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Abstract

We use r-matriz with a spectral parameter to discuss the solution of
infinite dimensional integrable systems. The intrinsic geometric pic-
tures are given in the sensc that the solutions of the integrable system
can be described as geodesics on an infinste dimensional Riemannian
manifold. As an application to generalized periodic Toda lattices,we
obtain the reduction to u finite dimensional symplectic manifold, the
quantum pictures of the theorics can be given by geometric quanti-
zation of this symplectic manifold. Double loop group is easily de-
rived,which is a loop group with Paissan structure, it may serve as
the origin of quantum groups.
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§1. Introduction and main results

It has been well known that the classical and quantum r-matrix play an impor-
tant role in classical and quantum integrable systems [2,3,5,15.20.21]. Many solu-
tions of r-matrix have been given and well understood [1,2,3,10,15,16,20,21]. For
a given classical r-matrix, the integrable systems can be constructed in principle
and the solutions of Hamiltonian equations can also he obtained by representation
theory [13]. Ten years ago, Perelomov and Olshanetsky [17] posed the following
question as a conjecture: for all integrable systems, do the solutions correspond
to geodesics on some homogeneous space? They also illustrated this property in
the case of some finite dimensional integrable systems. Olive [6] has proved this
conjecture for non-periodic Toda lattices. Bur for infinite dimensional integrable
systems, this conjecture is open since the theory of infinite dimensional geometry
is imcomplete. But recently the infinite dimensional theory becomes more inter-
esting from many aspects. Such systems were studied by methods of algebra and
algebraic geometry in some case, the solution has heen give in terms of Riemann’s
theta functions [4,19]. So the question whether Perclomov's conjecture also holds
true arises naturally. In this paper.we use the theory of loop group and loop al-
gebra to construct an infinite dimensional homogencous space and give the proof

about the geodesic property of the solution. All the method we used can also

applies to finite dimensional case, what we get is then the theory just given in [6] .
To be specific, we first recall the equations of the Toda system:
Let G be a complex semisimiple Lic algehra . £G = GQC[A, A7), we denote
the generators of LG in standard form by {l,.7 = 1,---,n; e4a,,j = 0,---,n},

their commutative relations will be given in next section. Let

A Z?:] pihi + Z.”:n C.‘F-?‘Il(z;':. "i(hj)% )(ea.‘ + e-0r.)

I

M

B Thociezp(Tioy ailhj)g)cn, — €-a,)

. lgi .. . N
where{q)," -, ¢»} are free variables and p; = ‘—% We consider the equation in Lax
. .

form: Ju
o= (B, 4] (2)

This equation describs the motion of Toda particles in the language of Lie
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algebra. For the purpose of r-matrix approach. we will introduce in §3 (25) a

linear operator on the loop algebra £G uch that

Rlers;) = Fex,, (=0 ,n)
(3)
Rlhi) =0 (=1,---,n) ‘
By the definition, we easily rewrite Lax equation (2) in form:
d4
i [B(A) 4] . (4)

This Lax equation will be studicd deeply in this paper, we will see that the
operator R is just the generalized Koszul operator of homogeneous spaces, see
[15], it can also define a classical r-martrix sarisfring the modified Yang-Baxter
equation.

The detailed theories about classical r-matrix. classical doubles, dressing trans-
formations on loop algebra and loop eronp will be given elsewhere. These are the
basis for infinite dimensional intcgrable sysrems. In finite dimensional case, these
were studied by [15,16].

We now outline the main results in the form of theorems. Since the proof are
scattered through the next sections according to logical order, they are renumbered
into propositions and theorems in the main context.

Let G be a semisimple Lie group over a complex field, G its Lie algebra, G* the
dual space of G, £LG=C"(S5',G) is the loop algehbra of G. LG is the smooth part
of the dual space of £G. LG=C>*(5'.G). the smooth maps from S? to G or the
loop group of G. Let K is a maximal compact subgroup of G with trivial centre,
LK is the loop group of K. We have

[Theorem A]

(1) LG can be decomposed into two factors:
IG=IK-S§ (5)

where the subgroup S of LG can be equipped with a Riemannian structure in

infinite dimension sense.

(2) On the homogenous space LG/LK . there exists a standard Riemannian

o g ey

et

metric such that LG/LK is a symmetric Riemannian space (similar to the finite

dimension case).

(3) There exists a geodesic immersion :
U LG/LK — LG (6)
we identify LG/LK with the image of U.

(4) Under the identification (6).there is an isometric diffeomorphism :

$:5— [G/LK !

This theorem is the generalizition of Carran’s immersion theorem in finite di-
mensional Lie group theory [8]. This generalization is the mathematical basis for
our theory. We note that the group property of S leads to considering dynamic
systems on the adjoint or coadjoint orbits of the Lie algebra of S. Using theorem
A ,we can identify S with LG/LK. Under this identification, we can give differ-
ent pictures of the solution of the infinite dimensional integrable systems whose

equation is (4), and also prove Perelomov’s conjecture about the geodesic property.

Let S be Lie algebra of S$, §* the dnal space of S. Since there is a nongenerate
scaler product on G, the Killing forni, we can obtain a nongenerate bilinear form
<,> on LG by integrating over the unit circle. which is invariant under the adjoint
action of LG. We then identify £G~ with £§ by setting

V(O =<y >= o [ Killly(0),6(6))de (®)

where £ € LG, y* € £G* and y~ is identified with y € £G. Under this identification,
one embeds S* into £, the image of this enibedding is not-S, this is the subtle
point of particular importance. In fact. if one uses the Riemannian metric on S,
8* can, in a different fashion, be identified with §. and what we get ié a different

geometric picture. We denote the first identification with §* C £, and the second

.. identification with 8* = S, one has to distinguish these carefully.

Motivated by the equation (4), we define a general Lax equation related to the

V loop algebra LG: - g
dj—f = [R(A4). 4] (9)




where R is the operator on £G dcfined by onr classical r-matrix explicitly.
Because we have identified £G with £, so cquation (9), in fact, defines a
standard Hamilton system on the coadjoint-arbits in £G° with Hamiltonian H =
1 .
5 <A,4 >, from which we obtain another geontetric descriptions of the solutions
of equation (9).
[Theorem B1] (Coadjoint)Adjoint-Orbits Picture of the Solutions
(1) For a fixed initial condition 4(0} = 4, € S, the Lax equation(9) has
a unique solution, expressed in (coadjoint)adjoint-orbit form:
A(t) = Ad(sterptA)).Ag
(10)
= Ad(E"coptdg)). 4o
where the element s(t} = s(exptdy) and I(t) = k(exptdy) are defined from
erp(t4y) by the decomposition of (3), r.e. crp(tdy) = k(t)s(t).
(2) If one pulls back the tangent veetor at s(£) by right action of LG, i.e.
take the function
dsit)

— Lot
A(t) = g ()

which belongs to §* under the identification 8 = &, then A(#) satisfles Lax
equation (9).
[Theorem B2] Geodesic Picture of the Solutions

(1) If we denote
z(t) = P(s(erptd)) = D(s(1)) (11)

where ® is defined by (7), and s{(captd) = s(1) 1« defined by Theorem B, then

d%{i- (t)y- 27"t =0 (12)

With the knowledge of infinite dimensional geometry given in next sections, the

equation (12) is that of the geodesics flow in LG/LK.

(2) Given a geodesic r(t) in LG /LK. we consider

S (e

in §, where ®, is-the tangent map of ®. If we identify this in 87, and call it A(#).
Then A(t) is the solution of equation (9). '

For a reduction to Toda lattices, we first define a family of manifolds depending

on (co,-,¢a) € (C\{0})**! modulo some relations, denoted by Q(co, -+, ¢n),

Qleo, ~yen) ={A€ LG | 4= ZPehe + zcixa.(ea. + o)} (13)
i=1 =0
where ay, -+, a, are simple roots of ¢, and

exp(Tiay qrailhy)) i = 1,---,n

.

il
=1

n  _-a )
My 2a,” 7

and (ay, -+, ay,) is defined by the highest root © of G, i.e. © = Y g

[Theorem C] (1) The phase space of generalized periodic Toda lattices can be
decomposed into the union of Q(cp. - -.c,). cach leaf Q{co,- -, ¢,) has a natural

symplectic structure derived from the classical r-matrix.

(2) For a given initial element A(0) € Q(co, <+, ¢,), the solutions
of Toda equation (2) are just a geoclesic projection from some geodesics of LG/LK .

It is obvious that the quantum theory of Toda systems can be obtained by
quantizing the phase space such as Q(cq. - - -.r, ). the procedure of geometric quan-
tization is applied in a straightfroward way (Sce section 5) to get the same partial

results as in Goodman and Wallach's papers [7].

From the decomposition (5) or the classical r-matrix, we obtain the Lie bial-
gebra structure on the infinite dimensional Lie algebra £G. By the construction
of Semenov-Tian-Shansky [20], there exists a classical double in our case. This
will be given explicitly by the decomposition (5), we will also see some hidden
relations between the quantum theory of Toda systems and quantum group. The

later leads to many interesting problems in recent vears.
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§2 Preliminaries

In this section, we review some fundmental results about Lie algebra, Lie group,
loop group and loop algebra which are involved in our paper. We give them in the
form of lemmas without proof. The concepts and the proofs can be found in the

references. In our paper, all notations can he found in this section.
{Lemma 1] Construction of Complex Semisimple Lie Algebra{9]
Let G be a semisimple Lie algehbra over a complex field €, H the Cartan
subalgebra of G, H* the dual space of H. Then there exists a finite set A in M7,

called the root system of (G, H) . it hax the following properties:
(a) For any a € A, we take G, = {r € G| [h.e] = a(h)z for any h € H}, then
dimeG, =1
and G has the rooi spaces decomposition:

G=HD ZAQ,, (14)
<€

(b) Let Kill(z,y) = Tr(advady). where r.y € G. then
(i) Kill(Gs.Gg) = 0, for any Gl’ deAanda+ 3 #0.
(i1) The Killing form is nondegencrate on H x H and Gy X G-, for any
o € A, In particular, the Killing forn is nongenerate on G x .
(¢) There exist non-zero elements E, € ¢, for cach a € A such that
(1) Kil(E,,Eo) =1
() Ifa.B €A, a+3+0. then

NogEor: (a+d€AN)
[EmEﬁ] =
0 (a+ 3¢ A)

where N, 3 is a non-zero real number.
(iii) [Eq, E-a] = H, for any a € A and K{(H, . H_,) = a(H) for any
H € H. One can construct the real vector space Hyp spanned by H,, i.e.

H"‘? ZR-H}

[Y7as

where R - H, is spaned by H, over R. Then
H=Hr +iHr

‘Hwﬂf‘HQ = {0}
and R'illly, xmy is the positive definite inner product.

(d) There is a subset II € A, whaose clement is called a simple roots, such
that any root in A can be expressed in the lincar combination of simple roots
whose coefficients are all positive or all negative integers, we call them positive or
negative root respectively. To simplify. we denote A = AL UA.. Then {Hy, o €
II; E,.a € A} is the Chevalley basis of §. and the collection {Hy, E,Ja € I} isa

set of generators of G .

(e) Let
K=iHp+ Y R(E.~E_.}+) R iE.+E_)
agd a
P=Hp+ Y R(E,+E_ )+ > R-i(E,—E_.)
T oaed o €N

Then Rilllxxx is negative definite, Nilllp, p is positive definite, K is orthogonal to

P with respect to Killing form. In particular. we have the commutative relations
[KX]cKk [K.PicP [P.PlCK

Moreover there exists an involution o on ¢ such that ¢(E,) = —E_,, which has
eigenvalues +1 and -1 with eigenspaces A and P respectively. We call o the Cartan

involution.
(f) (Iwasawa decomposition of § }

Let A=Hr, N=L.ca, C-E,, then
G=K+A+V
is the direct sum of Lie algebras .

[Lemma 2] (Construction of Loop Algebra ) [11]

. We denote LG=C*(S5,G). i.e. the smooth maps from S? to G. LG is called
the loop algebra of G. Then



(a) By Fourier’s expansion, one has

LG=PNHP Y Mg,

keZ LEZ 0€D
(b) The Cartan involusion o can he extended to £G by

oMy =\"Ya(e) (heZ,2€0)

Then
LK = C=(S4,K)
= {z € LGlo(z) =z}
= @kez(/\k + /\Mk)I’HR @A-ez(/\k — /\‘k )HR
B (ToacaR-(ME, — A\ *E_ )+ T.ecaR-H{NE, + A*E_,))
LP = C=(SL.P)

= {2 € LGlo(z) = -}
= @rez(M + ANV HR Brez 1N = A~ YHR

B(ToeaR (ME, + X E_ )+ TocaR (AN E, ~AFE_L))
(c) The set {\*H,,a € II. AE, o € Ak €*Z} is the Chevalley basis of LG

with the following commutative relations:

[\ Ha, A H) = 0 _ (a.3 €T

'\HIA:-..;JE.W;; ( o,3.a+p€ A)

[ME,, NEs) = X+ ( a=—B€ed) {15)
0 { otherwise)
[N H,, M Egl = B(H, )M E, (a,3€ D)

where k,1 € £ and N, 3 given by Lenmua 1(c).

(d) Three is a nondegenerate bhilincar forin on £G defined by

/ Kill(E(8). 5(8))d8 (16)

v O

~

Vi~

<& n>=

Then <, >cexcx is negative definite, <. >gpyop is positive definite and LK is

orthogonal to LP .

(e) If one set © = T, a;a;, the highest oot of A, then collection {Eyq,a €
I,A"'Eg, A\E_s} is a set of gencrators of L.

[Lemma 3] About Lie Group and Loop Group [8,18]

Let G be the complex semisimiple Lic group with Lie algebra G, K is the
maximal compact subgroup with trivial centre. LG=C~(S', @), LK'=C>(S', K).
Then

(a) The Lie algebra of LG and LK are respective to LG and LK.

(b) There exists an involution on LG. its differential is given by Lemma 2(b),
its fixed points is LK.

(c) LG/ LK is an infinite dimentional Ricmannian symmetric space. This state-
ment will be given in detail later.

(d) Iwasawa decomposition of G

G can be decomposed into:

G=NKAN
its infinitesimal form is just the Iwasawa decomposition of G.
(e) Birkhoff decomposition of LG

Let QK be the subgroup of LI whose elements are through the unit of K,
L*G the subgroup of LG, whose elements are the boundary values of holomorphic

maps in the unit disk. Then we have

LG=QK [*G a7

To construct the decomposition that we need exactly, we change the form of

(17) in the following way :

[Corollary 4] Let G be a complex semisimple Lie group, I its maximal compact
subgroup with trivial centre, LG and LI are loop groups respective to G and K.

We denote S the subgroup of LG which satisfies the following property:
For v € S, v can be extended holomorphically to the unit disk with r(0) € AN,

10




where A, ¥ are given by Lemma 3(«1). Then
[G=LK S (18)

Proof: We first express v € L*G of Lemmnun 3(c) in the forin of series: v = yo+v 2+
sro4vnz™ 4 -« Note that v5 = 5(0) can be decomposed by Iwasawa decomposition
of G, ie. o =kan. Soy = k{an + k"5, z 4+ 4 L7'y,z" +---) € K - S. Then
combining with the Birkhoff decomposition of LG and LK = QR - K, one obtains
LG =LK - 5. This complete the coroliary. Q.E.D.

We take § for the Lie algebra of S. which is imiportant for our paper, then

§

{&€ € LG{¢ 15 holomorphic

inside of S' with 4(0) € ADN} (19)

il

HTC @ ZoEA+ gﬁ @ EA-)O l\kg

§3. Construction of Generalized Periodic Toda Lattices

In many interesting examples . the Hamilron systems can be constructed on
the dual space of a Lie algebra which admit sufficiently many integrals of motion
in involution . They can also be restricted to a coadjoint orbit. It should be
pointed out that these constructions niay he viewed as the more general r-matrix
method. Seminov-Tian-Shansky has developed into a elegant Lie algebraic scheme
in [20,21]. In this section we use the construction of Seminov-Tian-Shansky to give
the Hamilton systems of generalizéd periodic Toda lattices, we choose a r-matrix
with a spectral parameter. We first give two equivalent definitions of classical

r-matrix, the details may be found in [3.20].

[Definition 1] Let £ be finite or infinite dimensional Lie algebra, we call r €
L@ L a classical r-matrix if r satisfies the following modified Yang-Baxter equa-
tion:

(P2, rB8) 4 P2 rB) 4 (P90 s L —invariant.
(20)

P22 =g

11

where L-action is the adjoint action. ™. »"* 20 € @U(L).i.e. if one sets {I,}

forabasisof £, r=3,, ™ L ®I. then

ri? = Z (S ® I, ®l

pay

P L QIR

R
P =S rRLRIL
1
P = Z L ® I,L® 1
FiRg

In this case, the Lie algebra can Le cquipped with a Lie bialgebra structure

and (L@ L7, L, L) is called a Manin triple. [3.15.20].

If there exists a non-degenerate invariant bilinear form on £, then Definition 1
(=3
of the classical r-matrix is equivalent ro the following definition:
[Definition 2] Let £ be a finite or infinite dimensional Lie algebra, a linear

operator R € End(L) is called a classical r-matrix if the bracket given by
X Y)p=[RX)YI+[X. 1] for X. Y el (21)

is still a Lie algebra bracket on £. The Lic algebra with this classical r-matrix is
called the double Lie algebra.

The equivalence between these two definitions means: for a fixed basis {I,} -
of L, we can found an another basis {/} sucli that < I,,I* >= §,, , this is
guaranteed by the non-degenerate bilinear formn <.> on £. Then if a classical
r-matrix given by Definition 1, ..

N WU
r= Zr‘ 1,.,®I,,
ftais
it can be expressed in the form of Definition 2 :
RX)y=Y I, <L.X > for XeL (22)
Lald
On the contrary, if a classical r-matrix given by Definition 2, we can construct it

in the tensor-form., i.e.

o= Z I?(I,,)@I“

12
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We keep this equivalence in mind and constructe Hamilton systems of generalized
periodic Toda lattices.

Let {A;}2., be an orthogonal basis for Hy. In ¢{(£G). the universal enveloping
algebra of £G, we regard LE® 1 and 1Q LG as realized in (§RCIAATNR1
and 1®(G ®Clu, p71]) respectively. We intruduce a classical r-matrix simply in

tensor-form [1,10}:

ro= r(Ap
) =\ & . (23)
= ZCIEA Sign(a)Ea ® E-dr + m(z hz ® h'l + Z Eu ® E—a)
n+ A €D
+1 for a€ Ay
where sign(a) =
~1 for ae A_
we can express (23) as follows
r = Yaeasign(a)E,@E..+Y 1, Z‘,eg\(,sign(k),\"hg®;fkh,-
(24)
+ Coea Trezvo sign(kIVE, @ " E_,
1 for k>0
where sign(k) = .
-1 for k<0

From (22) (24), we know the operator R on £G could be realized as follows :
Ry =0
Rlg, = sign(a)Id  for o €A (25)

Riyeg = sign(k)Id  for Lk #0
So we obtain :

[Proposition 1] Let G be a complex semisimple Lie algebra, £G its loop algebra,
then the classical r-matrix (23-25) gives a classical double structure on £gG.
Proof: The r-matrix (23) (24) is given by Belavin and Drinfel’d in [4], which is
satisfied the classical Yang-Baxter equation (20). We also know that the new
bracket (21) is still a Lie bracket. And the classical double structure is easily

obtained by the Seminov-Tian-Shiusky coustruction [20.21]. Q.E.D.

13

Using the classical r-matrix (25), we have a new Lie bracket on £G by definition

2, then the new commutative relations of Lemna 2(¢) in section 2 become:

[N H,, M Hglp=0 forkle 2. o, Bell
[Ha.ina]R = a(HQ. JEza forae A-H a; €11
[Ecn Eﬁ]ﬁ =0 for velhy Bel

(26)
[Eoy Eglr = 2NopEays for a,3,a+P€ Dy

[NeHo, N Eso]r = (sign(k) + sign(1))(+a(Ha,))A Ese
forkle Z\0 ae AL a; el
If we choose coordinates in £G~ to be {h.a,4lk € Z,i = 1,---,n,a € A}

such that
h,"k(L) =< ,\k/h‘,L >

Tap(L) =< ME,.L>
for L € £LG. Then we can define the Poisson bracket on C*(LG"):

{fi, o}r(L) = L{{TH(L). 7 f(L)]R) (27)

where of of
(L) =S = (L)A* Gl
vfi(L)= ij 61:.«,UL)’\ H, +:Z C,)'m_u;))\ E,e LG

and fi, f2 € C®(LG*), L € LG".

Combining (26-27), one knows that £G™ is a infinite dimensional Poisson man-

ifold. In particular ,the Poisson brackets between coordinate functions are :
{hi,ka hJ,I}R = O
{hiyzealr = a(li)ag, for a € Dy
(28)
{tarzaln=0 for a.3€l,
{13,17,3})1 =2N, sTury  for a3+ Be A~}-

where h;, z, simply denote h;g. T, respectively.

14




Now let

A=) pihi+ Y cicapl3 mailhi)i(ca, +€oa,) (29)
i=1 =0 A=t
E,, fori=1,---n
where e,, =
AE_e fori=0
E_s, fori=1,---.u
Cogy; =
A'Eg fori=0
then N .,
R(4) = Z c,-(.rp(z gl ), = e—n,) (30)
=0 3

So we obtained the equation of generalized periodic Toda lattices [10]:

%; = [Ri4). 4] (31)
Because we can identify £G™ with £G by the nondegenerate bilinear form on £G
(See Lemma 2.2(d)). Restricted to coadjoint-orbit of £G™ with the symplectic
structure given by (27) (28), then Lax cquation {31) is just the equation of Hamil-
ton systems whose Hamiltonnian is 5 <Ad> We will give the proof that the
phase space of (31) is the union of the following family symplectic manifolds, each

leaf is Q(co,- -, cn), depending on (cp.- - .c, 1 € (C\{0})**, is defined by

Qloo, - ea)={A€ LG A=Y pihi + Y cizai(ea +e-a)}

i= =0

where
exp(Yray gl ) 1=1,---,n

H?:] ‘r_u' i=0

oy

and (ay,---,a,) is defined by the highest root @ = ¥, a;a4in G.

(=1

It is easy to see that

Qlco, - ¢n) = Q(eg, -+ <) if and only if there exists
(g1, 1 qn) € C* such that (.: =corp(ia o hidgr) (*)

15

The existence of (g1, -,¢a) Is obtained by the nondegenerate matrix ( ai(h;) ).
So we choose (cg, -, ¢a) € (C\{0})**" with modulo the relation (x).

We have finished the construction of genervalized periodic Toda lattices by the
standard r-matrix method. The classical and (quantum theories will be given in

detail later. .

84. Property of the Solutions

In this section , we shall discuss the solution of Lax equation by using the
theories of the infinite dimenstonal scometry. In general, because the coadjoint
orbits have symplectic structurcs. the Hamiltonian systems defined on the coad-
joint orbits are very important and have been well developed. Especially, if the
Lie algebra has a nondegenerate bilincar forw. then the Hamiltonian equation can
be expressed in Lax form. In section 3. we have constructed Generalized Toda
Lattices in this sense. From section 3. we have tlic r-matrix (24) and the operator

(25) on LG, then we only consider the following Lax equation:

{4 i .
2(7; =[R(A). 4] (32)

where 4 valued in £G. Of course. this cquation may be trivial for some A4, but if

- we choose 4 € §™ C LG, the dual space of § (19). then many interesting results

can be obtained.

[Proposition 2] Under the identification of $* C LG, the Lax equation (32) is
the equation of Hamilton flow on coadjoint orbits of £LG", whose Poisson structure

given by (27), with the Hamiltonian H = 5 <A A>.

Proof: First note that, under the identification of LG*= LG , Ad*y = Ady for

v € LG and ad* = —ad. Since H is Ad — invariant function, so the Hamiltonian
on the coadjoint orbits is well defined. The Hamilton’s equation is the form:

dd .

T {H.A}n (33)
where 4 € LG, 4" =< A, > is a function on £§. By the definition of Poisson
bracket {, }r , the equation is just (32). Q.E.D.

16
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This Hamilton system is integrable. Because the Poisson structure on £G is

induced by the standard Poisson-tensor = ou LG e
w(y) =l = r

where v € LG, L,,,r, are the tangent waps of left multiplication 4 and right
multiplication ~ respectively, and r is the r-matrix (23-24). So the integrablity is
followed by the V.G.Drinfel'd in involurion theorem {2] and [3]. ‘
One easily gives a differentinl structure on LG/LK, for there exists a local
isometric diffeomorphism between £G and LG, i.e. exponential map. The quo-
tient space is diffeomorphic to LP locally (see Lemma 2(b) in section 2). By the
left multiplication of LG, we obtain a smooth cover on LG/LK which gives the
manifold structure. An obvious result is that the tangent space at any point on
LG/LK is isomorphic £P. Since there exists u positive definite inner product, we
can obtain a LG-invariant metric on left cosct space LG/LK. From Lemma 3(b)

in section 2, LG/LK is an infinite dimensional Riemannian symmetric space.

[Theorem 1] There exists a geodesic imuersion:
¥: L[G/LKN — LG

where LG /LK is equipped with LG-invariant metric above and LG is equipped

with the standard Riemannian structure.

Proof : For LK is the fixed points of the involution automorphism o, so a(y) Yy
~ is independent of the presentation clements in the coset [y] = LIK.7, i.e. a(y)y

gives the parameterized coordinates of LG/LK. We define ¥([v]) = a(y)~ty. This

is well defined. Up to a positive sealer. ¥ is isometrie. Then we can normalize it

such that ¥ is a geodesic immersion. Q.ED

In the following discussion, we will identify LG/LK with the image of ¥ and
think the element of LG/LK in form of #(3)™'5. From corollary 4 in section 2,
LG have decomposed into two factors: LG = LI - 5. then for a coset [7], let v =
E(7)s(7), we have [y] = [s(7)]. So we reparameterize LG/LK with the elements of
S, i.e. ®(s) = [s] is one-to-onc from § to LG/LK. under the identification of ¥,

®(s) = o(s)"!s. Because Killing form rvestricted to S. the tangent space of §, is
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degenerate, so § has not a Ricmannian structure from Ad-invariant bilinear form.

But we knows that @ is injective and surjective smooth map, then Riemannian

. metric on LG/LK can be pulled back to § through ® such that @ is isometric of

course. One can casily know that this metric on § is induced by the inner product
of LP = 8" on cotangent space of § (up to a scaler) at any point. To conclude
this paragraph, we claim that the covariant Riemannian tensor of this metric on
LG/LK can be expressed through the identification of ¥ in following form:

1

T 2%

2
ds? / Kill(ae= Ve x~Vdx)df (34)
0

Let z(t) be a smooth curve in LG/LIV , recall that the first variation formula
gives the equation of geodesic flow. Dircetly calculation gives:

d . e
(1)) =0 (35)

where z () denote —. So the geodesic equation in this infinite dimensional case

is the same as that in the finite dimensional case.

The reader will obtain the following Lemma without any difficulty.

[Lemma ] Let 4 € S, if we identifv it with a cleﬁleﬁt Ain 8 =CP by the
induced inner product on § , then 1= %(.4—(7(.4)). Moreover R(l) = -21-(A+0(A)).
IfAe S then A+ R(A) e S.

Now we give the following main theorem of classical theories.

[Theorem 2] Properties of the Solutions

(1) For a fixed initial condition A(0) = 4, € S~, the Lax equation (32) has a
unique solution , expressed in (coadjoint )adjoinr-orbit form:
A(t) = Ad(s(erptdo)).4o
(36)
= Ad(F~Yerptdo)).4o
where the element s(t) = s(ezptAy) and (1) = k({cxpto) are defined by ezxp(tAo)
in the decomposition of (18), i.e. erp(tdo) = k(#)s(t).

(2) If one pulls back the tangent vector at s(t) by right action of LG, i.e. take

the function
ds(t)

Ay =
3 dt

)
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which belongs to §™ under the identification §° = &, then A(#) satisfies Lax
equation (32).

(3) If we denote
z(t) = ®(s(captd)) = B(s(1)) (37)

where ® is defined by (7),and s(captA) = s(#) is defined by Theorem B, then
%(;i‘(f)ur_](ﬁ‘a:() (38)

With the knowledge of infinite dimensional geometry given above, the equation
(38) is that of the geodesic in LG/LIV.

(4) Given a geodesic z(t) in LG /L. we consider
O (1)
in S. I we identify this in S%, and call it 4(#) . Then A(t) is the solution of
equation (32).
Proof: Note that s(exp(tdg)) = Fraptdo) " capltdo) and Ad(exp(tde)).Ao = Ao,

so the second identity of (36)is obvious. First we caleulate :

s(exp(tde))s™ (exp(tds))

= %(k'l(emp(nio))emp(i_{o Derp(tdy) hiexp(tdo))

i

Ad(k Y exp(tAo)). Ao — F Weapitdn}) & (captdo) (%)

A(t) + R(A(2)) ( by Lemmal)

i

where the third identity is obtained by the first part and the second part of (¥)
belong to £P and LK respectively. and LA is orthogonal to LP. So we have

a4 d

dat - adt
[3(t)s™1 (), A1)

(Ad(s{crpltdo))).do)

il

(A0 + R(AW). A1)

i

[RUA()). Al#)]
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*

so (1) and (2) are obtained. Secondly. we obtain casily that
z(t)r™ = 2e(s) " A (t)a(s)

where 5 = s(ezp tdq). Using the equation (32). {3) and (4) of Theorem 2 are
obtained by directly calculation. Q.E.D.

So far, we have described the classical pictures of the infinite dimensional in-
tegrable system. As an application , we reduct to the generalized periodic Toda
systems constructed in section 3. We will eive that the phase of Toda lattices
can be decomposed into the uniou of leaves Qey. -+ -, ¢, ) and the solutions are the

geodesic projection of the geodesics in LG/LIY.

We introduce a quotient algelna B of S. i.c.
n “
B = @r[,‘h,‘ + @.I',v,_(‘l,,
=1 =0

where h;, eq, are given in section 3. The commutative relations between them are

{h,‘, h_,] = {63,, (“‘J} ={ [’/,A (",.)] = O](h;)ﬁaj

The dual space of B can be identified with B = 3L, pihi + Tiig Tai(€a, +
€4, ) by the nondegenerate bilincar form on £G. In B”, we construct a family of
symplectic leaves, each leaf denoted by Qcs.- - . ¢, ). depending on (¢g,- -+, ¢,) €
(€\0)™*! modulo relations (*) in scction 3. is defined by

Qleoy+ven) ={AELG | A=Y pihi + 3 cita,(€a, + €-a,)}

=1 =0

where

To, =

{ exp(Tio, ol =1, \n

M= xa,’ i=0
and (a1, -, a,) is defined by the highest root @ of G, ie. O = TL aio4, @y, +,

are simple roots of g.

[Theorem 3] Q(cp, -, ¢,) inherits the Poisson structure from B* and is a sym-

plectic manifold with the symplectic forni:

n
W= Z (ll’i4l':: dp, /\ de,, (39)
i, =1t
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where (a) is the inverse matrixs of (a,;) = ( a,(h,) ).
Proof: The Poisson structure on 5~ arc induced by {27) (28, the Poisson brackets

between the coordinate functions should ra be rhe following form:

{p;,xa) }eg = wjlhiye,,  for j=1,---,n
{Pirzas}lre = —O(hi)ra, (40)
{pi,pilrs = {ao, .z, }pe =0

This identities are obtained by the formulac (27). we only illustrate the second

identity as an example. Note thar
pi=hi g, = AN Eg

Then
{pir a0} Bl L)

= <[Vpi. Trarlr L >

= <[h. \Eojp.L >

= <[R(h;).\""Eo] + [h. RN Eo)]. L >
= < —[hi\"'Eo].L >

= —O(h) < A\"'Eo.L >

= —-0(h)z.,

One knows that the Poisson-tensor on 8~ is given by
] a 17 7]
Mo = QjiTo, 7 ]\ = — O v, i N\ =—
0 T O, A O, (10 Op; A D yq
To calculate the Poisson structure on each leaf. we define a projection :
p: B — Qleg - .cn)

by
P(Z?:l Pihx' + Z:‘l::() I(s.(vf%, + i, ))

=Y pihi + iy civa den, F o+ T2 .l‘c_.,q'(cm +eug)
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Then the inherited Poisson-tensor on Q(cy. -+ . ¢, ) is given by:
1% )
= puTe) =arn 2- N\
po{7o) = o, ?Op, A dz.,

g . . .
since p.(5—~—) = 0. This Poisson structure = is nondegenerate, and the Poisson
z

bracket on Eg"(Q(CO, see,eq)) is given by
{f.9} ==(f Q) = =(df @dy)

We define a 2-form by
n
w = Z u”,r:: dp, /‘\fl-l'u,

=1

and let X; = df|x. Then
.Y]Jw‘ = —-(’f

{fog} = (X, X)) = Xy(a)
So w is a nondenegerate closed 2-form from that the Poisson tensor 7 is nongenerate

and the Poisson bracket {, } is satisficc the Jacobi condition. This completes the
proof of Theorem 3. QO.E.D.

Note that B is a direct sum of two commntative subalgebras, and the second

subalgebra is an ideal of B. So we can integrate them and obtain a decomposition

for the Lie group B: ’ |
B = e.z:p(z giherply 1.,€4,) ‘
=1

it}

And there exists a projection which is isometric :
. S— D

For an initial condition 4¢.€ B* C LP. we know A(#) = Ad(s(exp(tdo))).4o is
a solution of Lax equation (32). We also denote the differential of = with the
same symbol. Then A(t) = Ad(=(s(ceptdy))). Ao is the solution of the generalized
periodic Toda equation, since if we let

n

n(s{exptdy)) = e.rp(z q,(ﬂ’:;)r;rp(z Ta,a,)

f=1 i=0

[
[
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Then
m(s(expt Ay )™ (Crptdg D)
=i b F T aplS iy a(hi)gilt))ea,
= A(t) + R(A(H)
so A(t) = Thyhi + 0 i ‘,]erp(v a,(hiig{t))e,, + €_q,). By the proof of

Theorem ‘2, we know A(t) is the s()]nrmn of Toda equation (31). One can verify

that z,; is independent of the time # by the following lemma.

[Proposition 3] Let 45 € B*. ¢; =< Ay o, > (i = 0,---,n). Then
Qco, " -+, €,) is the coadjoint orbit of B rhrongh 4.
Proof: Note that B = exp(T, ¢l jeopiS /L, ra ca ) is a producr of two com-
mutative Lie groups and exp(T i v, ., ) is 2 normal subgroup of B. Then this

proposition is obtained by some tedious direct calenlations. Q.E.D.

Using this proposition, we know thar < A7), €a, >=< Ao, €4, >, 50

lim,_p < Altic., >

1
= liny,_. 0--7,(11:<Va( ()

=]

=l = constant

1o

"

So A(t) € Q(co,-+,cn) forec; = ;.i;,!_ Up to now . we finish the decomposition
of the phase space of Toda systems. The geodesic property of the solution follows

from Theorem 2 and the geodesic projection = .

85 Geometric Quantization of Toda Systems

In this section, we will give the quantum picture of Toda systems by the stan-
dard procedure of geometric quantization 22]. We only consider the reduced Lie

group B and its Lie algebra 5. By Theorem 3. one knows that Q(cp, -+, ¢q) is a

symplectic manifold with the sympleeric form:
-
W= Z a'la o dp, /\\ (]lu_’

If we change the coordinates by v, = cop(Si_, qrai(he)) i=1,---,n, then
w = Tl a’erldpAde,

Tl imr @ (exp(Troy axevilhi) )™ p; A d(eap(T ey qie;(hi)))

Tl ai(exp(Tiroy qroi(hi))) erpl iy qvo;(hi))ajidpi A dgi

T dpi Ady

linebundle is trivial bundle .7.e. L = M x (. where M denotes Q{cp. - -+ E ¢,). Let

One knows that the symplectic potential is 8 = Y2, p,dg;. Let the prequantum

the connection potential 3 = -——-9 Uuder the trivialization, we have a nonvanish

global section s¢ such that any ot‘hcr section s is the form s = dsg with o € C®°(M).

Then we define a connection 7 on L by

AV 3 ®450 (41)

then
Txse = (X] Tl
)
Ux(¢s0) = X{olo+0oVy so
= (X(o)+o(:X]|3))s0
for X is a vector field.
It is obvious that curvaturey = di - 1A 3 = —--;;d@ = --—;;w, in other words

we have .
I -
[Vx, vyl = = -,;-»‘(.\’. ¥)
for any tangent vector fields .X,¥. We also introduce some useful identities, for
each f € C®(M), X is the associated Hamiltonian vector fleld, i.e. Xyjw = —df,



then
(1) {fg) =X, X, = Xog = =X, f

(2) [Xf* Xy] = ‘\'{f».'l’
(3) [vx, 91 =Xy

where {, } denotes the Poisson bracket on (/).

Now we define the prequantization operators acting on the sections of the
linebundle L. For each f € C*{1/) the associated prequantization operator is
defined by

f==ithgy, +f (42)
Then

>

(.4
= [-ih gy, +f il Ty, +4]
= =R Uy, Uy, = ih[yx,.9] +iBf, vy,
= =Ry, —ihNpg b f 4 ihe( X, X,)
= —ih’ yx,,, —ihf g}
= —ih{f.9}

This is Dirac’s quantum condition in quantun systems. The Hilbert space is

the completion of square integrable scetions with the scaler product:

< S]Iﬁg S= / & onpmy > w',hm"\l
. FAT

where <, > is the unique Hermitian form compatible to 7
X < 81,82 >=< Yy s >+ <5, Vxs2 > - 4

and w¥™M is the Liouville form on 1. Ouc casily knows the operator f is a self-
adjoint operator with this inner product. But this space is too large to represent
the phase space of a physically reasonable systemn. Oue must choose some sections

that are parallel along a polarization of the classical phase space. In our case,

[
<

we choose the polarization by the distribution P C T¢(M), where P = {X €

TE() | XJ6 = 0) = spane{ -}y = spane (X, V.
The polarized section is 5 = ¢sy which satisfies
Uy, s=0
1e.
g;i st oV, = 3: so =0

So the polarized condition for ¢ is % = 0. The another problem arises since
the integral of < s|s > for polarized seetions docs not converge, so this leads to
Half-density quantization. By the procedure of half-density quantization, the
physical Hilbert space should be identified with the square integrable functions of
(q1,---,qn) with the volume element dg; A--- Adq,. So the operators correspond
to classical observables, must act on the polarized sections space invariantly, we
call them the quantizable classical observables. Let f be a quantizable function
on M, then we have

Ty, (fs1=0

for any polarized section s. By directly caleulation. we obtain

Vxg (fs)

1l

—th Vx, Vx;s+ Ty, (f5)

= —ih Tx, Vi, (8) —ih v, v« — (X, Xp)s + f Ox, 8

~ih V(qu,,\';] $
=0

This implies that
[X,.X/jepP

so we know that the condition for the quantizable functions is

— =0 ()




In particular, if we take hie., for i =1.n.j = 0-n asa function on
M by the bilinear form on B. Then h, = p, and a, = Zo,. which satisfy the
condition (*) obviously . So we obtain a vepresentation of B on the polarized
sections space, which will be described as follows. Note that f acts on dsp as
—thX; — X [(Xioi pedas) + f on & for f satisfies the condition (x). Then

p th 9 7 h 9 + ¢
i = —th— G =ithm—+q
P 0y, 4 Ipi !

By the polarized condition or the identificd Hilbert space of square integrable

functions of ¢;’s, we have

. L 0 .
Pi=—1h5‘(1f G = ¢

which is the familiar Schrodinger repesentation.

Then the representation of B acting ou the physical Hilbert space are given by

8
hi = —ih—
' ag;
{ ciexp(Tiay othiq)  for j = 1l.--.n (43)
€a; =
cexp(— iz, Ot for j = 0

We can write the quantum Hamiltonian by tlie Casimir element of B:

H=Y 1+ (44)
i=l =0

by (43), we obtain the quantum Hamiltonian of generalized periodic Toda lattices:

0

n 2 " n
H= -}1:1”15;;5 +ch(.,-p@f\:la,~(h,k)qk) (45) .

j=0

where ap denotes —© . One easily knows that our construction of quantum Hamil-
tonian is obtain by the important theorem of Kostant [14], which implies that, in
geometric quantization, the quantum operators can give the representation of the
associated Lie algebra by the means of moment map. So the quantum picture
of generalized periodic Toda lattices is abrained by the procedure of geometric

quantization.
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