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ABSTRACT 

A new analytical method to calculate the wake potentials of a bunch of 

relativistic charged particles in an elliptical cavity is developed by taking 

the geometry of the pillbox into account prior to the numerical evaluation. 

Previous formulation of the wake potential is clarified by a proper adaptation 

of the Floquet theorem and also simplified significantly by decomposing the 

cavi ty eigenfunctions into the transverse and longitudinal vector 

eigenfunctions. Numerical simulations based on the new formulation for the 

acceleration gradient and the transverse wake potential are presented in terms 

of driving electron bunches of finite sizes. Typically, for a 1 IIC driving 

2charge traversing an elliptical pill-box of 4-mm gap distance, 100 cm in 

cross section area with a major radius to the minor radius ratio of 2, the 

accelerating gradient is in excess of 120 MeV/m, while the transverse wake 

potential at the position of maximum gradient is less than one percent of 

the accelerating gradient. 
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GLOSSARY 

eigenfunctions of the vector potential 

velocity of light 

absolute value of the electron charge 

acceleration gradient, i.e., energy gain per unit length 

normalized distribution function of the driving bunch 

current density 

length of the cavity 

gap distance (height) of the pill-box 

charge 

radius of the circular pill-box 

the cross section of the pill-box 

longitudinal wake potential 

transverse wake potential 

the delta-function wake potential 

the delta-function transverse wake potential 

mode number 

wavelengths of the cavity modes of the vector potential 

frequencies of the cavity modes of the scalar potential 

charge density 

standard deviation of a Gaussian bunch 

frequencies of the cavity modes of the vetor potential w = ciA 
a a 

eigenfunctions of the scalar potential 
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1. INTRODUCTION 

The wake potential of a bunch of relativistic charged particles 

traversing a cavity consisting of many pill-boxes is of considerable current 

interest. -In general, from the wake potentials, the coupling impedance and 

energy loss of bunched beams can be evaluated. The idea that the energy lost 

by the first bunch in a cavity can be utilized as an energy source to 

accelerate a second trailing bunch of particles has gained further attention. 

In such a scheme, an extraordinarily large accelerating gradient suitable for 

next generation particle accelerators could in principle be realized in a two-

beam geometry. Recently, several different approaches to calculate the wake 

· h 1· 1-3potential have appeare d 1n t e 1terature. The formulation of the wake 

potential was shown to be simplified considerably by imposing causality.1 In 

this paper we show that these calculations can be further simplified by 

exploiting the fact that the cavity eigenvectors in the formulation can be 

decomposed into two categories: longitudinal eigenvectors and transverse 

eigenvectors. We make additional clarification in the previously ambiguous 

formulation for the wake potential from the non-rigorous use of Floquet's 

theorem. Our final formulation yields a form similar to that of the Coulo~b 

law. The effective electric field (accelerating gradient) is found to be 

inversely proportional to the square of a distance. Using the mode-

decomposition and proper use of Floquet's theorem, we reformulate the wake 

potential in a more convenient form to be more readily calculable numerically. 

Specifically, we investigate the wake potentials of an elliptic cavity, which 

is relavent in the design of a wake-field acpelerator using elliptical pill­

4
boxes. The use of elliptical wake field cavities permits periodic staging of 
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acceleration sections not readily adaptable in other equivalent cavity 

geometries, such as that using annular cross sections. The relative merit and 

general advantages of usine elliptical cavities in a wake-field accelerator 

scheme under study will be presented elsewhere. 
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2. THE LONGITUDINAL WAKE POTE.'ITIAL 

In this section the wake field potential in a pill-box geometry is 

formulated in the mode concept. Consider an accelerator cavity consisting of 

a very large number of elliptic pill boxes. A point charge Q passes through 

one of the foci of the elliptic disks with a speed c. Let the transverse 

coordinates of these centers be r~ = (x ,0) and (-x ,0). 
- 0 0 

2.1 r.fode Analysis 

The charge and current density are given by 

Q&(x - x )&(y - y )&(z - ct) (1)
o 0 

and 

(2) 


The vector and scalar potentials under the Coulomb gauge due to the 

current and charge sources given by Eqs. (1) and (2), respectively, can be 

expanded in the Fourier series as 

~(!,t) = 2q (t)a (r) (3)
a -0.­

a 

and 

i (!> t) 2d (t)_ (r) (4) 
a a ­a 

where (a} is the set of normalized vector eigenfunctions given by the 
-a 

following equation and boundary conditions: 
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2 
av2a + 

U) 

2 a = 0 (5)
-a -a 

c 

and 

V-a = 0 (6)
-a 

everywhere 6 and 

a x 
A 
n = 0 (7)

-a 

on the surface of the metallic enclosure of the accelerator cavity where n is 

the normal vector of the surface 6 and {~ } is the set of normalized scalar 
a 

eigenfunctions given by the following equation and boundary condition: 

0
2av2_ + = 0 (8)

a 2 c 'a 
everywhere. Note that 

0 = 0 (9)
(l 

on the surface of the metallic enclosure. 

Using Eqs. (1)-(9) and the Maxwell equations, we have, in Gaussian units J 

2 
4fiC Q rin(t,L/C) 


'1 (t) = sinoo (t - t')a (x 606Ct')dt' for t > 0 

a o a az 0 

00 
a 

= 0 6 for t < 0 (10) 
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and 

2 
41TC Q 


r (t) = 4 (x ,O,ct) , for 0 < t < Llc 

a 2 a 00

a 

= 0 , otherwise. (11) 

Sub s titutin g Eq s • (3), (4), (10), and (11) int 0 ~ = (-1 I c ) a!!I at - Vi, we 

can express the electric field at any position in the accelerator cavity in 

terms of the cavity eigenfunctions as 

2 ~ 	 1 ft 
~ir,t) = -41TC Q> {- dt' cos[w (t - t')]a (x ,O,ct')a (r) + 


~ c 0 a az 0 -a ­

1 

+ --2 ~ (x ,O,ct)V_ (r)} for t < Llc , 


a 0 a ­
nil 


and 

for t < O. (12) 

2.2 	 Delta-function Longitudinal Wake Potential 

The delta-function longitudinal wake potential W is defined as the 
z 

energy gained by a unit negative point charge with a velocity c traveling in 

the path passing through the other elliptic centers, at a distance s in the z 

direction behind the accelerating point charge Q. Thus, 

VI (s) 	= -tdZ E (-x ,O,z,(z+s)/c) (13) 
z o z 0 
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Since a signal cannot travel faster than the speed of light and the point 

charge is assumed to move with the speed of light, the energy loss of the 

driving electron bunch is independent of the aperture size. Substituting 

Eq. (12) into Eq. (13), we obtain for 0 < s < L 

VI (s) = } dz dz' a (-x ,O,z)
z az o. 

xcos[w (z
a 

+ s - z'}/c]a (x ,O,z') 
az 0 

+ 

2 
c 

n2 

L-s ao 
f dz I (x ,O,z+s}--~(-x ,O,z)} 
o a 0 az 0 

a 

(14) 

We impose the causality on Eq. (14}1, yielding the result given by 

2w (s) = 4nQ 2I~a (z)exp(iw z/c)dzI cos(w sIc) (IS)
z a 0 a a a 

Since the acceleration cavity is a repeating structure with period P, 

a (z) is required by Floquet's periodicity theore~ to satisfy
a 

inr.t 
a (z + np) = e I-"a (z) (16)

a a 

where ~ should be determined by the physical conditions on W (s). Since the 
z 

cavity is assumed to be lossless, ~ should be real. We then have 

n 
o 

(La (z}exp(iw z/c}dz = fa (z)exp(iw z/c)dz 1 exp[i(P + ~ p/c)n]J
O 

a a ao a a n=O Q. 

(17) 
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where n = LIp - 1. Since W (s) is proportional to L, ~ must be equal to 
o z a 

-w pIc in the proper (rigorous) use of Floquet's theorem. Substituting ~ = 
a a 

w pIc into Eq. (17) and combing the resulting equation with Eq. (15), we 
a . 

obtain the longitudinal wake potential per unit length (or the acceleration 

gradient, which is simply called the longitudinal wake potential in Ref.1. We 

adopt the same nooenclature as Ref. 1) as 

V*(x ,O,A )V (-x ,O,A }cos(s/A ) ( 18)
a 0 a a 0 a a 

where 

1 
V (x,y,A ) = J aP (x,y,z)exp(iz/A )dz (19)

a a. o az a 

Here, all distances such as z and A are ~easured in units of the pillbox gap
a 

p, and 

(20) 

and 

3 (21)Stf!!O!; d r = &a.~ 
p 

where V denotes the space in the pillbox.
p 

Since the driving electrons are distributed over a finite length in the z 

direction, we define the wake potential in terms of the delta-function wake 

potential as 
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u = J~ w (s + s')g(s')ds' (22)
z z -s 

where g(s') is the normalized distribution function of the driving charge. 
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3 • THE TRANSVERSE WAIm POTENTIAL 

Consider again the exciting charge Q traveling the one foci of the 

elliptic cavity at v = c. The delta-function transverse wake potential ~ is 

defined as the transverse momentum kick experienced by a test charge following 

at a distance s in the z direction on the other foci and also at v = c. Thus, 

= 

= t[V~A - V~I]t ( + )/ (23)o z = z s c 

Here, Eq. (7) has been used to eliminate the last term in the second equation. 

Analogously to the longitudinal case, Eq. (23) can, by using the casuality, 

periodicity, and the geometic property of the pillbox being a right cylinder 

whose axis is aligned with the z axis, be reduced to 

:!J.(s) 
(24) 

L 

where V (l ) and A are defined by Eqs. (19)-(21). Similar to Eq. (22), the 
a. a. a 

transverse wake potential or the transverse momentum kick experienced by a 

unit negative charge following a distance s in the z direction behind the 

driving charge bunch of an arbitrary charge distribution on the path passing 

-11­



through other foci of the elliptical pill boxes is defined by 

£L(S) = S~ !L(S + s')g(s')ds' (25) 
-s 

where g(s) is the charge distribution of the driving bunch. 
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4. MODE DECOMPOSITION OF THE WAKE POTENTIALS 

For an elliptic pillbox with an geometry shown in Figure I, the cavity 

vector eigenfunctions a = a x + a y + a z should satisfy the followingx y z 

equations and boundary conditions: 

(26) 

vla + a IA2 = 0 (27)
y y 

in the pillbox, 

a = a = 0 at z = 0 and z = I, (28)
x y 


a la 
 for (x,y) on the periphery of the elliptic cross section x y 


2 2 2 2

given by x IXb + y IYb = 1, (29) 

2~a + a IA = 0 (30) 
z z 

in the pillbox, 

a = 0 for (x,y) on the periphery of the elliptic cross section, (31)
z 

and 

V.. a = 0 (32)-
Because the boundary conditions on a, a, and a are different, they cannot 

x y z 

generally have the same eigenvalues. Consequently the cavity eigenvetors 

divide themselves into two categories: 
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4.1 Longitudinal Eigenvector 

a = a 2 where a should satisfy Eqs (30)-(31). Note that the 
z z 

longitudinal eigenvetor ! satisfy Eqs. (26)-(32). 

4.2 Transverse Eigenvector 

-a = a Ax + a " y where a and a should satisfy Eqs. (23)-(26)
x y x y 

simultaneously. Of course 6 these longitudinal eigenvectors satisfy Eqs. (26)­

(32) simultaneously. Since the transverse eigenvectors do not contribute to 

either the longitudinal or the transverse wake potential, we need not 

calculate the~ here (however, these transverse eigenvectors are related to the 

energy loss of the driving charge). Because of Eq. (32)6 the longitudinal 

eigenvectors have the form 

(33) 

where c and f(x 6 y) are determined by 

2
V:f(x,y) + f(X,Y)/A = 0 (34) 

2 2 2 2
for (x,y) such that x /xb + Y /Yb = 1 (35) 

and 

JIf2
(X,Y)dXdY = 1 (36) 

p 

where S is the cross section of the pillbox.
p 

4.2.1 Circular Cylindrical Cavity 

Using the above formu1ation 6 we first obtain an analytical estimation of 
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the delta-function wake potential for a wake field cavity using pill boxes 

having a circular cross section, and subsequently outline a numerical method 

7based on Galerkin's method. 

For a circular cross section with radius ro' !.J. = O. We readily obtain 

w (s) 
z 8Q ~ 2 2 

= 2 ) [1 - cos(~ /r )]cos(s~ /r )/J1(~ )~ (37) 
~ non 0 n n

L p n 

where Jl(~) is the Bessel function of order 1, ~n is the n-th root of JO(~) 

O. and rand s are measured in units of p.
o 

Delta-function Driving Bunch 

The delta-function wake potential froIn the lowest mode, which makes the 

dominant contribution, is given by 

Q 
W (s)/L = S.2 --2[1 - cos(2.43/r )]cos(2.43s/r )
zoo 

p 

Q 1/2= 50 ~cos(4.3s/S ) for r /2.43 » 1 (38) 
os 

where S is the actual cross section of the pillbox. We identify two salient 

features: (1) the smaller the pillbox gap p. the greater the acceleration 

gradient. (2) the greater the radius of the cross section of the pillbox. the 

greater the oscillation period of the delta-function wake potential. However, 

the greater the radius. the smaller is the acceleration gradient (this is due 

to the fact that the energy radiated from the driving charge should spread 

over all pillbox space). Since the lengths of both the driving electron 
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bunch and accelerated electron bunch are much larger than the pill box gap, it 

is understood by Eq.(34) that the radius should be much greater than p. For a 

typical example in which r = 8 (the actual radius = 3.2 em), p = 4 mm, and Q 
o 

= 1 ~C, the acceleration gradient is shown to be of the order of 137 MeV/m. 

Note that this value is a lower limit estimate which does not include the 

contributions from higher modes. 

Gaussian Driving Bunch 

If the driving electron bunch has a Gaussian distribution given by 

1 z2 
g(z) = ( 39)1/2 exp(- 2_2)

(2rr) 0 v 

the acceleration gradie~t for an electron is, for s » 0 

2
dE Qe 0 

= SO --exp(- 9.2~) (40)
2

dz 8 S 

where e = - lei, and 

co 
-1/2 -If 2 2 2 2(2rr) 0 exp(-x /20 )cos[(s + x)/A]dx = exp(-o /2l )cos(s/A) (41) 

-co 

has been used. From Eq. (40), we clearly understand that the size of the 

driving electron bunch should be much smaller than the radius of the cross 

section. An electron at the center of the driving electron bunch is 

decelerated, and the magnitude of the deceleration gradient at the center, 

i.e ... 
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Q) 

-1/2 -1 -If 	 2 2(2n) a L eW (s + x)exp(-x /2a )dx
o z 

is 'exactly half of the maxinlum acceleration gradient for s» a. This 

confirms that the transformation ratio of a device in which both driving and 

accelerated beams traverse the cavity along the same path cannot be much 

. b h 1,5greater t han two f or symmetr1c unc eSt For asymmetric bunches, it was 

shown that the transformer ratio can be much greater than two even for a 

. I d . 6s1ng e mo e cav1ty. 

4.2.2 Elliptical Cylindrical Cavity 

If the cross section becomes elliptic, the transverse wake potential 

becomes especially important. To calculate the longitudinal and transverse 

wake potentials in the elliptic geometry, we first note that the solution 

f(x,y) of Eqs. (34) and (35) should be an even or odd function with respect to 

both x and y: f(x,y) cannot have a mixed parity_ We readily find that the odd 

functions with respect to y do not contribute to either the longitudinal wake 

potential or the transverse momentum kick since the value of such a function 

at y = 0 is zero. rnerefore, an appropriate form for an approximation of 

f(x,y) can be either 

or 

2/ 2 2/ 2 1)~ f (. ') 2i+l 2jf odd ( x,y ) = C( x xb + Y Yb - i 	 L ,odd 1,J x Y (43) 
1,J 
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where C is a constant which is determined by the normalization condition given 

2by Eq. (38) • Then, the Galerkin's method is to let V:f(x,y) + f(X,Y)/A be 

orthogonal to a suitably chosen set of basis functions. For example, to make 

2 2 2 2 
feven(x,y) be orthogonal to all u1 ,0(x,y)= x , u ,l(x,y)=y , u 1 ,1(x,y) = x y ,O

uO,2(x,y) = x 
4 

, Therefore, according to the present method, the mode-

analysis reduces to a standard 	eigenvalue-eigenvector problem, i.e., 

(44) 


where 

ff even (0,0) 


f = 
 f (0,1) (45)
even 


f (1,0) 


-even 

even 
j 
! 

l • J 

the (mn),(ij) elements of the 	matrices A and B are, respectively 

2i-22" 2i 2'-2
A = {[2i(2i - l)x y J + 2j(2j - l)x y J ]E(x,y) +

(mn),(ij) ~ 
p 

(46) 

and 

2i 2jr.( ) 2m 2n dB ( = x y c x,y x Y dx y 	 (47)
(mn), ij) ~ 

P 

2 2 2 2with E(x,y) = x /xb + Y /Yb -	 1. 
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Accordingly, the acceleration gradients and the transverse momentum kicks 

per unit length experienced by the electron on the same path as that of the 

driving Gaussian bunch and the electron on the path passing through the other 

foci of pill boxes are given by, for s » a 

dE = 8~Qe 2 
dz p a 

2 2 2 2 
+ If dd(x ,0)1 A [1 - COS(1/A )exp(-a /2A )COS(S/A )} a,o 0 a a a a 

SnQe 2 2 2 2 L 2' 2 2 = ----2 (xo/xb - 1) {[ f (i,O)x 1] A [1 - COS(1/A )]
a, even 0« a 

p a 1=° 
2 2

X e xp (-a /2i.. ) cos ( s / A ) 
« a 

2 2Xexp(-a /2A )COS(S/A )} (48)
« a 

and 

U (z) SnQe of (x ,0)
x 

= 2{+f (x ,0) «,even 0 i.. 3 [1 - cos(1/i.. )]
2 « - a,even 0 ax a aL p 

of (x ,0) 
x exp(-a2/2A2 )sin(s/A ) + f (x ,0) a,odd 0 i..3 [l - cos(l/A )] 

a a «,odd 0 ox a a 
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2 2SnQe 2 2 2' 2x 
= -2--(x /x - 1) {+[ f (i,O)x 1][ 20 £ (0,0) + 

o b - Oa,even 0 a,even
p a 1= x

b 

3x
2 

o 2 . 2 . 32i+1 2i+ (---2 - 1)[ f dd(l,O)X ][ f dd(l,O)X ]X 
O a,o 0 ° a,o 0 aXb 1= 1= 

(49) 

where the upper and lower signs of "!" apply to the accelerated electron on 

the same path (x = x, y = 0) as the driving bunch and the other path (x = ­
o 

xo' y = 0), respectively. 

Using the method developed, we present numerical simulations to determine 

some salient features of an elliptical pill-box cavity in the next section. 
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5 • NU?IERICAL Sn.mLATION RESULTS 

We first show results for a circular cross section found in the usual 

collinear configuration, followed by those for elliptic cross sections. The 

circular cross section is a limiting case of the elliptical cross section in 

which xb becomes equal to Yb. 

Figure 2 shows the curves of the longitudinal wake potential computed by 

the numerical method for a pill-box of a circular cross section for different 

values of the parameter n. Here, n is the parameter describing the number of 

modes, whose contributions are taken in the summation of Eq. (37). These 

curves show that the summation of the contributions from modes converges as n 

increases (contributions from high modes make only small ripples) meaning that 

we can neglect contributions from modes with mode numbers greater than ten 

(10) even for a lossless cavity. For cavities with losses, higher-number 

modes damp faster so that we need not include these modes for the wake 

potential at s much greater than 1 (or the distance between the centers of the 

driving and accelerated bunches much greater than the pill-box gap, p). 

Figure 3 compares the longitudinal wake potentials, computed by the 

analytical formulation given by Eq. (37), with that by numerically evaluating 

f (i,j) and A in Eq. (49) for a pill-box of a circular cross section. For 
a a 

easy comparision, only two modes (the principal and second modes) are included 

in both calculations. We find that both calculations agree with each other. 

The curves confirm that the result from the numerical method agrees with the 

result from the analytical formulation, which is readily obtained for the case 

of the pill-box of circular cross section. It suggests that the present 
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numerical method can yield accurate results for pill-boxes of elliptical cross 

section. 

Figures ~ and 5 show the longitudinal and transverse wake potentials, 

respectively for several values of parameter a, which represent the length of 

the driving Gaussian bunch. We readily find that both potentials decreases 

as the length increases for a fixed value of total driving charge. 

Figures 6 and 7 show the longitudinal and transverse wake potentials, 

respectively for several values of Yb/xb' which designates the elongation of 

the elliptical cross section (e.g., Yb/xb = 1 for circular cross section and 

Yb/xb = 0 for line cross section) with all other parameters being fixed. We 

readily find that the transverse wake potential decreases as Yb/~ approaches 

1 (circular cross section) as expected. However, we also find that the 

maximum longitudinal wake potential does not become maximum at the values of 

Yb/xb = 1 (circular cross section), indicating that an elliptic cross section 

has a larger acceleration gradient than the circular cross section. The 

acceleration gradient can be greater than 100 MeV/m for a total driving charge 

of 1 ~C, pill-box gap of 4 mm, and an elliptical cross section of xb = 8 cm 

and y =4 cm.
b

Figure 8 shows both the longitudinal and transverse potentials versus 

the distance between the centers of driving and accelerated charges, s. These 

curves clearly reveal that we can find a position at which the the 

acceleration gradient (the longitudinal wake potential) becomes maximum while 

the mome·tum kick (the transverse wake potential) becomes negligible for 

elliptic pill-boxes. 
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6. CONCLUSION ~~ DISCUSSION 

It is well known that the formulation of the wake pote~tials of a 

relativistic current in a cavity can be simplified by imposing the causality 

and using Floquet's theorem for periodic boundary conditions. However, 

previous formulation is ambigous due to a nonrigorous use of Floquet's 

theorem, which is clarified in this paper. The formulation is simplified 

further by utilizing the fact that the cavity eigenmodes naturally decompose 

into two distinctive categories: longitudinal and transverse modes. We 

calculate numerically the wake potentials for elliptic pill-boxes for the new 

fornlul at ion. Numerical calculations reveal two salient features: (i) The 

maximum of the magnitude of the acceleration gradient is not achieved with a 

circular cross section for a given set of parameters such as the total charge 

and length of driving bunch, pill-box gap, and the major radius; in fact, 

elliptical cross section is better suited than the circular cross section as 

far as the magnitude of the acceleration gradient is concerned. (ii) A 

position can be found at which the acceleration gradient becomes maximum while 

the momentum kick becomes negligible. This point is especially important in 

the optimum design of a wake-field accelerator based on the use of elliptical 

cavities. The acceleration gradient can easily exceed 100 MeV/m for a driving 

charge of 1 ~C traversing a standard elliptical pill-box. 
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FIGURE CAPTIONS 


FIGURE 1 Cross section of a two-be anI elliptical pill-box. xb and 

Y are measured in units of the pill-box gap (or height), p.b 

FIGUHE 2 Plots of the longitadinal wake potential of a Gaussian 

bunch vs s obtained by the numerical method for ('! = I, Q = 1 J.1m, 

p = 4mm, a circular cross section with radius r = 20, and n = 10 
0 

and 15. Here, n is the number of modes which are taken from the 

lowest mode, and the potential scale is relative. 

FIGUP~ 3 Plots of the longitudinal wake potential of a Gaussian 

bunch vs s for a = 1, Q = 1 ~C, p = 4mm, a circular cross section 

with radius r = 20. Potential scale is relative, and only the 
o 

principal and second modes are included in both calculations. 

FIGUP~ 4 Plots of the longitudinal wake potentials of Gaussian 

bunches with a = 0 (delta-function wake potential), 1, 2, and 3 

vs s for Q = 1 J.1C, an elliptical cross section with major radius 

~ = 20, minor radius Y = 10, and p = 4 Mm. Six even modes andb 

six odd modes from the lowest mode were included in this 

calculation. Potential scale is relative. 



FIGUP£ 5 Plots of the x-component of each transverse wake 

potential of each Gaussian bunch of each G = 0 (delta-function 

wake potential), 1, 2, and 3 vs s for Q = 1 ~C, an elliptical 

cross section with major radius xb = 20, minor radius Y = 10,b 

and p = 4 rn:L.'l. Six even modes and six odd modes were included in 

this calculation. Potential saie is relative. 

FIGURE 6 PLots of the logitudinal wake potentials vs s for 

G = 1, Q = 1 J.lC, P = 4mm, and elliptical cross sections of x = b 

20, and Yb 0.1, 1, 5, 10, 15, and 20. = Y =20 corresponds~ b 

to a geometry of circular cross section. 

Figure 7 Plots of the transverse wake potential vs s for G = 1, 

Q = 1 J.lC, P = 4mm, and elliptical cross sections of xb = 20, and 

Y = 0.1, 1, 5, 10, 15, and 20. Potential scale is relative.b 

Figure 8 Plots of both longitudinal and transverse wake 

potentials vs s for G = 1, Q = 1 J.lC, P = 4 mm, and elliptical 

cross section of xb = 20 and Y = 10.b 
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