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Composite models in which the basic fields are only fermions l 

have always been one of the main interest areas of physics. More 

recently in a series of papers, massless scalar fields 2 and gauge 

3FEn 11: 'fTT. fields • 4 have been constructed in terms of spinor fields starting 

. L""lry, :;; "....: .......4.Bfrom a Lagrangian with a dimensionless spinor self-coupling. This 

coupling, since it is dimensionless, is necessarily nonpoly.nomial~,~ APR 1 1983 but by introducing two auxiliary fields it can be put into a 

~-:::J polynomial form. Moreover, in the path integral formulation, the 
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shows that one of the auxiliary fields propagates as a gauge boson 

provided that the dependence of the bare coupling e on the cutoff 

A is given by4 
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Here C is the index of the adjoint'representation of the gauge
\,le show that, in the framework of a purely fermionic a ~ 

group and is the index of the representation of the gauge
model, the smallest gauge group which has acceptable fermion 

Cf'~ group to which chiral left handed fermions belong. For Dirac
SU(16). The simplest embedding of SU (5)• ~ representations is 

fermions is to be replaced by 2ef . In general the index Cinto SU(16) implies a maximum number of three-ghiral families 
Cf 


for any representation of the gauge group is defined by
of fermions. APR 1 5 _ 
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Here Ta are the generators in the particular representation. 

is to be consistent, the dependence of the bare 
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coupling on the cutoff has to be identified with the similar 

expression obtained in standard gauge theories, i.e. 

2 _e__ = (3) 
41T 

Hence equating the r.h.s. of equations (1) and (3) gives 

43 (4) 
C 16 a 

This then is the condition which has to be satisfied if the 

gauge bosons are composites of fermions. Of course for chiral 

ferrnions the condition that the fermion representation should be 

anomaly free must also be satisfied. 

In this paper we investigate the groups and their particular 

representations satisfying equation (4) and the anomaly free 

condition. It turns out that the acceptable group representations 

are rather large. To get a handle on the phenomenology we use the 

strategy adopted in supersyrnrnetric grand unified theories S• 

Namely, when the gauge group is broken to one of the standard 

grand unifying groups such as SU(5)6 or SO(10)7 the number of 

standard fermion families in the left handed multiplets (5 + 10) 

of SueS) or 16 of SO(lO) must at least be three. All other 

multiplets should either be real themselves or paired with their 

complex conjugate multiplets into a reducible real multiplet. 

These real multiplets can be given SU(5) or SO(lO) invariant 

masses and the assumptionS is that their masses are of the order 

of the grand unification scale ~ 1014 GeV. The remaining 

' .. 

3 ~ 

~i~ts would then be massless at the grand unification scale 
.. "',.fIt 

and are to be identified with the l' light" families of quarks and '., 
leptons observed today. 

The smallest groups of the unitary, orthogonal or symplectic 

type with representations satisfying equation (4) are respectively 

SU(B) ,SO(lB) and Sp(7) • In all cases fermion representation 

is reducible. It turns out that no exceptional group has represen

tations satisfying equation (4). Of these groups, the symplectic 

type is not acceptable since symplectic groups only have real 

representations and the number of chiral families obtained is 

zero. SO(lB) has complex representations but when this group is 

broken to SUeS) or SO(IO) the complex structure disappears 

and each multiplet appears together with its complex conjugate 

multiplet. Hence this group also yields zero number of chiral 

families. It turns out that of all the representations of SU(B) 

which satisfy equation (4) none of them can be made anomaly free 

hence this group is also ruled out. Here, note that since the 

index of a ~tation is the same as the compler conjugate 

representation, equation (4) can only tell us the total number 

of irreducible multiplets and antirnultiplets in a given represen

tation. Since the anomaly of the multiplet and an antimultiplet 

differ by a sign it is the anomaly free condition which can decide 

how the total number is divided among multiplets and antimultiplets. 

Disregarding this ambiguity SU(B} . has 67 different (reducible) 

representations which satisfy equation (4) • However none of these 

can be made anomaly free by dividing the total number of multiplets 

and antimultiplets in all possible ways. 
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These considerations lead us to 5U(16) as the smallest 

group that has representations which satisfy equation (4), are 

anomaly free, and will give chiral fermions when broken down 

to 50(10) or 5U(5) .It is amusing to note that 5U(16) has 

been advocated as a grand unifying group based on. entirely 

different considerations~. It turns out that there are 39 rep

resentations of 5U(16) which satisfy equation (4) and which 

are anomaly free. 11 of these 39 representations are real. 

They will yield no chiral fermions at the grand unification 

scale and thus predict zero families • Thus we are left with 

28 representations listed in table 1. We denote the vector 

representation by V, the two index antisymmetric representation 

by A, the two index symmetric representation by 5 and the 

adjoint (regular) representation by R. The indices and the 

anomalies of these representations are listed in table 2. For 

5U(16) C 32 , hence equation (4) implies that C has to be a f 

86 . Using table 2 , this and the anomaly free condition imply 

that the entries in table 1 satisfy 

v + V + 14(A + A) + 18(5 + 5) + 32 R 86 
(5) 

v - V + 12 (A A) + 20(5 5) o • 

Since 5U(16) is rather a large group compared to 5U(5) and 

50(10) , there are several ways of embedding these groups into 

5U(16). We now turn to discuss these embeddings and the resulting 

implications for the number of fermion families. 

a. 5U(16) ---+ 5U(5)X[U(l) 111 - 5U (5) 

This is the simplest embedding of 5U(5) into 8U(16) • The 

intermediate stage is shown just as a bookkeeping device to show 

how 5U(5) is embedded into 5U(16) . This embedding would 

result if for example the symmetry breaking occured in eleven 

steps of 5U(n) ~ 5U(n-l) . At each stage a vector goes into 

a vector plus a singlet, an antisymmetric tensor goes into an 

antisymmetric tensor plus a vector, a symmetric tensor goes into 

a symmetric tensor plus a vector and a singlet. Hence, disregarding 

singlets, one has 

5U(16) ~ 5U(5) 

v-v 
(6) 

A - A + 11 V 


5 _ 5 + 11 V 


since no light fermions belonging to the symmetric representation 

of 5U(5) are observed one must choose solutions satisfying 

S ~ 5 in table 1. These are the solutions 1-9 • Number of chiral 

families (V + A) (5 + 10) of 5U(5) which are left after 

all real representations and pairs of complex conjugate represen

tations are eliminated is just given by the number A - A . Hence 

there is one family for each solution 1-5 , two families for each 

solution 6-8 and three families for solution 9. Since there are 

already three families observed in nature we are uniquely led to 

solution 9 as the only acceptable one. 



76 ~ " 

b. Here we would like to consider the breaking SU(16) ---+ 

SO(lO) such that the sixteen dimensional vector representation 

of SU(16) goes into the sixteen dimensional spinor representation 

of SO(10). Under this kind of breaking 

SU(16) --+ SO(lO) 

V --+ 16 
(7) 

A --+ 120 

5 --+ 10 + 126 

Here the only complex representations of 50(10) are the 16 and 

the 126. Since there are no observed fermion families which 

belong to the 126, again we must seek solutions with S 5 in 

table 1. An inspection of the table shows that there are twelve 

families for solutions 1-5 , twenty-four families for solutions 

6-8 and thirty-six families for solution 9. The number of families 

implied for this kind of symmetry breaking is rather large and 

perhaps unacceptable. We would like to note that this kind of 

symmetry breaking is impossible in the Higgs scheme since there 

is no nontrivial representation of SU(16) which yields a singlet 

of SO (10) • 

c. SU(16) ---+ SU(5)X SU(5)X SU(5) ---+ SUn(S) 

Here, the final SU(5) is the diagonal subgroup of the three 

SUeS) factors in the previous stage. Again disregarding singlets, 

the representations break in the following pattern 

SU(16) ---+ SU(5)X SU(5)X SU(5) ---+ SUn (5) 

v ---+ (V,l,l)+perrnutations ---+ 3V 
(8 ) 

A ---+ (A,l,l)+(l,V,V)+(V,l,l)+perrn. ---+ 3S+6A+3V 

S ---+ (S,l,l)+(l,V,V)+(V,l,l)+perm. ---+ 6s+3A+3V 

Hence to cancel S in the SU(5) stage we must pick solutions 

satisfying A - A + 2(S - S) = a in table 1. These are the 

solutions 10-13 and each of them imply 9 families of (5 + 10) 

of SU (5) • 

d. SU(16) __ SU(8)X SUeS) ---4 SUo(S) -- SU(5) or 

SU(16) --+ SU(lO) -+ SU(5)X SU(5) -- SU (5)o 

A detailed analysis shows that these two symmetry breaking patterns 

imply the same solution and the same number of families. Note that 

in both cases the final SU(5) is embedded as a diagonal subgroup 

of SU(n)X SU(n) which is embedded into ~U(16) • Here we will 

only give the argument for the second case. 

SU(16) -+ SU(lO) ---+ SU(5)X SU(5) --+- SUD (5) 
(9) 

V -+ V ---4 (V,l)+(l,V) -2V 

A -+ A + 6V ---+ (A,l)+(1,A)+(V,V)+6(V,1)+6(1,V) - S+3A+12V 

S _S + 6V - (S,1)+(1,S)+(V,V)+6(V,1)+6(1,V) _3S+A+12V 

Hence we must pick solutions satisfying A - A + 3(S - S) = a 

in table 1. There is only one solution satisfying this condition. 

This is solution 14 and after cancelling resulting representations 

with complex conjugate representations precisely eight families 
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of (5 + 10) of SU(5) are left. 

e. One can also pick more exotic embeddings·of SU(5) 

into SU(6). One case is given by SU (16) - SU(lO) - SU (5) 

where in the last stage the symmetry breaking is such that the 

ten dimensional vector representation of SU(lO) goes into the 

ten dimensional antisymmetric representation of SU(5) • Another 

case is SU (16) ...,-........,. SU (15) ---+ SU (,5) where in the last stage 

the symmetry breaking is such that the fifteen dimensional vector 

representation of SU(15) goes into the fifteen dimensional 

symmetric representation of SU(5) • An analysis shows that 

there are no solutions compat,ible with our assumptions in these 

cases. 

We have found solutions containing 1,2,3,8,9,12,24,36 

families. The solutions with eight or more families follow from 

rather exotic types of symmetry breaking patterns, whereas the 

simplest pattern implies a unique solution with three families. 

A fundamental assumption in reaching this conclusion is that 

the non-chiral fermions obtain masses at the grand unification 

scale. Although this assumption is reasonable , the model under 

consideration cannot explain why this is so. However once this 

assumption is made the conclusion for the number of families is 

inevitable. Interestingly enough there do not seem to be any 

solutions which imply any number of families between three and 

eight. Hence if a fourth family is experimentally discovered 

then this model implies that there are at least eight families. 

Based on our findings we are unable to assert that this 

9 

model is perfect with regard to its implications about the number 

of families. However, the fact that the model contains only 

fermions as elementary.fields and that it has something to say 

about the numper of quark-lepton families is both interesting 

and appealing. 
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v V A A S S 

1 0 12 2 1 0 0 

2 2 14 3 2 0 0 

3 12 24 1 0 1 1 

4 14 26 1 0 0 0 

5 30 42 1 0 0 0 

6 1 25 2 0 0 0 

7 3 27 3 1 0 0 

8 17 41 2 0 0 0 

9 4 40 3 o , 0 0 

10 0 4 2 0 1 2 

11 2 6 2 0 0 1 

12 4 8 3 1 0 1 
I--

13 18 22 2 0 0 1 

14 5 21 3 0 0 1 

15 2 6 0 3 2 0 

16 5 13 0 1 2 1 

17 7 15 0 1 1 0 
,--

18 3 19 0 2 2 0 

19 9 17 1 2 1 0 

20 6 26 0 0 2 1 

21 8 28 0 0 1 0 

22 4 32 0 1 2 0 

23 10 30 1 1 1 0 

24 16 28 2 1 0 0 

25 5 45 0 0 2 0 

26 11 43 1 0 1 0 

27 23 31 0 1 1 0 

28 24 44 0 0 1 0 

R 
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0 

0 

1 

0 

1 

0 

0 

0 

0 

1 

0 
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0 

0 

1 

0 

0 
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0 
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0 
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