = E(QJQ;@;

where the ¢- i s
¢ g-number is defined as [n] = L= The g-analogues of the Levi-Civita

g~ -1
symbols €(g),5 and €(9)** are related to tIqle singlet eigenvectors

Doz = ~[2035(0)ag , e(g)* = [2]55()*8 . (6)
They are normalized in the way such that
(2ose(9) = 6,7, M
F
or later use we group t(g) and s(q) to matrix-valued four-vectors

tul9) = (to(a), tm(9)), to(q)*8 = s(g)*”

b — {307
I ™(q) = (f (@ 7(0)), ©(g)us = 47'5(g)ag - (8)
¢ 5 .
Is easy to see that ¢,(q) and t*(g) satisfy the following orthonormality condition

@) F (q)up = 8, (90)
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and the completeness relation

tu()* 1 (q)ys = E*%s = 6%,8% . (99)

In discussing the quantum group SU,(2), two conjugate sets of the quantum Pauli

matrices are introduced [9]

T(0)% = tu(O) 7 el)rss T o = ()T Q) (10)
which also satisfy the orthonormality and completcness conditions
05700 = 6,7, Tu(@)7(0)s = E¥sp = 8875 . (11)

In discussing SL,(2,C) case we must consider the basic (undotted) spinor u®
as well as its conjugate (dotted spinor) (u*)* = @s. (We mainly follow the notation
in Ref[12] for classical spinors with a little modification)

Ut — M(q)%su’, e — G;M7{g)s (12)

where M is a 2 x 2 matrix with its entries taking values on a non-commutative
algebra, and M* its hermitian (transpose complex conjugate). Further defining
M(q) = M*(g)™', and considering the fact that the Levi-Civita symbols are in-
variant under §L,(2, C) transformations [7,8,9] (unimodularity of M and M)

€(q)s = €(@)agM MPs , €(q)” = M°, MPse(g)™

€(9)5s = €(@)as M55 5% . e(g)*® = MO, 0%5e(q)*? (13)

we can define the undotted spinor with lower index and dotted spinor with upper

index . B
us(q) = u(Qe(9)as , 7°(9) = Bslg)e(9)™” (14)
~#hich t:f'ans%{)rm%unde‘r Lotentz group as
) H . § ’ v ) . -~ . 3
L s uMT(e)f s 8 Mg (15)

" The quz}ntum m#frioes M and M satisfy the following Yang-Baxter relations

R(@)" ot M(@)'s M) s & M0 M(a) 2 R0 s,
oot i *szlthz =M, MR, ,
- R@¥ M@ M) s = M(a)f o M0 5 R

-
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http:J.R(q)o.1iJ'.y6

Rl24‘/_11-l?[2 = ]‘/_{1;\2[21?12 . (10)
And also a relation between M and M must be added [7,8]

R(q)*,sM(q)", M(q) s = M(q)*;s M(q)f° s R(0)* 5 .

Rn."‘fl.r"_lz = l\?{).&{zé]z 3 {17)

where all the R matrices with undotted or dotted indices have the sane matrix
form. Besides the ¢,(¢)*® and ##(¢),s we also use their dotted and mixed coun-
terparts t,(q)*” and #(q),4 : t.(¢)*” and #4(q),; ; and t,(¢)*” and #(¢)sp - Ina

similar way the quantum Pauli matrices with dotted and mixed indices, 7,(¢)% 3,

7#(g)%; etc. are also introduced.
As in the classical case, a quantity X*;, transforms like u®i,, is said to belong

to the representation (2, 1), which transform as

Xe4 — M(g)" X%, M* (9 (18)
and which can be converted to a 4-vector with the help of matrices 7,,(q) and 7#(q).
X =7,(q)%a" , a*=7(g)a X" - (19)

We will see later on that z* transforms as a Lorentz vector indeed. Raising the
dotted index we see that Xo%(= X°;€(g)?*) will transform as

XoP M(q)aa:M(q)ﬁ“;/X“W - T(aﬁ)(&'ﬁ’)x'a 8 (20)
It has been pointed out that [8,9] Yang-Baxter relation for Tj) = T(?:’)ﬁ’) can be
obtained, with the R matrix given by R(l2)(34) = R(:’a)R(m)Rm)R&g)y e,
R = R0V s R i R0 R (0 (21)
(o’ B")(+'8") B3N] atpr U Q) g v “

And by using Eq(1) repeatedly, we can show that R(;z)(a4) also satisfy a new Yang-
Baxter equation

RuzyanRegseRuney = RegseRazeoRanse) - (22)

2. R matrix for quantum Lorentz group

The R watrix thus obtained is really the R matrix for quantum Lorentz group.
To explore this fact more manifestly, we transit these equations from the bispinor
form into the vector form by making use of the ¢,(¢) matrices. Define

A*(q) = P(q)uy MO w MP 4t (g)° = B M, Mt ? (23)
and (aB)(+d) :
> TRV — -13 VTR > aB}(vé) a3 '8
’R'((I) A = q t”(Q)aﬂt (Q)yﬁR(q)(aﬂgc)(.,r;u)tﬂ(q) t)«(Q) (24)
= ¢ "t Ruyeati Y
then we can show directly
R A", A% = A A R(g)™ (25)

and

'f{(q)"‘”“ru:'fz(q }V'Kp’aR(Q)u’pl,\p = ﬁ'(?)mu’n'ﬁ(qrv’/\D'R(qy,’ﬁ,po : (26)
The R(q) obtained in Eq(24) has block diagonal form. To write it down more
explicitly we order the Lorentz index u = (+,3,0.—) and define a “charge” for
each index: ¢(+) = +1, ¢(=) = —1, ¢(3) = ¢(0) = 0. The R(g)* ., matrix is
“charge” conservative, i.e., ¢(u) + c(v) = ¢(k) + ¢(A) = m, and breaks into the
block form according to the total “charge ” m:

R(g) =51 @813 83525 (27)

‘where S,(5,) is an n x n submatrix. The double “charge” sectors comprise two

single block:

Si=R(@M 4 =5 =R(@TT--=1. (28)
The single “charge” sectors are two 4 x 4 matrices
—dg dq 2 dq
5 |9 dq dg™! h -1
54 Bl S 2 _dq_1 d(q + zq—l) _dqul [2] (29)
—dg h dg™! dq

where d = ¢ — ¢”7 and h = ¢% + ¢, and the index pair (u,v) taking the values
of (+3,+0,3+,0+) for the positively “charged” S4 and (3—,0—,—3,—0) for the




negatively “charged” S;. The neutral sector is a 6 x 6 matrix

0 d  —-d -d d [2¢"
d 4—h & & dgt —d(2+47Y)
| 4 ~d? dg b 0 ~d -t
Se=] 4 —d? h dg 0 —d 2l (30)
d dg! 0 0 A dg™*

2l¢™! -d(2+¢7?) d d dg? 72

and the index pair (g,v) = (+-,33,30,03,00,—+). Throughout this paper we
will adopt the order of the index pair given here as the standard order for the sub-
matrices. The total 16 x 16 R(g) matrix has three different eigenvalues: the single
eigenvalue Ag(g) = ¢~3, the sixfold one X,(g) = —¢~! and the nonet \y(¢q) = ¢. The
distribution of the eigenvalues coincides with that of 50,(4) [3], corresponding to
the decomposition in the product representation 4 ® 4 = 1% 6 £ 9, 6 being anti-
symmetric while 199 symmetric in the classical case. Corresponding to the single
eigenvalue A\g(g) = g3, we have the left-acting eigenvector v(g)* and right-acting
one 9(q)u

v(g)* = (—¢,~1,0,0,1,—¢")[2]!

5(‘1);“/ 2(_‘1»_170)0717"1'1)[2]’1 (31)

where (pv) = (+-—,33,30,03,00,—+). We will scale them to give the metric
9D = [2]0(q) s, g(@)* = [2v(q)*. We can easily see that

9(Dw9(@) = 8, = 9(0)" 9(q)u (32)
but
9@ = 9(¢ o # 9(Qns - (33)
It can be directly checked that g, and ¢** are invariants, i.e.,
I DA A = g(@)er » AA2g()™ = g(g)* (34)

Therefore A*, is the ¢g-deformation of the Lorentz transformation and g(¢),, the
g-deformation of the Lorentz metric.

Now from the definition of A*, and the completeness condition (9b) we see
immediately that

M aM5t,(0)* = t,(0)" A% (q) (35)

and then .
Mo o7, () M+ 5 = r(a)" s (a) (36)
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from (10) and (13). This implies that under the Lorentz transformation (18}
H— A% ()" (37)

as expected. Notice that, we can use the metric to raise or lower the Lorentz index
as in the classical case. But, now, since the metric is not syminetric, we must take
care of the order. The convention we adopted is

()% = 1.(0)%0"(¢) »  Tul@)%a = 9w (0)7(9)"s (38a)
and
z, = g(@)wt” , Oy = g(¢)wd” . (385)
The eigenvectors u,,, associated to the sixfold eigenvalue A;(g) = —¢~! are

(@ = (g,¢,—¢7 =g | . 1
uii(q)“" = (q,—-¢"!, —¢},q)[2]"! in Sy sector
uo(@)* = (-1,d,q, 10,1) )
“gigqg“” = E—Ld,gq 14,0, 1)%2% } in Se sector (39)
u (@* = (¢—¢h—¢ LRI &
uii(q)“" = (q,q,—¢"" _9-1){2] 1 in 54 sector

with m the total “charge” and s = +1. Correspondingly the right-acting vectors
can be identified as

W Qw = (007 —¢—0RI™ @ (Qw = (6 -0, ¢ g2
a0+(q)tw = (—17 dv 9_1» -4 D» 1)[2}-1 1 ao-(Q)uU = ('—13 dv -4, q-l H 0. 1)[2]“1
ai+(Q)#V =(¢,~¢,—¢" g D2, ai_(Q)m/ =(¢,¢7—¢" =92 .
(40)
Also we have nonet eigenvectors corresponding to Ax(¢) = ¢

R(Q)“MNAwmn(q)ﬁA = ’\Q(Q)wﬂm(q)‘w )

B"(9)w R ax = A2(Q)T(9)sr (41)
where (m,n) = (2,0), (1 1), (1,1), (0,2), (0,0), (0,2), (1,1), (1,1) and (2,0), and
m is the total “charge”. We will not list them out for simplicity.

All these eigenvectors are chosen in such a way that the orthonormality condi-
tions

Ca(@)* CB(q)u = 648, Ca(@)**C*(q)er = 6":8", (42)



are satisfied , where C4(¢) ia an abbreviation of (v(g), 1ms(7), Wma(q)) and CB8(q) =
(5(q), a™(q), ™" (q))-

Now we can define the projection operators projecting onto subspaces with
different eigenvalues A\;(g):

Qg™ = v(@#(g)ur
QU™ ex = umg(@)* T (g)un (43)
Q(z)(q)‘wnk = wmn(‘”wd"mn(q)m\=

which satisfy the relations
QUVQW) = §4QH = QO 4 QW+ Q¥ =E. (44)

Then R matrix and other relevant matrices can be expressed as linear combination
of @’s, e.g.,
R(@* r = M(@)Q(g)* xx

RN g™ = AT @R () ea - (45)
The projection operators @7(g)*“ .\ as well as the R matrix have a lot of useful
symmetries, among which the most important ones are

Qg™ = Qg
R(@™ e = R(gH) e s
9D RD* 2 = R peg(@or »
9@ R(Q)*xa = R(g)™19(0)"” -

Il

3. Covariant Differential Calculus on M,

The covariant differential calculus on the quantum plane was first discussed by
Wess and Zumino [6] for the A type plane in which the corresponding R matrix
has two different eigenvalues, and then generalized to more general cases where
the quantum orthogonal plane (B,D type) [10,11] or quantum symplectic plane(C
type) [10] is considered and the associated R matrix has three or more different
eigenvalues [10]. We only sketch the main procedure here. On a quantum plane,

the coordinates z#, their differentials dr* = & and derivatives 9, = 32 are all non-
commutative. Supposc the cross commutation relations among these quantities are
expressed as[6]

(Evg ~ By)riz, =0:  (E - By aaa* =0,
8,0(E =~ Bi)=0:  9,0,(E-By* =0,
(Eya + D1)616, =0 (E + Dy 656" =0,
D6 =Cufizz: ¢ = Cal"s",
Dot = b4+ C™ (2?9,
8. = D™\,

(47)

where B, C', D are numerical matrices to be determined later. The consistency
conditions can be summarized in the following relations

(Eiz = Bp3)(E1g +Ci3) =0, D=C™',

(Erz = B13)C33Chy = CoaCra(Exs — Bx),
Dy3C12C0 = C12Co3 Dz - (48)
For the case where the R matrix has three different eigenvalues, the solutions to
these consistency conditions are given by [10]

(E-B)=tQM(g). C=-M(g)'R(q) (49)

(Alternatively C = —A,(¢)R~'(g)) with b a free parameter, which can be chosen
as 1 for simplicity. Then the first three relations in Eq(47) are given by

QW (@)ot1z2 = 3,0,V (gh2 = 0. Qg)nbilz = QP (9126162 =0,  (50)

which can be rewritten in the simple form explicitly:

0 0 -

+a® , P2 =a2% 272% = 2%,

T I =$U.’E+

gzte® — ¢7'azt = (g - ¢7V)2%2t
stz —z 7zt = (g - ¢ )23 - "),

gzc” =gz = (g - ¢z (51)
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0,00 =000y, 330y = 00y, Opd. = 0.0y ,
q7'0+0 — ¢050s = (g — ¢7")D0s
0,0- 0.0y = (¢ — 9)s(K + D) ,
q7'0:0. — ¢8-0y = (g — ¢"1)0_by ; (52)

€+E+=07 606():0 , £ =0,

FE+EET =0, £+ =60,
EC-CC=(g-gEer, o+l =0,
@€EHTET =0, £ e =0+,

Ce+EC =76 +¢% . (53)
The next three relations in Eq(47) are much complicated. By raising the index
of the derivatives 0* = ¢**(¢)0, and using relations in (46), we can bring them to
the following form:
9(@uw(z"€" - 72 2") =0,
u"(@un(z*€" +£427) =0,
B ("€ ~ ¢*€42%) = 0

g(Q)uu(au‘fv _q—4£uau) =0,
ﬁms(Q)w(augv + q~—2€uau) =0,
B )u (PE ~ £10") =0 ;

9@ (82" —g*z*0") = 2] ,

a™(q) (02" + ¢*248") =0,
D) (P2 - 2#0") =0 . (54)
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Here g(q),, @™%(g). and ©™%(g),, are indeed the quantum C-G coefficients of
SLy(2,C), some of which have been presented in Eqs(31) and (40). To give an in-
sight what thesc relations are, we list here the cross commutation relations between
the coordinates and the derivatives as follows.

[2]0; 2% = [2}(1 + ¢*z% 0, ) + {—2%03 + 2°8; — %09 + 2°0}d¢”

(2]0,2° = 29238, — dz°8, + dgz= 85 + dgz~ 3, ,

[2]0+2° = —dg®z* 8y + ¢(¢* + ¢~%)z°0, A-I- dgz~ 83 +dgz~ & ,

Oz =~ 04 ;

[2]0szt = 2qz* 0y + dz* 0y + dgz®B. — dgz®d.. .

[2]0:2° = [2] + d(g? + 2)2* 0, — (¢° — 4q + q")2°s + dg?z°dy — dg2®dy
+dg*z°8 — dg*z~ 0. ,

[2)0:2° = dz+ 8, — dg*s®8s + q(¢* + ¢~2)2%s + dz0y — dg?2d_ .

21032~ = ~d(2¢ + ¢71)2304 + dgz®d, + 29z~ 8y ~ dg v 0 ;

[2]80z* = dg?x* 85 + ¢(q? + q~2)a+ 8 — dgz3d_ + dgz®d_

[21002° = ~dzt 3y + dg*230s + dz°35 + ¢(¢* + ¢~*)238 + dg*x~d_

[2]802® = [2] + dg*z* 8y + dg?z35 + q(q® + ¢~2)z%Bp + dg*z~d_ ,

[2]oz = dqz®8y + dg~'2°0, — dz 8y + q(q® + ¢ )z~ 0o ;

d_zt =ato.

[2]6_2% = —d(2q + ¢ ")z 85 — dgzt &, + 2920 + dg*z°d_ ,

[2]0-2° = —dgz*ds + dg~'z* 3y + dz®d- + ¢(g? + ¢~?)a%0- |

[216_z7 = [2)(1 + 2784 + ¢*a~8-) + d(g® + 2)a8; — dz°8; + dz®8p + dg®z°D; .
(55)
The relations(51) among the coordinates coincide with those given in Ref[11], and
all others are new.



4. Quantum Dirac Equation

Now we are rcady to set up the g-deformation of the Dirac equation on the non-

commutative quantum Minkowski space M,. As has been shown in Eqs(18) and
(36), the bispinor X*4 transforms under the Lorentz transformation as (}, 1) rep-

resentation i
X5 — Mo XP MY (56)

As in the classical case we may use the e-symbol to raise and lower the indices on
X< 4(or cquivalently on 7,%):

=7u(0)%5€(Q)ape()™” = Tu(g71) 5 -
Corresponding to the transformation (56), it will transform as
‘Fp(q_l)ﬁﬁ - M—nﬁfu(q_l)ﬁ'rﬁﬁ‘r

which can not be written as M7,(¢"!)M ™! as in the classical case, since now the
entries of M and M are not commuting. Instead we can check that

7u(9)%a = R 5707 Vo — MO57(0) s M7, (57)
as desired. Then we see immediately that
[ru(@F (@) — MOl @7 (@) (M) 5,

Pl @7 (@)% 5 — M [Fu(@)n (@] s(M*); . (58)
So they transform as (1©0,0) and (0, 180) respectively. We list here the concrete
matrix form of the matrices 7#(g)%, and ##(¢)’

w0 = (5 % ) #(q)

1l
TN
o« o
4
[} <@ 1
wie
R

o= (g ‘3“)[21_%’ P = (—Oq q_l){zl‘% (59)
(g) = (QU% g) #(q) = (_(;g g)
wa - (3 et o= (o
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Then it follows from a tedious but straightforward calculation that

AM(q) s = TH(g)"T gl
= (212 (g) slmy (7 )M+ 80T
. , (60)
B*(g)*y = ™(q)%a7(9);
= P s (g 8500
It implics that
Qg™ AN )5 = 8%l )™,
QP(g ) aA™Ng)rs = 0;
(61)

Q(O)(Q—I)WK,\B"'\‘{Q,“&Q - 5“3ﬁ(q‘1)‘“’ ,
Qg uBMNg); = 0.
Define
o(0)%s = QUgT P A (9)s = (2P (g) st (a7,
()5 = QW™ ) B (9)% = [21'*r™(q)° sim- (a7, (62)
and we see that they are nothing but the g-analogues of Lorentz generators[12] in

the (1,0) and (0, }) representations respectively. The relations in Eq(61) can be
rewritten in a more compact form:

[T(@)#(q) + ¢ ' R(g™)* (@) (@))% = g 9(q71 ) 6%
PO (@) + ¢ ' R(a™ (@) (@) = g 9(g71 ) 8%, . (63)

Now since the derivative operator J, behaves as a four-vector, we can put it
into the spinorial form as in the classical case

s =a"(q)sd, . Fa=35"(q)0 (64)

where we have scaled the 7 and #* to the conventional normalized ones ¢ =
[2)'/%r# and *'= [2]"/?##. Then

d — MAM* | 8 — MOIM™. (63)
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To set up the field equation for particles with spin } and nonvanishing rest inass
we must introduce a pair of elementary spinors ©* and ¢, which arc independent
to each other. By making use of the spinorial derivative operators we may set
10"(q)a0, x5 = —me® , i6*(q)aBup” = —mx*® (66)
with m the analoguc of the rest mass. This set of equations is manifestly covariant.
It is the ¢-Dirac equation in spinorial form. To bring it to the customary form we

oup ¢* and x* together to form a four-component spinor, or Dirac spinor
gr £ P P p

) e
a“:(‘g :p). ,9:(_01 “01) (68)

Then Eqs(66) can be rewritten as

and define

P =mj3y . (69)

Or by introducing v* = fa*, it becomes

("8, —mpp =0 (70)
where ' . .
7°=ﬂa°=(_0q - ) ‘r‘=ﬂ&‘=(_05. ‘;) (1)
are the Dirac matrices in the chiral representation. It follows from Eq(63) that
(@7 (@) + 9 RET ) av (97N (g) = (1 + ¢ hgla™ )™ - (72)

A similar relation has also been obtained by Zumino in a completely different
consideration[13]. This can be considered as the definition relation for the quantum
Clifford algebra. Eq(72) can also be written in the projection form:

Q™ (7N ) =9, QD) (97 (@ =0  (73)
while

e or@r@= (T30 S )=
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Now by applying a operator (—iy*3d, — m) on Eq(70) we can easily see that
each component of v satisfies a g-deformed Klein-Gorden equation

(30, +m¥)p =0. (75)

which is invariant under the quantum Lorentz transformation (37). Here we have
inserted a complete set of projection operators to obtain

10,:7°0, = 3,0, (QV(a™) +QW(g™) + Q¢ ™) vyt (78)
and noticed the relation (73) and the fact that
6,,5,@‘”(«;" )‘wm\ =0, (77)

from (46) and (50). Equation (70) or (75), together with the cross commuta-
tion relations given in Section 3, constructs the basic equation in the quantum
Minkowski space.

The details of these results and related topics will be published elsewhere.
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