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ABSTRACT 

We discuss .~ome aspects of matrix models under the influences of 
random sources. O'ur formalism does not rely on "tochastic equa­
tions of the Lange"uin's type, and thus provides a possible way of 
performing calc'ulations beyond the tree levers in the double expan­
sions of the couplings and the sources. We apply this formalism 
especially to matrix models with potentials V(¢) = riJ2/2 + g¢;4/4 
(pure gra'uity) and V( ¢) = 10g(1- ¢) + <? (the Penner's morIel), to 
see hOIl) their critical behavior changes after introducing the ran­
dom sources. In the jir3t case our result agrees with that obtained 
by F. David by ·u.sing a different fnnctional method, aho'wing that 
the Pari3i-So'u.rla3 dimensional reduction occurs at least for matrix 
models with polynomial potential$. In the second case, however, 
the reJ1tlt indicates that in.:$tead of appearance of a naive reduction 
of the targe 
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than or equal to I, are known to be solvable. It will be fruitful, 

therefore. to explore various ways of relating mat::-ix mode-is in 

some dimensions to those in the other dimensions. 

The most popular way of linking different matrix models 

is kno"'n as the employment of the Kd\' flows to interpo!.ate between 

the adjacent multi-critical points. Another useful way, which was 

initiated by F.David several years ago[ll, is to introduce a ::-andom 

background matrix field as a mathematical tool to alter the 

critical beha':ior of the underlying model. For d=O matrix mode!.s 

with the ~3-interaction, David argued that adding such a random 

source will cause the well-known Parisi-Sour las dimensional 

lZ1
reduction • 

David's argument is based on the use of a stochastic 

equation of the Langevin's type. This amounts to take the 

tree-level approximation in the pe::-turbation theory Le., one 

first performs a double expansion in powers of the coupling and of 

the source, and then drops fll terms corresponding to the Feymann 

diagrams with index loops, hoping that these terms contribute to a 

less singular part which is invisible in the double scaling limit. 

For the ",,3 matrix model, detailed calculations show that such an 

approximation is indeed reI iable[ 1 J • It becomes clear that as soon 

as the stochastic equation is established, one can map the 
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_I " 
Z({J, h) = IdtJ exp( -(3 trV( <1'1) +tr( MI) ) , (1) ·1 

(3 is a parameter of order Nand h is an NxN hermitian randomwhere 
underlying model into a supersymmetric theory, which leads to an matrix with gaussian probability distribution 

effective dimensional reduction in turn. 

When the interaction in a matrix model becomes more (2)PC. il)' dh = exp( - z;' trll') . dh 

complicated, however, one may cast doubts on the appearance of a 

naive dimensional reduction, since there are no general pr~nciples One may also choose the parameter a in (2) to be of order N when ~ 

to guarantee the supersymme':ry in the theory. Take the Penner's 
becomes large. 

model£3J as an example. This is a zero-dimensional matrix model with Th~ standard way of dealing with the integral (1) is to 

a transcendental potential, but it looks like a theory of random reduce the number of integration variables from ~2 matrix elements 

surfaces embedded in one-dimensional target space[4J. If we couple of .p to its N' eigenvalues,.f , Yz.' .. " Y , by writing the matrix as
Nt 

such a model to a random background neld and then simpLy employ ... , Y )u, where U is an element in Su(N}.In<1'1 = U·diag( Y 
1

, Yz ' N 

the above tree-level argument qualitatively, we will face the U,the case of /FO', the integrand of (1) does not depend on which 

ambiguity ot' dertermining its effective target dimensions. In can then be integrated out. This is not the case when the external 

general, it is not clear at all how a random source influences the violates thematrix field 11 is presented, since the term tr(trJl) 

critical behavior of a matrix model with interaction other than the SU{N}-invariance. However, even though U does not decouple to the 

pol~~omial form. background source, the integral over it can be performed, following 

The main purpose of this paper is thus to provide a the classic work of Itzykson and ZUber[Sland of ~ehta{6! The result 

functional method to study matrix models with random sources. of such an integral may be summarized as follows: 

Without reference to the stochastic equations, our method has the 

_ ( 2:n ) N01- 1) 12 N. Nadvantage of obtaining free energies beyond the tree-level 
Z(/1, h) - l1(x ,''',x} JdYt'''dYN I1{Yl""'YN)esp {-13 L V(Yi)+L x.y.)

1 N i-1 i'"1 1 1 

approximation. As we shall see, by applying this method, it is 
(3) 

possible to derive an exact (and thus nonperturbative) expression 
where Xl"'" X are the eigenvalues of the matrix source .'1 and 

of the free energy of the Penner's matrix model coupled to a random 
N 

~f.~~'1'":'~"';"lTk"""{i~.::'.t~11,·..tTifVirn1!ermd.iid(.t·determinant. It will be 
source. This method also allows us to give an independent check of 

q. 

~ f r ~ <j ~. 1 j ~ ~ ~_ 1 

cbnveJien~ to Larrr~, out,' a !urtJer re,'dUC~i~~.". of the N-dimensional
the result in ref.[l]. {; 1.' '1 f ~. :, 

i~teg~al i;p (3~ with tbe a!;d, oli the! ".o4ents"tTo begin wi tho let us consider the following integral . ..' ,~# ~ 1 
.' 

over NxN hermitian matrices ~ 
," ~ 

:,.': 

\,. 
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IJ j (x) IJy' yj exp( -/3 r(::)+ xy) (4) 

2 , 
(211:) N 12 _ON 12N! (N-l) ! - , ';j: 2: l! . (H) 

and rewrite the partition function Z(/3,h) as 

(2n ,HIN-l)IZ, . 

Z(/3, h) 
 11 ( .. ) , de t [,.... 1 (., . )] , .. ,N" 

(5) Alternatively, one may derive (7) by using the following
"1""'-"'111 J- I 1,1 

replica trick(7): 

10gZ = 1i!1l{.f'-l}/n.Next, given the gaussian distribution (2), we wish to 
n ... (j 

consider the following .verage 0f the connected generating function 
It means ,that instead of 10gZ itself one consider the n 

over it: 
replications of the original matrix system. 'To carry out the 

a....erage of t' over the random source, one meets the multi-matrix 
log ?(;3,h) ...t-Juh leg Z(/3,h) ~.':p(- 2; ·trt/) (6) 

model on a lattice which forms a star diagram with n edges. Since 

in this case there are no closed loops in the target space, one 
where ,-I-I: frill ci'xp(-1/2(.J" trl/) is a normalization constant.In 

expect (B1 that the path integrals over the matrices in the model 
other words, we are interested. in the average of the free 

can be reduced to integrals over their eigenvalues, i.e., all the 
energy aver the random source. 

angular degrees of freedom decouple. ActuaHy, one can perform 

From the point of vie~ of string theory, one may regard 
calculations along the lines of [6] to obtain an explicit for~ula 

Eq(ti) as an ensemble average of the string vacuum amplitude. To 
for zrr , which leads to Eq(7) via the replica trick. 

evaluate such an average we notice that the integrand in (6) 
To proceed further, let us consider two concrete 

depends only on the eigenvalues of the random source and therefore 
examples. The first example we shall discuss is a matrix model with 

the "angular part" of the integral can be performed. After 
the potential 


performing this part of integral one finds 


_LZ~~-4V(cj» {9}N detIJ, (X,) ~ 4~ 
., ,r 2 ( I \' Z) ( J -1 I ) ~)

log[. = BJdxl"dXN6 (x1,---,xN)exp - 20 l .. Xi log 6(X ,---,x ' (I,., t N 

This po~ential describes a model of random surfaces (triangulated 

by square tiles) embedding in zero-dimension target space, whichwhere the constant B is now given by: 

corresponds to a system of pure gravity. Here the coupling g plays 
NB-'. Jd.'. i .. dX 11Z ( X 1 ' - - • , x ) exp( -Ina -L x~ } the role of the cosmological constant. Now we couple this this 

N N 
i .1 

system to the 'background random field h. In order to analysis the 
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cd tical behavior of the free energy, 'He have to evaluate the 

integral 

a:: 
(4' ,I-l j (Jh) = Ldr i exp( -f3(+.rZt+g.r4-:.:.r)} . 

For .8 large, the evaluation may be carried out by using the method 

of steepest descents: if Yo is a root of the equation 
:) 

y+gy aX ( 1O) 

such that JlI Lra )=l+3~Y~)O, then for /3 large, 

. 2n 112 f3'" f3 4
I-l (f3,,) ~ v'. ( ) e\'''(- -y"- _,;f~. +[3:\" ). (11)j • 0 Z . L" 2 0 4::>· . . .• 0 

f3( l+3gyo) U 

It is sufficient to choose Yo as the unique real root ot' (lU), 

which is determined by 

\' a [.; +(_1 + x~ )1/~]t/3+ [. .: _(_1_ + -.l.. )';;:!]!/3.
·0 

2", 27i4g'" 2" 271 4/ 

One may expand Yoin powers of x. More generally, if r(.:~) 

is a smooth function of Yo' then the following Lagrange expansion 

(see e.g. the Appendix of (9]) holds: 

(J) J'-l 
3n

1'( Yo) = t'(x)+ L (-g)"/n!'-- (.y f'ls»)
"-1n_l dx 

This formula together with (11) gives rise to 

7 

(.I 

detlJ. (f3xk)
J - 1 

log[ ~("t"'" ) ] ~ F, (X1 "",XH )+PZ(''',''''''YM)' (IZ)
X 

H 

where 

<l)N L (- .:r) n--.i1..1~ ,Zn .. Z F1 ("1'''·'.\"H)=8 Z (13) 
nan '" n!(2n+Z)! \

i '" 1 

and 

2ni-l 2n ... l 


z;o •••• • _ '\ ". 1 ~ __ n (3n)! Xi -x 

(H)• Z (.\ 1 ' .\N ) - . ':' l 0::> { ~ + L. ( " ) n! ( 2n+ 1 ) ! ( x. )} • 

1.;" J n- t 1 

Now we are in !\ position to derive an asymptotic expansion 

for the free energy (7) . I t' We introduce the symbol F as an 

integral of the function F( '\"1 ' •. , , X ) with we ight.
M 

~ H.., 

S3 
N~ 

a 
2 
(:(1,"'1 . exp( -$"/2;;' L x~) 1 we lDay re'Hri te (7) a.s 

i .. 1 

..: 
logZ = F1+FZ ' (15) 

First we look at the integral Fl' In order to evaluate this 

integral, we consider 

N N 


In= Jdx, ....dXNAz(x1'···'xN)P.':P(-iJz/2.::r. L x~).( L x:n) 

i .. 1 k= 1 

2 
2(1)N2/2 +n N-1 -i 1/"'> M-1 !dx;/,nIf(.\:)pxp{-x )= ( 2 N! n (2 i!1t <0) L___..::..J_____ (16) 

f3 i-a j .. o IdxIf(:'()exp(-l) 


j 
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where Hj (x) are the Hermitian polynomials, By applying an integral 

relation between the Hermitian and the Laguerre pO!i~omialsll01 

t ,·_2( ")p,__ ( ___2)('OF;( --t) = ( ...H . . \ '\,1:1.\ "..\J Zi j!1t 112 exp( _ t 2 /4) [ ( t 2 /2) I
J J 

one easily derives 

N-! '"' J1 (17)
I =(-1)n(Zn-1)!!N! n (2- i n;'t1l2)( 2G)N""/2+,",_G_(t:?-t/: {t)(t»)r 

n i =1) /3 2 dtn N- 1 t =0 

where 

N-1 k 
£(1)(1-) - "" ( N )-1.::..tl

N - I - - L N- '--1 '.1kaO" A. 

.is the generalized Laguerre polynomial. USing (13) and (16) one can 

expand the integral F in terms of I to obtain the following
1 n 

asymptotic series: 

... IX) 

F =~ L (3n) ! (..,
1 2Pn=0 n!(n+l)! Cn .. 1 (N)· - §P/2p,",)n (18) 

where 

cn(N) =L [ell ( 1 ) ( _ 2t ) ] • [ 2k - t ( N )( .~ ) (19)n N-l l=O k k. 1
dt k~1 

There is a combinatoric meaning of the coefficient (19). 

Suppose that we have a fixed 2n-gon P with its sides consecutively 
n 

around the boundary. One may perform some operations on Pn' such as 

an N-coloring ¢I of the vertices 1)[' an edge-pairing 1:. We say that 

the ~dge identifi<:ation T. is compatibl~ with ,b, it' two edges or P n 

to be identified under hav!:: the property that the left end of 

each ~dge has the same color as th~ right end of the other, Now a 

combinatoric problem arises as to count the number of these 

compatible op!::rator pairs ('1),"). In ref.[lI}, Harer and Zagier 

solved this problem by appl~~ing the met.hod of matrix integration 

together with a combinatoric argu~ent. They showed that the number 

of pairs (4),.) of a fixes 2n-gon P is nothing but (2'7-1)~!Cn(S). 

From the wor!~ of Harer and Zagier, one may regard the 

asymptotic series (lH) as a di~g~amatical expansion. A typical 

diagram in such an expansion is an ~-colored 2(n+l)-gon with edges 

compatibly identHied in pair-5 , which will be denob:d by 

,1(iiJ, To each diagram attach a weightT;)""lwe 

factor proportional to g n . Then summing over all these diagrams 

with weights reproduces Fl' 

Similarly, one ;nay de:-i·".-e a diagramatical expansion for 

the integr.'ll Fz' In this case we attach each weight factor to 

all "disconnected" diagrams (Pk/:Jl,!l,,) U (P/($,t:lt) with /\+1="(;. 

It is not difficult to see that for n large the number of these 

disconnected diagrams (with total edges equal to 2n) is much less 

than the number of diagr:ims A'I+l/(<P,.)n"l (which have 2n+2 edges), 

so we expect that the integral F'Z contributes to a less divergent 

term in the free energy (15), and therefore 

n .. 

__ '" (J IX) (3n)!c .. (N) 2 n 
n 1 (2U)logl ~ F1 = 213 [0 n!(n+l}! (-§l/2fJ) 

n. 

1U 
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To make the above discussion be more precise, we have to 

estimate some related integrals. Let us decompose the integrals F1 

and F2 into 

F= F ~(I.\I<a) + F ~(I.\I:II:.)} J (21)
1.2 1, <.0 1, " 

where 3«1 is a cut-ofr and 

2, 

F • 2 (.\€:S) = S}N. J ,. ~,. tJ. 2 r,· ... "}e'p( £. ~ ..2)F (\ ,.,\:) 
1 .... ··N "'1' "ON'\ - 20 L. "i 1,2' 1 OM 

xE:; 1 .. 1 

Then for ~~U+J we find 

Fl(lxl~,) ;:::: const. (_1_)4/3, (22)
.1 

while 

F ( I·-:j;t·<} ;:::: const. 'log(+). (23)
2 

From (22) and (23) we see that as!t"'O+ the integral F( 1\:1;;t·l) isz

much less singular than F1 ( I \·I;t,l), and we can neglect the former 

integral when it is compared to the latter. On the other hand, it 

is not difficult to see that as the cut-oU a approaches to 
~ ~ 2 

zero, both the integrals Fl ( I-d <.;1) and Fa ( 1.\1 <.;1) scale as const.' a , 

so we can not establish a simple inequality like FtI xl <a) «z 

F({ xl <a). Nevertheless, one llay easily show that in the limit a-tO,1 . 

the leading term of F(I xl <It) consists of a polynomial in thez 

coupling g,which is irrelevant and can be discarded from the free 

11 

, 

t_ 

energy by taking a few derivatives. Thus Eq(ZO) indeed holds. 

In order to extract the critical behavior from the 

divergent series (2U), one has to perform resummation over it. Let 

us rewrite (20) as 

- _ 13 ...lL ~ f( n+lj:3)f( n+2!3) c (N) ( -z) n, (24) 
logZ - 41t (J t... (n+1J ~ n+l 

n",O 

where Z = 27~~/(282J. One may then use the integral representation 

of the f-function snd Eq(19) to derive 

~ f(n+l/3)i"'(n+2/3) c (N)( -zr =-1Lr(-I/:3}f{-2/J} 
l.. t n+ 1 I ' n + l' Z 

n .. O 

!l) :Xl
1 r. -I. -2/3-1 _ t/3J (l+zt) -4, J,I i. \ - -z- cite t (2 . t) c/.';wYp --;;::-:-:;' L'N' ( 3/ 

... (j 0 - 1.,-:, • - • 

Q;/ ~ 22 t ,
Nf( -1/3) r il:- ,-t t- 213 -

1 {(1+<: t) 11 ... F (-N+l, -1/3, 2 '-1+'1J-1 f (25)- - J.....,.. 21 
Z \) 

u_ 

where ZF1(a,~,y,z) is the hypergeometric function. The free energy 

(24) is thus represented by 

!l) .' 2: ~ , 
-- 130'~r(-I/3)J'Jf(;!-lt-J/3-t((1_zt)1/3F (-1/31~+1,2'1_'f}-lj . 
log'Z=- 41tpZ (j v 2 1 '" • (26) 

Now for a~tJ"·N large, we have z~l/NJ and 

(1- z t)1/J..,F (-1/3,N+1,2'1
2:tt ) - F (-1/3,2,lt). (27) 

.. t -", 1 1 

where A.=2(N+l)Z:Z7(N+l)o .l:10Z is the scaled cosmological constant, 

12 

't 

t" 



.t' 

J 

which keeps fixed in the\largeN limi f~- -and' ~Ft( -1/3,2, At) is the 

confluent hypergeometric function. Substituting (27) into (26) one 

finds, up to the leading order of the large-N expansion, 

-- 27/3 alogZ = - 2n (T)f(-2/3}l{-I/3}'N2,~~----,,----- (2M) 

From this expr~ssion, it is clear to see that Ae=I is a critical 

point of the free energy. In fact, as )'~Ae=l, one has the following 

critical behavior: 

:::. const.·S2 
.().-A. )3 108,(A.-). )+ less siJ1llull1.r t~n;JS + 

e c 

+ polynomials ill (A-A. ) (29) 
c 

which gives rise to the sting susceptibility 18tr =-1 and the 

effective target dimension d =-2.
eff

Eq{ 29) agrees with the result obtained in ret'. (1] I there 

a rj)3 -matrix model coupled to the random source was investigated. 

More generally, one may extend the above calculations to matrix 

models with generic polynomial potentials Vl~}=Eg14l1, to determine 

how the random source influences their critical behavior. If we 

choose the couplings {g,} to be away from some "catastrophic 

points" and set them in general positions, we will find that the 

critical behavior of logZ takes the same Corm as Eq(29). Therefore, 

for matrix models with pol;rnomial interactions, the Parisi-Sour las 

dimensional reduction is a universal phenomenon. 

In the rest of this paper we will turn to our second 

13 

,j 

example, the Penner's matrix model. This mod~l was originally used 

by mathematicians ~o calculate Euler characteristic of moduli space 
C41 

of Riemann surfaces [3] [11]. Recently, it has been recognized 

that the Penner's model at the critical point behaves as a d=I 

string theory coupled to 2D quantum gravity. The partition function 

of this model is given by 

i = J~ exp(Nt· tr{ lOlf<l-41l)+<b) 

(30)=laP de:;(l-~)Nt·exp{~::'ti.D), 

where ~ is an ~xN hermitian matrix and is the coupling constant. 

Let ,ll=l-~. In order that the matrix integral (JU; to be 

weli-defined, one has to restrict .V to positive definite matrices. 

The perturbative expansion for this model may be written as 

108'Z .;: r ,,2-29 t 2 - Zg - n (31)... .• 'x 
g,n g,n 

where x is the Euler character of moduli space of Riemann 
g,n 

surfaces of genus g with n punctures. It can be shown that there 

exists a double scaling limit N-+u:., t""'-l and u=-~.;{t+l) fixed, in 

l41
which Eq(31) becomes

1 2 1 2 1 B2 , ~ BZq 2-29 

logZ ::: Til lO;'Jl-4-Jl -TJl+--Z- lOgJl+ L. 2g(2g-2j jJ. 

(32) 

Q;:2 

where B are the Bernoulli numbers.The scaling behavior of (32)
2g 

coincides with that of d=l matrix models[12~ 

H 



Now we introduce a random matrix source /; inh) thr> 

Penner's model. The partition funcl;ion has, as beforl~, the 

fullot.'ing form: 

Z(:l) =r1P d(>t.(l-Q)Nt·e.\"p(~"':,~':'+f:'l!;"jl\), 

exp( ~2 t+ ~ rtl) f-m· -~ : t. r.~f- I c( :It!) ) . ( J:J) 
J-

Notice that for the last integral in (::.n) we ;;h<.)111d intcgnte ,)Yet' 

positive definite matrices I!. To carry out such an inte;r'~l, we 

dlagonaEze both :hf: matrix source and the matrix fie td 

11 .,. -1i' :;( : 1 J 11 ) • ,\{.,. '1 ~::;( • 1 
";j' 

to dedve 

N(~j-1~/~(Z,,)
Z(,:J ~\l)( ~2 t+ : ,. 0(1;, '1 ,. d.r~ :.L'; , ' , ' ,.;.)

.l(xl'··· ,x"} i =~ 1 

N 

.n (/'t. .:.\"p(-N );) 
1 .. 1 1 

(Z1tl. H'N-ll i :+ ".) --,-----.:.~--:- (:H) 

where the moments i-L _ (:.) ar~ deterl1lined by
j 1

,1'; 

r(~ t+j)jJ, • C'.) :: l' d ~.•/l t. • j - 1 - i N ~ • " I 'j j=~.2.··' ,N. (35)
J-' •• e 


'0 (Nt+';, 
Nl+1 


t'. 

'" 

The determinant of these moments may be evaluated as follows: 

f(N t+l) f( Nt+l ) f(N t+l) 

(N t+x )Nt .. l (N t+ :'z )Nt. .. 1 (N t+'yN)" t. .. 1 
1 

f( ~ t+2) f(Nt+2) f( N~+2)
det[/i _! (\)]

j (N t+:..- )Nt • .:: (N t+ :~z' Nt .. .:: (N t+:~ )Nt .. .:: 
1 N 

f(N t+~) f(N ~+N) f( ~ :+~) 

(N t+:,. )Nt "':1 (N ':+:\ )N t-N (N t+,' )N t .N 
Z 'N 

N f (~t+ /.l r f 1 ) j - 1]= IT ,- 'I. l' det lt",+", l~l,.i;S;N
N.· .' ~ ,\,

k=l (Nt+:.- ) 1 
k 

N X,-'CiT f(~J~+k) J I (36)IT {~ HN!+­.. 1 ( N ,~+:; ) 11 t •• i , J 

Using this result together with Eql~~) one finds: 

N :i 

:12 ~+ ') " +)' '",r(,!,,+, )_,,~( "+1 . "'."f" _.tcs'?( n ~ '"fc .... ~'.:;;)1. .'; ... ¥'IJ ... ! _.' . .:; ,~\ . 

K= l Ie a: 

N 

- L N( ~+l) 10;( 1h/' ~:; } (:.ii) 

:c.=! 

Now we are in a position to take the 8,v"!!''l.ge of the free 

energy {:37} ov"!!' the rn.ndc:n source 1; with gn.llssi,'\n distribution 

(2). Denoting 

, 1 N ,~ 
j.!xl···dxN.lW(\l'·",YN)<?xP(- 20 iflx~)'( ,.) 

~ CHi) 
~ 1 ~ M Zj['/" "d\ ~"(\' ," ,x )1''-"1'1(- Z.) .:;)

"', 'N 1 N L: -1=. , 
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W~ ha....: 

log?! il) ~'::::t+ l: X + I l(lgf(~tH)-~;::(ttl)1Qg(~t)
k 

k",1 kM: 

1'1 

-Nt --+1) = ~, ';) . (:.39) 

~ =: : 

.....~. n 
E:-;pn.nc.l:1g ::t);{l+'-:k/~J..i in pO,.,;ers of '~k and then calculating .:-" =! Y" 

by using th~ methort we have discussed before, we obt~i~ the 

rollo~in~ e~a2t for~LLa 0f the [rAe energy: 

1 '.~~'! ); . ,~+ +..:.... _...;f (:: '+ 1) -'3'(~;; j 
~:; 

;-~:;+1/·~: t~:; , \" ~ .+~. j ( .,,'"!i.;;-r ---­

2, "",, 

wher9 the coefficien~s ~ (~l ar~ gi~~n by tlY), and z is a 

par~mAte~ re!ated to the ~o~p:ing consta~t t: 

~ (.! l). l/~J .
:J ~. (~. 

It is net difri'.'lIlt to d€'!'i,'e the following 5Hl'l:::::.t:0n 

for~l~ L:t: 

l(;tl/~) ~ (~:) 
ZO (~2) 

n! 
(1F,lI':: (1/2,~t1') 2zL. 

n 

'/ ,-, 1+: ) 
n.:O 

Using this ror~ula we may rewrite (~U) as 
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N N 
~('! t+ Z ,';. + .:... j·..;fC';:·t:,) ~+1) : ,.<':d ',; 

.. :. : ~: : 

+_l_\l:;'::(. rl; ,J' '1/"' ~+1" 2­2' ", t I ) , J ;;: - [" l' - I ' • , - t ) _1 t·n)~ 
• 1 

0' (ltiS) L..: 

Thi.-3. rcsnlt lila:: bp. .:egarded .').$ a !1(t!'lp~~turt.'1tl·-·c s(jlu~~{:n 'Jf t~:~ 

P~'!i;1\:r':3 model coupl~d to thE' random sour-ceo Here :.;e ,1.r,:, tnt :c-.·s::,::-.! 

in extracting the critk3.l be!w:.ior from the le:l.ding telm "f i:'; 

in the tar~~-~ limit. First ~e notice that ~s ~-~ 

t - ~ i 
\t ,.~ • .,F~(1/2,~+:,2 ~~? {1/2.,~, ~~/ . s} .. 1 

(It;::)"'" ... • • , 

wh~~e ~z=~c/~ is the sca!ed intens: ':y Qf the rand:.::;n sc::~~:.:: SG 

..~ 5UD.:ititute (H) int;) the last te!':l1 in Eq{ -1:3) lir;c: th,:-" p"':'~",r::: 

the integral over- s, we find the t~ol:owing res;tlt; 

1'" " 2~"(t+1\,f- ds ., J o --­~ -lJ 

_l_N2. f +-+ 1 ) [ [~} ~ 0') +' '_'J ')ct ' + f 1 - .' n/· , ;:} -; ( ... )2'" \ J. \ ;;,.0 ... (J,::I .... - - J - -4' 0 ~ J..' ... \: .~ I 

- 2 { t/r; JZ (1- {l- ; :1/ ~, ;::} L .:; ) ] .~~_"':. rms :\~ i t~~ 1._"'- ::;r:: r ;")!" ~. (-t5 : 

~e;;;t we consider L~= 11o!;,-1( N"+k}. This sum can be rehritten as 

fcllc~lNs: 

N N ~-1 

L It::.;;f(N~+!;} ;: :L,;"l(Ni)t r L !C'.:;C;~tJ) (-l6) 

1.=1 k=lj",) 

HI 



II' 

In order to obtain the leading term of (46) in the large ~-limit, 

onp. uses the asymptotic expansion for N:,).:,'r(~ t) and then applies 

the Maclauring summation formula t~ice to the double sum in (40). 

Th~ result reads: 

H 21 2 2 2 " • NE logf(N TN t (l+I/~) lOJ'(l+I/ ... )+~~t1!g(~O- ~(U+l) 
k=1 

+ tt?rms with li);,;er ai'-.!::!" ')/'". N. (H) 

Now from (43), (45) and (47) we obt.lin, up to the leading order of 

N, the free energy of the Penner's matrix mcdf:"~ coupled to th2 

rando:1l soucee: 

(-11;;~(r}+E'l (t,'1) 

where 

N2I 7. 2 2 7 

E (£:) = TN t (l+I/t) log(1+I/t'-~"log(~tj- T(2c;+3) (4!1)
o

and. 

E (::,n) = +N7.(t+1)[(210g"~+l)-21t)g(l+{l-Il'J/tI2}1
1 

-2( t/I'?)2 11-{ 1-1 1")/ c) 2} l;;~,] (5U) 

"" 

It is interesting to note that Eo(t) does not depend on 

the intensit,y of the random 30UrCi: 11 and E,(t,!?) approaches to zero 

as 1')..,0. I t means that it' we "switch off" the random source, then 

the free energy (48) becomes 

p'_l_,,~ ,.<:, 1 1 .,2; l' ,. .2 ;,-d !. ~'J.'2 .~ - p,+j.) ... vo(J. ... l/~)-~ ","",,(:,h)- 4: (_,.+J) 

which admits .3, double sC.:l..ling limit N..,'J.;, t-+-I, and N(t+l)=!l fi::cd. 

In this double scaling limit, on~ finds 

I ,7.,
lo5':! C/=,l TU. .Lc.s!l + pc l,/nUI1 i:tJ.s in u. (5~; 

7hi3 equ.::.tion agr,,=es with the genus z~r() part of the fre::: ent:':'~~· 

(22) of th.: Penner';:; mud;;:! i'i i the'll t rar: d::> III sources, as 'lie e.l;, 

expect.On th€ other har,d, if' '';C "turn on" the ra.ndom 50U1'''::2 t:'e. 

put i!;:C) and renor!!lalize the free energy by subtr~ctll!g 

from it, we rind 

1 2. [" 2 1/2 , .. n= T~ (':+1) {21o£~+l;-21'-'';'(1+{1-(I'''//~'} ) 

/::;,"-2 t :,:/n)'~ (1- (1-, ~/ c, ~} L ':) ] \'"''''1 

Eq(52) shot.'s tha.t tc=-n is a cr~tical point of the free ener~:', 

When the coupling t is close to this critical point, the frr:"? 

energy behaves 3.5 

logZ! = const. 'N
2

( "+1)( (S:3)
ran 

:w 

l!j 

http:expect.On


~" 

" 	 From (53) we see that a different choice of the values of n will 

lead to a different phase of the model. In part 1.1;U lar, if we take 

Q=l, then the free energy looks like the partition function of pur~ 

quan tum grav i ty. and the corresponding s tr in;; suscept ilJ i.l ity 

exponent,.,. ;".is equ"al to -1/2. On the other hand, if we put r] in 

general positions (i.e. ~~I,O), then the free en~r~y behaves as the 

generating function of the branched polymers. In this phase we have 

lst~"=1/2, ~hich seems to indicate that in the continuu~ Lim~~ the 

worldsheets of atrings ar~ crumpled.It would be very interest~ng to 

find out a combinatoric explanation ot' this ph?nOmE%)n. In all 

cases, however, we can never finel a naive Par:'si-Sl'ltrias 

dimensional reduction d-d =d-2, since the effective dimension at' 
efr 

the mut.dx model equals ne:ther -2 nor -1. Cor.sequen::ly, a 

Sll,PerS:iilllll;;tric for:nalis::J based on the stochastic equatIon for the 

Penner'::; 'oouel can no longer be trusted. 

In conclusion, we have developed a direct functional 

integration method to deal with mat.rix model::; coupled to random 

sources. Tilis approach a1101'5 us to compu te the free energies 

beyond the tr':!e-level approximation, and it may be usefui to obtain 

some nonperturbative results. Although we have restricted ourselves 

in this paper to the coupling tr( il'41} of the iIlatrix field .:p and the 

random source h, it is possible to extend our calculations to 

another type ot' interaction between .p and lJ, for example, tr( .'14>111). 

In this case it will be interesting to im'estigatc hoI' such a 

random source influences the critical behavior of the unl.iedying 

matrix model. 
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