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ABSTRACT

We discuss some aspects of matriz models under the influences of
rfmdom sources. Our formalism does not rely on stochastic equa-
tions of the Langevin’s type, and thus provides a possible way of
pf:rformz'ng calculations beyond the tree levers in the double ezpan-
sions of the couplings and the sources. We apply this formalism
espectally to matriz models with potentials V{¢) = 6°/2 + go*/4
(pure gravity) and V(¢) = log{1—$)+ ¢ (the Penner’s model), to
see how their critical behavior changes after introducing the ran-
dom sources. In the first case our result agrees with that obtained
by F. David by using a different functional method, showing that
the Parisi-Sourlas dimensional reduction occurs at least for matriz
models with polynomial potentials. In the second case, however,
the result indicates that instead of appearance of a naive reduction
of the target dimensions of strings. some new phases, such as the
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Matrix models may provide a nonperturbative detinition of

ﬁr;‘mgs coupled to 2D quantum gravity. However, if one takes this

~ppint seriously, the question arises as to how to adjust the
oo

‘suitable target dimensions of strings in the theory. Here the main
dit’ficults; is that too few matrix models, mostly in dimensions less
than or equal to 1, are known to be solvable. It will be fruittul,
therefore, to explore various ways of relating matrix models in
some dimensions to these in the other dimensions.

The most popular way of linking different matrix models
is known as the employment of the KdV flows to interpol!ate between

the adjacent multi-critical points. Another useful way, which was

initiated by F.David several years ago“], is to introduce a randon

background matrix ftield as a mathematical tcol to alter the

critical behavior of the underlying model. For d=U matrix models

3
with the ¢ ~interaction, David argued that adding such a randem

will cause the well-known Parisi-Sourlas dimensional

. t2)
reduction .

source

David's argument is based on the use of a stochastic

equation of the Langevin's type. This amounts to take the

tree-level approximation in the perturbation theory --- i.e., one
tirst performs a double expansion in powers of the coupling and of
the source, and then drops gll terms corresponding to the Feymann
diagrams with index loops, hoping that these terms contribute to a
less singular part which is invisible in the double scaling limit.
For the ¢3 matrix model, detailed calculations show that such an
approximation is indeed reliable“].lt becomes clear that as soon
is established, one 'can map the

as the stochastic equation
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underlying model into a supersymmetric theory, which leads to an
effective dimensional reduction in turn.

When the interaction in a matrix model becomes more
complicated, however, one may cast doubts on the appearance ol a
naive dimensional reduction, since there are no general principles
to guarantee the supersymmetry in the theory. Take the Penner’s
uodellBJas an example. This is a zero-dimensional matrix model with
a transcendental potential, but it looks like a theory of random
surfaces embedded iﬁ one-dimensional target space[4‘. It we couple
such a model to a randem background tield and then simply empioy
the above tree-level argument qualitatively, we will face the
ambiguity of »dertermining its eftective target dimensions. In
general, it is not clear at al! how a random source intluences the
critical behavior of a matrix model with interaction other than the
polynomial form.

The main purpose of this paper is thus to provide a
tunctional method to study matrix models with random sources.
Without reference to the stochastic equations, our method has the
advantage of obtaining free energies beyond the tree-level
approximation. As we shall see, by applying this method, it is
possible to derive an exact (and thus nonperturbative) expression
of the free energy of the Penner’s matrix model coupled to a random
source. This method also allows us to give an independent check of
the result in ref.{1].

To begin with, let us consider the ftollowing integral

over NxN hermitian mmtrices ¢ ;
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z(s 8 = j'm exp( BtrV(¢)+Cr(mb)), ‘ (1)

where P is a parameter of order N and h is an NxN hermitian random

matrix with gaussian probability distribution
Pla)-dh = exp(~ -Cr& ) ah - (2)

One may also choose the parameter ¢ in (2) to be of order N when N
becomes large.

The standard way of dealing with the integral (1) is to
reduce the number of integration variables from Nz matrix elements
of  to its N eigenvalues,yi. Yyt ¥ by writing the matrix as
¢ = U'diag( y1; Yar e ¥y )U, where U is an element in SU(N).In
the case of 4=0, the integrand of (1) does not depend on U,;which
can then be integrated out. This is not the case when the external
matrix tieild # is presented, since the term tr{4b) violates the

SU(N)-invariance. However, even though U does not decouple to the

background source, the integralrover it can be performed, following

, ‘63
the classic work of Itzykson and zuber'®’'and of Mehta'': The result

of such an integral may be summarized as follows:

gy NEN=1I/2
2B, h) = Alx,,- ‘,‘;Id"‘ﬁkAUQr" )em(BE ﬂJ)n‘Y )

inl

(3)

where x_, are the eigenvalues of the matrix source 4 and
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() = j\‘f.}"}'j exp{-Bi{:)+xy) (4)

and rewrite the partition ftunction (B, h) as

o NIN-1)/2
26, s g qer 01, L, ®)

A( "'1’...'.\,“)

Next, given the gaussian distribution (2), we wish to
consider the following average of the connected generating function

over it:

1 2 .
- :Z:,—'trfl ) (6}

i

fog 2(3,h) = A'fuh leg 23,k

where 17 'a fan exp(~1/20" tra’) is a normalization constant.In
other words, we are interested in the average of the free
energy over the random source,

From the point of view of string theory, one may regard
Eq(6) as an ensemble average of the string vacuum amplitude. To
evaluate such an average we notice that the integrand in (8)
depends only on the eigenvalues of the random source and therefore
the "éngular part” of the integral can be performed. After

performing this part of integral one finds

dety, (x))
-1 -
e NLAL

a Vst X))

N
;7 A - 2 - - 2
logi = Qfds1 UANA (AI,‘~',A“)exp(- 2%—4 1x‘,)zog(
. i=

where the constant 3 is now given by:

N
-1 2
B = jdxi"deA (xi,-~‘,xn)exp(-l/20'z Xf)

ia1

2 .
= (2m)" 26" N1y a1 (8)

Alternatively, one may derive (7) by using the following
replica trick(7]:

logZ = lim(Jn—l)/u.
a=0

It means .that instead of logl itseltf one consider the n
réplications of the original matrix system. To carry out the
average of Zn over the random source, one meets the multi-matrix
model on & lattice whibh tforms a star diagram with n edges. Since
in this case there are no closed loops in the target spa;e, one
e:q:ect{BI that the path integrals over the matrices in the model
can be reduced to integrals over their eigenvalues, i.e., all the
angular degrees of freedom decouple, Actualiy, one can pertform
calculations along the lines of [6] to obtain an explicit foraula
tor EF , which leads to Eq(7) via the replica trick.

Tor proceed further, let us consider two concrete
examples. The first example we shall discuss is a matrix model with

the potential
Wo) = 5o ' . (9)

This potential describes a model of random surfaces (triangulated
by square tiles) ehbedding in zero-dimension target space, which
corresponds to a system of pure gravity. Here the coupling ¥ plays
Ehe role of the cosmological constant. Now we couple this this

system to the background random Yield h. In order to aralysis the
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critical behavior of the free energy, we have to evaluate the

integral
3 X 1 2 1
o) = I B ; [ S ’
uj(ﬂv‘) Lodé v exp(-B( TR s3)) . (T3]

For 3 large, the evaluation may be carried out by using the method

of steepest descents: if y_ is a root of the equation

o
L3
JHgY ax (10)

such that ‘”(!b)=1+35?§>0, then for 8 large,

) ox (B Y2 e B 2 B 4,
K, (B) yé { PYP exp( T V0" T4 g;0+u\,o). (11)
%

It is sufficient to choose ¥, as the unique real root of (10),

which is determined by

2 2
¥ = -‘-—1—(- (—l— + X )“/2]‘/3+ = _( 1 + X )'.«"2]2/3'
TE a4 I P

One may expand }bin pewers of x. More generally, if !(;b)
is a smooth function of Fo then the following lLagrange expansion

(see e.g. the Appendix of [9]) holds:

dn-l

®
ty,) = A5+ L (=) /nt-

1 (P ) .
nwl dx :

This formula together with (11) gives rise to

A
detul_l(ﬁxk)
log EENTEER 1= Al g 4 F, gD, (12)
where
N Y
R yen T N a)! 2ne2 .
Filvpan)=8 L L=y & (13)
i=1 n=d
and
- : n (3n)! annnlen'l
= R P of1 — np! i . .
F oz, ,AN) itjlo,{ +n£s( 5) n!(2n+1)!( =g s (14)

New we are in a pesition to derive an asymptotic expansion

-

tfor the free energy (7). If we introduce the symbol F as an

integral of the tunction Fixl,~‘~,xk) with weight

2 N
N2 2 2 .
B A (xl,---,xu)-exp(-ﬁ /20§ x;), we may rewrite (7) as
i=1

(15)

First we look at the integral FH. In order to evaluate this

integral, we consider

2 2 b
{= Idxi""dxuﬁ (xps s )exp(-7 /20 )

N
x?)‘( Z xin)
i=t k=1

Q-: Idxxznﬂi(x)ﬂxp(—xz)

. 2 N-1 .
= (.é%)" R 1IN REIT S 7— - (18)
B i=0 j=Q fdxﬁi(x)exp(—x }
8
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where Hj(x) are the Hermitian polynomials. By applying an integral

relation between the Hermitian and the Laguerre polynomiais(wl

(%) expl -2 i 1/2 2 2
Id.fff(A\)r*.w('—.\ Jeos(xt) = 2" jint Perp(-¢ /01 EE72),
one easily derives

N-1 2
I =(-1)"(2o-1)11N1 272y 2oy izea d o~z
» ,gn( : ) 2) ‘n(g Lot ):=c

(17)

where

(1) _ N -t K
wealF) 'E{,(u-m) ‘(—:C‘l

is the generalized Laguerre polynomial. Using (13) and {16} one can
expand the integral F, in terms of I to obtain the ftollowing

asymptotic series:

~ o
F:Lz_iﬁlf__

U 28 & T (ne1) Cap1 (M (- g7/28°)" (18)
wheée
d” v (1) .
Gl = ==le'r N-an] T2 (V)" (19)
n at" N-1 ts0 &7 Y &k (k-l

There is a combinatoric meaning of the coefficient (19).
Suppose that we have a fixed Zn-gon P with its sides consecutively

around the boundary. One may perform some operations on P, such as

an N-coloring ¢ of the Jertices or an edge-pairing T. We say that
the edge identification T is compatible with &, if two edges of F;
to be identified under T have the property that the lelt end of
each edge has the same color as the right end of the other. Now a
combinatoric problem arises as tc count the number of these
compatible operater pairs (2,7). In ref.[11], Harer and Zagier
soived this problem by applying the method of matrix integration
together with a combinatoric arguzment. They showed that the number
of pairs (¢,7} of a tixes Zn-gon FL is nothing but (22-1)!30n(N).
From the work of Harer and Zagier, one may regard the
asymptotic series (18) as a diagramatical! expansion. A typical
diagram in such an expansion is an N-colored 2{n+l)-gon witﬂ adges
compatibly identitied in pairs, which will be denotzd by

F ,/(W.T)“’4. To each diagram F;A‘/(;,r) ,we attach a weight
1 net P

LR

n . s
. Thern summing over all these diagrams

tactor proportional to g2
with weights reproduces ;}.
Similarly, one may derive a diagramatical expansion for
the integrai ;é. In this case we attach each weight tactor ~g% to
all "disconnected" diagrams (2/:8,0) U (P, /:9,%) ) with &tI=n.
It is not difficult to see that for n large the number of these
disconnected diagrams (with total edges equal to 2n) is much less
than the number of diagrams Ph+1/{d,T)n+1 (which have Zn+2 edges),

so we expect that the integral F, contributes to a less divergent

term in the free energy (15), and therefore

- @ (3n)tc  (N)
—: ~ _ ¢ nst - AN i} .
togZ > Fy= =5 L~y (-50/%7) (20)
10




To make the above discussion be more precise, we have to
estimate some related integrals. Let us decompose the integrals F,
and F} into

-~ ~

1,2= Fyplhslda) + Fp Cixdza) (21)

where a<<1 is a cut-off and

~ 2, 2 N
cs)= - P . B 2 .
(:€8)= 3 i dx o de 80, ean( - £ ZXXR)F-,Z(AI'..AN)
1=

Then for 4~U', we find

FZ({XIZ:) > const.‘(—%—)QIB; (22}
while
F(l=|za) = honst.~log(’%f). (23)

From (22) and (23) we see that as =0’ the integral ;;(leza) is
much less singular than ;}(‘Vizﬁ): and we can neglect the former
integral when it is compared to the latter. On the other hand, it
is not ditficult to see that as the cut-off a approaches to
zero, both the integrals ;x(!Y!CJ) and ;E(lx|<a)scale as const.-a’,
8o we can not establish a simple inequality like ;é(!xl<a) «
;x(lx|<a). Nevertheless, one may easily show that in the limit &0,
the leading tern of ;é(‘xl<a) consists of a polynomial in the

coupling g, which is irrelevant and can be discarded from the free

11

energy by taking a few derivatives. Thus Eq(20) indeed holds.

In order to extract the critical behavior from the

divergent series (20), one has to pertorm resummation over it. Let
us rewrite {20) as
— _ 3B T [(at1/9)T(m2/3) Y 21
TogZ = g L= (av): Cper (2D (24)

n=0

where Z = 2750/{262). One may then use the integral reprasentation

of the U-function and Eq(19) to derive

d AT Y S " - .
¥ Eiﬂil[ﬁlLL:iéLél °n+1(N)('Z) =_¥_r(_1/3),(-213)

nmo (1)}
@ R Y PRI
1 e -t ,~2/3=1 P 1/3 - ( 1+7 ¢ <) :—4.;[\ ] 51
- T adre 4 (_, L dseXEA -—-—22: 3 AL
G Y]

#
~N
G

X

(-1/3) (%, - ,-2/3n 5 ., 22t .

L NGB 23 () VR (1, -1/8,2, 550071 (29)
v}

where ZFI(Q,B,Y,Z) is the hypergeometric function. The free energy

(24) is thus represented by

& Qe oa
— 3 ~1/3)f -t =2/3-1 1/3 . , 255y 41
10’63:__@%1‘%.1_"31}#6 23 gy zFi(-l/'J,)Hl,!.,——l_a:) 11(26;
o \

Now for 0~B~N large, we have Z-1/N, and
3 ) L, 2t . e e
(1-26) V7 F (-1/3,841,2,755)) ~ F (-1/8,2,38). (27)

where X=Z(N+1)Z=27(N+1)05/BZ is the scaled cosmological constant,



which keeps fixed in the\large N limit, “a'nd‘;Fx(-I/lhznlt) is the
contluent hypergeometric function. Substituting (27) into (26) one
tinds, up to the leading order of the large-N expansion,

. 9715 F (-1/3,-2/3,2,2)-1
Ios? = - 222 ()T (-2/3)T(-1/3) 8722 - . o(28)

From this expression, it is clear to see that lc=1 is a critical
point of the free energy. In fact, as )okc:l, one has the following

critical behavior:
>7 2 in s 3 ' . .
logZ = const. N"-(A-k )" log{A-A )+ less singuisr beras *
+ poiynomialis in (bkt) (29)

which gives rise to the sting susceptibility }'.”'=-1 and the
effective target dimension dal_fr--z.

Eq(2Y) agrees with the result obtained in ref.{1], there
a 03—matrix mode!l coupled to the random source was investigated.
More generally, one may extend the above calculations to matrix
models with generic polynomial potentials V(¢)=Eg‘0l, to determine
how the random source influences their critical behavior. If we
choose the couplings {E‘} to be away from some “catastrophic
points" and set them in general positions, we will find that the
critical behavior of B}? takes the same form as Eq(Z9). Therefore,
tor matrix models with polynomial interactions, the Parisi-Sourlas
dimensional reduction is a universal phenomencn.

.
In the rest of this paper we will turn to our second

example, the Penner’s matrix mcdel. This model was originally used
by mathematicians Lo calculate Euler characteristic of moduli space
of Riemann surfaces [3] [11]. Recently, it has been recognized“‘
that the Penner’s model at the critical point behaves as & d=l
string theory coupled to 2D quantum gravity. The partition function

of this model is given by

.Z = Idb exp{Nt- tr( iog(l»d:))w)

]

Jao dec(1-0)"" - exaise- seo), T (30)

where ® is an NxN hermitian matrix and ¢ is the coupling constant.
Let Mi-®¢. In order that the patrix integral (30; to be
well-defined, one has to restrict X to positive definite matrices.

The perturbative expansion for this medel may be written as

2-agt2-&g-n_x (31)

logZ =) N an

g,n
where xg n is the Euler character of modull space of Riemann
surfaces of genus g with n punctures. It can be shown that there
exists a double scaling limit N-x, t»-1 and u=-N(t+l) fixed, in
which Eq(31) bet:c;mesH

B ® B
,. 1 2z 1 2 1 E 20 2-28 ..
logZ = —u" log—gH ——y—i—— Logwgga———————zg(zg_zj u (32)

where Bzg are the Bernoulli numbers.The scaling behavior of (32)

coincides with that of d=1 matrix modets' '’

13




Now we introduce a random matrix source £ into the
Penner's model. The partition function has, as betore, the

tfollowing form:

Z{1

= Jﬂb de:(l~®}~h~exp(xf>ér3+fr<ﬁb¥),

> R

= exp(Nt+ fm)fcm- detdl anp{ Nr-rru-te(a) ). (33)
Notice that for the last integral in {33} we should integrate over
positive definite matrices Y. To carry out such an integral. we

diagonalize both *the matrix source and the matrix field

to derive

V-1

_— I
2la) = A= 2p(N 4 T xl)} drocedr Al el

SRS dp 7 T
‘3( ‘l’ ;-‘-N} i 1 h N K

N
Nt .
A expl-N ) 1)

i=1
r.. . hi
NiN-1372 3 detiv, (5 0] s
= (un) N R e e
is Sl iy

where the moments uj_,(;) are determined by

X

ks 3} - -{ . ™ 'Y- it ' e
u o (s = r‘ﬂfﬁ‘*l TariNeexdy ey L =2, N (38)
-1 . LI
] (Nt+)

-~

The determinant of these moments may be evaluated as Yollows:

C(Nt+1) C(Nt+1) C(N#+1)
N Ne.1 %7 Nt+l
Wﬁﬂ)“l (MHJL MNH)*
C{N:+2) TN+ C(N=+2)
deﬂ“}'-‘(rk)] = ( Nie2 ( ériua e Nuel
' (Nt+xi) (Ne+x,) (Hf+xu)
C(N:+N) TN 4N} C{N:+N)
Nead cey . (NeeN 7T ep.. yNU*N
(Nt+x)) (N "'“‘z) (N"'"u)
‘ C(Nt+) (1 i-1
= ] —————det{{g—)" 1. <
ket (Nebo Vet N+ 1S5, i8N
K
N L X =%,
g g i . (265
i repeil TR >
« =1 (;\':#-;,”)\‘L TN e “;’(N‘+’J’
Using this result together with Eq(34) one finds:
. N N .
=N T o4 T (N )N (el g -
k=1 ka?
N
-3 N 1) fos(Lex, /N5 (37}
k=1

Now we are in a position to take the average of the free
energy (37) over the randcm source k£ with gaussian distribution

(2). Denoting

‘f"'!‘\.l. . .d'\'NA ( \:1' S

(38
2 iz ’
Jels oo da AT g Yol ST 3

16
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Wwe have

N N .

& - " -~ P .

logTti} = N7&+ 4 x + T legf (Ne+k)-N"(£+1) Log(N )

k=1  ka!
{39)

. % on
Expanding {1+ /N“) in powers of x, and then calculating . _ .V
k k k=1"x

by using the method we have discussed before, we obtain the
3 3

following exact fermula of the free energy:

where the coefficients ~ (N; ar® given by (1%}, arnd Z is a

diffiomit to derive the following sumaation

—
-
-
w
&
cr
U

Foranla:

e i(; EA% B Lond 9o

- ; .n Ny - . . 2z .
) ; T = — F (/2,540,275 (42)
" n. fraaaife 21 T

n=t {1+7)

Using this fermula we may rewrite (40) as

o

FA1/2,80,2, 000
o1 14 .~ - .
L — -17 . (4

Thiz resnit may be regarded as a nonperturkatize soluflen of the

Pepner’s model coupled random source. Here we ars intoresti=d
in exteacting the critical behavier from the leading term of (1)
in the large-N timit. First we notice that as N—-«
1 ’ (e
1/2‘351(1/£,N+1,2, 3, (44!
(1+22)
S5

we substitute {44} intc the last term in Eq{i3} and then perturn

the integral over s, we Find the following resuli:
2 T2 N4,
1 ,2( 413 & ods —s»-:".(‘/"‘:ﬁ At
=) L ch 2 -
2 Tl s L YT
c (1423}

1 42, . . , , 2,102
= 5N [(2log2e 1) -2 log(le {10/ 7))
-l;-«zq 1 n;':th:" - PR oy 17
“2{e/m)TH1-{1-in/ 5T 7)) ¢ terms with fower of N (13
-
t we consider Y.  fogl!N-+%&}. This sum can be rewritten as
K=
foilows:
N N k-1
Y losT(N+4) = NiogT(Ne)+ L log(Noe)) . (6]
k=1 k=lja0

18




In order to obtain the leading term of (46} in the large N-limit,
one uses the asymptotic expansion ftor N.!:y(N:} and then applies
the Maclauring summation formula twice to the double sum in (4.

The result reads:

N 2
2, V g s
L los (Nevk) = N2 62141/ 4% Log(1e1/ ) x° e2og(y 1) - Bz 1)
k=1
+ teras with jower order of N, (47}

Now from (43), (45} and (47) we obtain, up to the leading order of
N, the tree energy of the Pennar’s matrix mode! coupled to ths
randcm source:

logl = E{t)+E (£0) (387

where

Eb(t) = -%* 5(1+1/t) log(1+1/ &)= - tog(Nz)~ i 243 ) (49)
and
- 3 « 2.1/2
E(5n) = z N (1) [(2Log2+1) -2 iog(1+{1-n/ 0%} F)
-2(e/m*(1-{1-/ 2%} ] (50)

It is interesting to note that Eh(t) does not depend on
the intensity of the random scurce 1 and E‘(t,ﬂ) approaches to zero
as =0, It means that if we "switch off"” the random source, then

the free energy (48) becomes

J
571 = —}— w1/ 0% i1+ )N pog(N e) - ---('wu) .

which admits a dcuble scaling limit N-x, ¢+-1, and N(t+l)=su fixed.

In this double scaling iimit, one finds

~
[%
N
C
0
=
-
kS
3
N
&
=
2
s
=
=
.
[
-
5
’,;
—
o
*

i

This =quation agrees with the genus zero part of the fres energr

(22 Penner's mude! withcut random sources, as we cai

<
(=
ot
fo 4
19

expect.On the other hand, 1Y we "turn on” the random sourc: ii.e,

put =0} and renormaliize the free energyr logl by subtracting

. from it, we lind

2
1“

‘%. fl)[“.ﬁ)"?l'--ﬁu J(1+{1-<n/ ‘.1‘} )

LA

2¢/m) (1=(1-05/ 751 )] (52)
Eq(52) shows that tc=—n is a critical! point of the free anergyr.
When the coupling t is close to this critical point, the free

energy behaves as

2, . . 34c . P
TogZ} | = const. N"(:#1)( 43 . {31}

20


http:expect.On

From {53) we see that a different choice of the values of N will
lead to a different phase of the model. In particular, il we take
n=1, then the free energy looks like the partition tunction of pure
quantum gravity, and the corresponding string susceptibility
exponent iszr.is equal {; ~1/2. On the other hand, if we put 7 in
general positions {(i.e. 1#1,0), then the free energy behaves as the
generating function of the branched polymers. In this phase we have
?szr‘=l/2, which seems to indicate that in the continuum limi% the
worldsheets of strings are crumpled.It would be very interesting to
tind out a cembinatoric explanation of this phenecmenon. In all
cases, however, we «can never find a naive Parisi-Sourlas
dimensional reduction d—derr=d~2, since the effective dimension of
the matrix mode! equals neither -2 nor -1. Consequenﬁiy, a

supersymmetric formalism based on the stochastic equation for the
Perner’'s +qcd2i can no longer be trusted.
In conclusion, we have developed a direct [functional
Vintegration methed to dea! with matrix models couplied to random
scurces. This approach allows us to compute the ftree energies
beyond the tree-level approximation, and it may be useful to obtain
some nonperturbative results. Although we have restricted ourselves
in thi§>paper to the coupling tr{ih-¢) or‘the matrix field 9 and the
random source #, it is possible to extend our calculations to
another type of interaction between ¢ and 4, for example, tr(ﬁQm)-
In this case it will be interesting to investigate how such a

random source influences the critical behavior of the underlying

matrix model.
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