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Abstract 

The Shnirilman theorem on the global quasidegeneracy in the qua­
siclassical limi.t is discussed in detail using the single nonlinear resO:­
nance in the pendulum approximation as a typical example. Various 
tunneling asymptotics based upon the Mathieu and Hill equations are 
analysed. Particularly, a new intermediate asymptotics in the pertur­
bation parameter of general Hill's equation has been found and was 
studied analytically. The main attention is paied to the model of no 
spatial symmetry with only time-reversal invariance left. Anew, tun­
neling, time scale of quantum chaos is introduced, and its impact on 
the quantum dynamics is considered: 
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Many years ago Shnirelmall had announced [1] and recently 
proved [2] the theorem on asymptotic multiplicity of the quantum 
spectrum in a classically J<AM-integrable system. Here is a few 
first lines from Ref. [1]: 

" Let an arbitrary smooth Riemannien metrics, sufficiently close 
to the Euclidian one, be given on a 2D torus M, and let Ll be the 
Laplace operator of the former metrics, A= v' Ll, Ut, U2 ... the 
eigenfunctions of Awith eigenvalues Al < A2 ::; ... 

Theorem. VN3CN > 0, Vn > 1 min(An+l - An, An ­
An-d < CNn-N 

... Thus, the asymptotic multiplicity of the spectrum is a stable' 
phenomenon which does not necessarily require the presence of 

, any symmetry of the manifold. As a matter of fact the symmetry 
of the geodesic flow is of importance which is always present." 

In Ref. [2] this theorem was formulated (and proved) in a more 
modest way: 

AD.2.7. Theorem. IfAl is a 2D torus, and Condition AD.2.6 
is valid, then the spectrum of Ais asymptotically multiple, i.e. for 
each N > 0 there exists eN > 0 such'that 

min (An+l - An, An - An-I) < CNA-N 
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The principal difference is in omitting the statement Vn > 1 (see 
above) even though in an informal explanation of the latter the­
orem Shnirelman still insists [2]: " ... the whole sequence of eigen­
functions is asymptotically multiple. (We guess that in fact, in 
the generic case, this sequence is asymptotically double)." 

Recently there were many discussions on a possible physical in­
terpretation of this, less known, Shnirelman theorem. The correct 
interpretation is important for the attempts to extend its impli­
cations from a v~ry specific Shnirelman's example onto a ,more 
broad class of quantum systems. 

Two possible mechanisms were considered: 

(i) 	the effect of the classical KAM structure of everywhere dense 
set of resonances, and' 

(ii) 	the quantum tunneling which transforms the exact degen­
eracy in the classicallitnit into a quasidegeneracy that is a 
splitting of the energy levels, relatively small' compared to _ 
the mean level spacing. 

The implications of the first mechanism are still vague but, 
most likely, that can provide ,the quasidegeneracy for a relatively 
small number of levels only [3]. 

Unlike this, the tunneling quasi degeneracy is well known from 
the beginning of quantum mechanics (a standard example is the 
spatially symmetric dou hIe-well potential). However, in the 
Shnirelman theorem a ~ifferent symmetry is· only required, one 
with respect to the tiIne reversal. The corresponding quasi degen­
eracy, produced by the tunneling in momentum space was also 
studied recently [4-6] but for the accidental degeneracy in the 
frame of the theory of avoided energy level crossings. 

The tunneling mechanism of the global quasi degeneracy, pre-. 
dicted by Shnirelman, was checked and received a preliminary 
c~nfirmation [7] by computation of the level spacing distribution 
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following 'a suggestion in Ref.[S]. Simple analytical estimates were 
also derived which further s.upport such an interpretation [7]. The 
mechanism was conjectured to work in some completely integrable 
systems as well. 

Here we analyze the latter case in some detail taking the ap­
proach similar to that in Ref.[5]. It is based on the reduction of 
the problem of tunneling through 'a nonlinear resonance to the 
Mathieu equation [7]. Two critical remarks on this approach in 
the first Ref. [4] seem to us irrelevant. 

The first remark is: "It is unlikely that the approximations 
used by Uzer et al involving quantizing the Birkhoff - Gustavson 
effective Hamiltonian are valid in the limit Ii -+ 0." To the con­
trary,just in the quasiclassical region the classical canonical trans­
formation~, which form a basis of this approach, acquire unam­
biguous quantum counterpart, the corresponding unitary trans­
formations [9,10]. 

The second remark: "Another difficulty with their approach is 
that it is the rational tori which are destroyed by perturbations' 
in a generic system; thus their theory describes the quantiza­
tion of tori which do not exist" is apparently a misunderstanding. 
Indeed, sufficiently weak perturbation does not destroy the res­
ona~ce torus but only modifies it, particularly producing an ex­
ponentially narrow chaotic layer along the resonance separatrix. 
The accuracy of this approximation is the same as that for the 
adiabatic invariance (see, e.g., Refs.[11,12]). 

1. Tunneling asymptotics of the Mathieu equation 

In Refs.[5,6] the tunneling and quasi degeneracy were consid­
, ered for weakly nonlinear resonances that is for a perturbed linear 

oscilla.tor. 'The structure of such resonances is generally rather 
complicated and, moreover, essentially depends on a particular 
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model. Here we consider a simpler case of the ,strongly non­
linear resonance when the unperturbed frequencies are energy­
dependent. As is well known (see, e.g., Ref.[ll]) such a reso­
nance admits, for sufficiently weak perturbation E: ~O, a univer­
sal description by the, pendulum resonance Hamiltonian (includ­
ing many-dimensional oscillations). After appropriate canonical 
transformations this Hamiltonian can be written in the form: 

2n
H ,= 2" + E:. cos (20) (1;1) 

where n, (J are the action-angle variables, n being the angular 
momentum of free (E: = 0) rotation in (J. 

In quantum case 11, 0 becomeopera.tors, particularly in quasi­
classical region (n -+ (0) n = -ioloO (Ii = 1). The SchrOdinger 
equation for eigenfunctions of system (1.1) is the Mathieu equa­
tion 

tP1/1
d02 + (a - 2q· cos (20» 1/1 = 0 (1.2) 

with a = 2En{E:) and q 2- E: where integer n enumerates energy 
levels identified in the unperturbed limit, as EiO) = n 2 /2. The 
family En(E:) of periodic solutions to the Mathieu equation forms 
a well-known picture of the parametric resonance 'tongues' (see, 
e.g., Fig.SA in Ref.[13]). . 

Tunneling in momentunl space, or the above-barrier 
backscattering. The resonance separatrix at energy Ell = f 

corresponds to the parameter 

2q f . 
g=-=-=l (1.3)

a 'E 
Consider the region 9 < 1 outside the resonance where the classi­
cal motion is a nonuniform rotation in (). In model (1.1) there a.re 
two symmetric rotations in opposite' senses which are· exchanged 
under the exact discrete symmetry with respect to the time re­
versaL In quantum mechanics each rotation, is represented by a 
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wave propagating in one direction. Neither of these two waves 
can be eigenstate of Hamiltonian (1.1) because of the above­
barrier backscattering for &fly £ > 0 that is for any violation of 
the continuous symmetry of the free homogeneous rotation. In 
the latter case there is exact (double) degeneracy of each eigen­
state. If £. > 0 the eigenstates are formed by symmetric and 
antisymmetric superpositions of both rotations with different en­
ergies E+ - E_ = 6.. As n -+ 00 the energy splitting 6. -+ 0 
which is called qttasidegeneracy. 

Equation (1.2) for the quantum eigenfunctions can be also 
viewed as the motion equation for a classical linear oscillator with 
unperturbed (q = 0) frequency Wo = Va under the parametric 
perturbation, phase fJ playing the role of time. Quasiclassical re­
gion (n -+ (0) corresponds here to the adiabatic perturbation with 
respect to the unperturbed motion t/J(O)( fJ) '" exp (infJ). Neverthe­
less, parametric resonances occur for arbitrarily large n satisfying 

(1.4) 

The instability band has a finite width 6.a ~ 4npo proportional to 
the maximal instability rate po at the exact resonance [14,15,12]. 
On both edges of the band Jt = 0, and the motion is periodic. 
These solutions correspond to a splitted quantum eigenstate with . 

6.a . 
6. = 2 = 2npo = 2IV-r,rl (1.5) 

where V-r ,,. is the Inatrix element of the adiabatic perturbation 
between the two states of ;:t nonuniform rotation. If the unper­
turbed energies of the two states differ by 6.0 the relation (1.5) 
takes the form (see, e.g., Ref.[16]) 

(1.6) 


and describes the so-called avoided crossing of the two energy 
levels. 
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The width of the instability band for the Ma~hieu'equation 
with g.« 1 was calculated in Ref.[14] (see also Refs.[18,19]): 

The latter, asymptotic, relation has a reasonable accuracy even 
for n = 1 (!). This result was confirmed in Ref.(15] by a different 
method using the asymptotic resonance theory. 

The same result is obtained employing thestaridard quasiclas­
sical relation for the tunneling energy splitting (see, e.g., Ref.[16], 
and Appendix A below): 

A 2w(g) ( , s' )'
Un ~ exp - n (1.8)

7r 

Here 
v'1 + 97r 

(1.9)w(g) :;:: 2 I«(k) va ~ n 

is the mean rotation frequency, K(k)is the. complete elliptic in­
tegral of the first kind with k2 = 2g/(1 + g), and the tunneling 
action in n < 

Sn = i: 18(n)1 dn (1.10) 

is given by the integral over a classically forbidden 8 path. 
Since 9 = f/E in Eq.(1.7) is a classical parameter the depen­

dence of ~/A on quantum parameter n (and, hence; on Ii) is the 
simple exponential in agreenlent with Ref.[4}. However, the pref... 
actor A = 2n/7rE ....... n,(in units ofRef.[4])is different (A ....... it~12). 
Apparently, the prefactor is not univers~. Also, I wonder . if. it 
was really possible to discern the dependence ....... n,3/2 from that 
....... /i nunlerically (see Fig.2 in second Ref.[4]). 

Notice that dependence (1.7) holds true for a completely in­
tegrable system (1.1) in agreement with a conjecture "in Ref.[7J 
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(see also ,Ref.[6)) but contrary to the conclusion in Ref.[4]. We 
remind that a single resonance is integrable, including a many­
dimensional case, in spite of broken continuous symmetry in (J. 

The perturbatiQn parameter € in this case does not introduce any 
chaos but only switches from continuous to a discrete symmetry. 
What is really necessary for quasi degeneracy is a violation of the 
continuous symmetry. 

For a fixed n the dependence of the energy splitting on symmetry­
breaking parameter € is a power law with integer exponent (1.7) 
as was· numerically found in Ref.[4]. However, this exponent is 
not always integer either (see below). 

The quasi degeneracy can be distinguished from the level fluc­
. tuations if 1:1 « 1:1, the mean level spacing. The latter depends 

2on the number of freedoms F, roughly as II '" n - F • Hence, the 
condition for quasidegeneracy takes the form 

(1.11) 


and is always fulfilled, as n -? 00, for any 9 < 1 that is for any ­
rotational state but not only for 9 « 1 [6]. 

Tunneling in (J-space. Consider now the region 9 > 1 in.:. 
side the resonance separatrix with bounded oscillations in O. Here, 
there is also quasidegeneracy, for 9 » 1, which is explained by the 
tunneling through a potential barrier. Asymptotic relation En (€) 
in this region is derived by the standard quasiclassical quantiza­
tion (see, e.g., Ref.[16] and Appendix B). In the simplest approx­
imation[13] it is given by 

En :::: -f + 2,fi (n + ~) (1.12) 

which is reasonably good in the lower half of the potential well: 
- €- < En < 0 (for exact relation and a better ~pproximation in 
the whole range IEnl < € see Appendix B). Integer n = 0,1,2... 
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enumera.tes the energy levels from the bottom of the potential 
well and cOrresponds to that of symmetric (with respect to (J =0) 
eigenfunctions of En.(0). 

The quasiclassical energy splitting is described. by the standard 
relation (1.8) with oscilla.tion frequency 

w(g) = ;~ ~ 2-/f (1 _ 1 ~ ') (1.13) 

where / = l/g < 1; k2 = (1 + /)/2, and with tunneling action 
(/ > oj: 

(1.14) 

Here nw ~ 4v'£/1r (B.3) is the total number of states within each 
of the two potential wells. 

Multiplicity of quasidegenel"acy. Energy splitting outside 
the resonance (g < 1) in ID approximation (1.1) is double inde­
pendent of m (in Eq.(A.l» because there are only two classically 
separated symmetric domains on both sides of the resonance. In­
side resonance (g' > 1) the situation is more complicated. For 
the standard Mathieu equation (1.2) the splitting here is also 
double because the second-harmonic perturbation produces two 
classically separated and symmetric potential wells. In case of 
the first-harmonic resonance (V(0) = cos 6) the tunneling into a 
single barrier results in a slight shift of eigenvalues without any 
splitting. In the classical picture (1.1) the parametricresonance 
occurs here for any half-integer n. However, in quantum mechan­
ics n must be integer if the physical perturbation is 21r-periodic. 
Hence, half of periodic solutions disappear together with the en­
ergy'splitting for large q while the splitting for small q persists. 

In case of the perturbation with arbitrary harmonic (V(O) = 
cos (mO), see Appendices A and B) the splitting is generally-mul­
tiple bec~use there are additional periodic solutions inside each 
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sta.ble region. The simplest exa.mple is the Ma.thieu ~quation itself .1~ 
which' has both 21r- and 1f:"periodic solutions, hence the multiplic­
ity MII'P = 2. Generally Mill' is equal to the number of linearly in­
dependent solutions with a period To such that both mTo/21f and 
21rIT, are in~eger. This is equivalent to a decomposition of har­
monic number m into the product of two integers: m = ml . m2. 
If, for example, m = p > 1 is a prime number there are only two 
such decompositions: m = 1 . P = p. 1. This implies two solu­
tions of periods To = 21fIp and 21r, respectively, hence Msp(p) = 2 
(doublet). Since the total number of solutions is p, p - 1 of them 
(with period 21r) are exactly degenerated in spite of perturbation. 
These are the solutions shifted by 21r Ip in o. Altogether, there 
are p such solutions but only p - 1 of them are independent as 
the sum of the former is zero. Particular case of m = 3 was con­
sidered. in detail in Refs.[17]. Another simple example is m = ph 
for which M." = k +1. Apparently, the upper limit M.,,(m) = m 
is reached for m = 1 and 2 only. 

In a many-dimensional system of F freedoms perturbed by a 
single resonance there are additional F -1 exact motion integrals 
I,. (r· 2,3, •.., F) beside the resonance one, the energy or the 
corresponding pendulum action It [11]. Transitions I,. -+ -I,. in­
crease the multiplicity of quasidegeneracy both outside and inside 
the resonance provided dependence of the perturbation on other 
phases Or. This is only possible in the presence of additional res­
onantes when the motion is no longer completely integrable. The 
maximal mUltiplicity in this case is M,,, = 2F. This simple con­
sideration gives some support on a rich quasi degeneracy structure 
in many freedoms [7]. In other words, the simple backscattering 
turns into a. multidimensional scattering in the action space, Ule 
quasi degeneracy corresponding to some rational scattering angles 
on the lattice of quantum numbers. 

Multidimensional tunneling was recently considered in Ref.[25]. 
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2. The Hill equation: distorted resonance, , 

The ~1athieuequation posseses both temporal, or time-reversal, 
(n -+ -n) as well as spatial (0 -+ 0 + 27r'lm;0 -+ -0) discrete 
symmetries. In light of the Shnirelman theorem, discussed in the 
Introduction above, it is interesting to consider a model with only 
time-reversal symmetry left. To this end we need a more general 
periodic perturbation in resonance Hamiltonian (1.1): 

ml 

V(O) = 2: Vm cos (,nO + 4>m) (2.1) 
m#;O 

represented by a finite or infinite (mJ.= (0) Fourier series. The 
corresponding Schrodinger Eq.(1.2) is known as Hill's equation. 

For a particular ha.rmonic m the rota.tion energy splitting is 
given by (see Appendix A): 

(2.2) 


with factor C·~ I.' 
Critical perturbation harnlonic. Asymptotically (n -+ 

(0), the main contribution to ~n comes from a certain critical 
harmonic m = me which, depending on the rate of Vm decay and 
other parameters, may l>e the lowest one (me = 1), the highest 
(me = mJ) or intermediate (1 < Inc < mj, see Appendix C). In 
case of infinite Fourier series (2.1) the value of m in Eq.(2.2) is 
bounded from above by the first instability zone (the main parar 
metric resonance): m ::; 2n. 

To the best of my knowledge the intermediate regime haS not. 
been considered as yet. On the contrary, there are various asser­
tions in the literature that such regime does not exist at all. For 
example, inthe second Ref.[IS] there is a brief remark ('withou{ 
reference): "For a general Hill's equation (with arbitra.ry cOeffi­
cient V(B) [in our notations, see Eq.(2.1)]) the situation 'is com­
pletely different; the width of any zone decreases for typical V(O) 
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as the first power of f.". Apparently, the (implicit) formulation of 
the latter problem is different, namely, to study the asymptotic 
behavior of a resonance zone as f. --t 0 fQr a fixed n. Then, me 
increases and eventually reaches the upper linlit me = 2n below 
which (in £) Eq'~(2.2) gives 

2 2 
~n ~ -Cgn Vin (2.3) 

. 11:' 

so that the splitting is indeed simply proportional to the pertur­
bation strength 9 = f./ En. Here we consider also the intermediate 
asymptotics: 1 » f. » (.e where (.c is determined by the con­
dition: mc(f.c)= 2n (see Eq.(C.7)).- This is only possible for a 
sufficiently fast decay of perturbation Fourier harmonics. Appar-· 
ent1y, the critical decay is approximately the simple -exponential: 
V", ~ exp (-tTm). 

The same is true for the finite Fourier series as well. In this case 
the critical fc is found from the equation mc(fc) = mJ' Again, 
there is an apparent contradiction with the rigorous results in 
Ref.lIS] that me =mJ always that is for arbitrary V(O) but only, 
as far as I understand, in the limit f. --t O. 

3. Statistics of quasidegeneracies 

A global characteristic of quantum degeneracy is the statistics 
of energy splittings ~ recently studied in Ref.[7] in an attempt 
to clarify the physical meaning of the Shnirelman theorem. The 
model used was sOlnewhat different from Eq.(1.1), namely, the 
kicked rotator on a torus specified by the Hamiltonian: 

(3.1) . 


where dT is the 6-function of period T, and the following pertur­
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bation 
V(O) -' cos 0 - ~ sin (20) . (3.2) 

was,chosen to completely destroy the spatial symmetry. For.a,suf­
ficiently small classical perturbation parameter K = kT ~ 0.,2 « 
1 we may expect the global behavior ,particularly, degeneracy 
to be close to that·, for integrable system (1.1) with perturbation 
(2.1) and mJ = 2 (see also below). There is, of course, a chaotic 
component of the motion but it is relatively small . .> 

Circumference of the torus N (in n) is equal to the total num­
ber of. quantum ~tates. There are. r = NT121r - 2 identi~ 
resonances at n = 0 and n = N12. Each of them is characterized 
by the potential well (3.2) with IV(O)I :5 3v'3/4 =Yo" 

The ~-statistics is described by integral probability 

pes) = ~- ~ (3.3) 

where s = fl.1 fl. = 2fl.' is the quasienergy splitting normalized to 
the mean level spacing fl. = 21r ITN . 1Ir = 1/2. The minimal· 
s ~ 0 is reach~d at n = NI4 (because of the two resonances. 
present), and the total number of splitted states cannot exceed 
N/2. 

According to the above theory the splitting is. determined, for 
sufficiently small s, by the second harmonic of perturbation (3.2) 
with f = kiT and the classical parameter 

kiT I( (N)2 (3.4)9 = n2/2 = 81r2 -; 

Using Eq.(2.2) we obtain 

Ins=ln(~)+lnn+2n(L-lnn); L=ln(~N) (3.5) 
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The dependence of [ = N P on In s was found in a certain range 
of s to be close to linear one (Fig.1). Indeed, Eq.(3.5) implies 
(n ~ 1): 

dins (C9)
1 1· 1dT = T=1- 2n -L+lnn~l+l.p>l; l.p=-2" In '2 
(3.6) 

where l is the empirical slope of function [(Ins), and l.p is the 
slope for a fized classical parameter nlN, or 9 (see Eqs.(2.2) and 
(3.4». The former is always less than 1 contrary to empirical 
result I ~ 1.8 [7]. The difference is clearly seen in Fig.l. 

~Or-------~----~------~----------~ 

200 

100 

.so 

-25 -20 -15 . -10 -5 

Ins 

Figure 1: Statistics of quasi degeneracies in model (3.1): k =6 ­
10; [(.~ 0.15 - 0.25; N = 501 (after Ref.[7]). Solid line is the 
best fit of numerical data[7] to theoretical dependence (3.5) with 
C = 1/CJ. 
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To understand the origin of discrepancy the derivativedlJdins 
is shown in Fig.2 together with theoretical dependence (3.6). In 
case of a single harmonic (Mathieu's' equation) the factor C ~ 1 

3.0 

2.5 

0 0 

0 0 

001 

,...... 
C'I.2 

C....... 
........" 

~ 
6:'. 
~ 
'"0 

2.0 

1.5 

1.0 

O.S 

0 
0 

0 

0 

0 

0 

0 

0 

o· 

---­Co=O.S7 

0.0 
-20 ·18 -16 -14 ·12 -10 -8 .;(i 

Ins 

-Figure 2: Derivative of the distribution function in Fig.I. Solid 
line shows 4ependence {3.6} with the same fitting parameter Co = 
0.57. 

with renormalized" 9 = gVm = g/2 in Eq.(3.6)· {see Eq.{2.2} and 
Appendix A}~ For Hill's equation a plausible approximation would 
be renormalization to the full amplitude of the perturbation: 

9 = gVo (~.7) 

Then, C :::::s 2Vo = 3V3/2 :::::s 2.6 in Eq.{3.6). The best fit, shown in 
Fig.I., gives a reasonably close value of C -:- 3.1 (fitting parameter 
Co = C-l/2 = 0.57). Beside it poor theoretical approximatio~ 
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for C used, apparently s is not small enough owing to numeriCal 
errors in computing eigenvalues for s ~ 10-9 • I think this is the 
main cause of the above discrepancy. 

Instead of the integrable approximation we may use Eq.(1.5) 
with matrix element for the direct one-kick transition -n -+ n of 
approximat~ kick operator [7] 

V = exp (i i· sin (20) ) 

Then, 

(3.8) 

which differs from Eq.(2.2) used above by a small classical fac­
tor nJN, thus giviIlg negligible ~ for 9 « 1. Nevertheless, this 
a.pproach provides a correct estimate for lsp [7] but not for ~. 
The main reason for underestimating ~ is apparently in that the 
uniform-rotation eigenfunctions are used in evaluating Eq.(3.8) 
instead the nonuniform ones (cf. Eq.(1.5». 

The region inside the resonance does not contribute to quaside­
generacy because of the broken spatial symmetry [7]. Apparently, 
the second (later) formulation of the Shnirelman theorem (see In­
troduction above) is more accurate or,' perhaps,more general. 

4. Two symmetric resonances 

JIamiltonian (1.1) describes a: nonlinear resonance to some ap­
proximation only. Next terms, e.g., ,....., n3 would generally de­
stroy the symmetry of sta,tes ±n leaving behind only accidental 
degeneracy with some avoided level crossings. In case of exact 
time-reversal symmetry the only exclusion corresponds to the res­
onance exactly at no = O. We remind that in model (1.1) variable 
n is generally the difference (n - no). . 
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However, under time-reversal symmetry to each resonance shift­
ed from zero (no f:. 0) there is symmetric resonance at -no. This 
restores the global tunneling and quasi degeneracy. 

Consider Hamiltonian 

n2 

H = "2 + 2f' cos (mO)· cos (Ot) 

2 . 

=~ + f· cos (mO - Ot) + t:. cos (mO + Ot) (4~1) 

which describes two resonances at no = ±O/m. This system is no 
longer completely integrable but for a large adiabaticity param­
eter A = no/J2f = v'To chaotic component is of exponentially 
small measure in A [11] (the so-called KAM integrability). For 
the problem in question it is unimportant (cf. Section 3). 

There are three regions different with respect to the tunnelitig 
in momentum space: 

(i) outside resonances where the tunneling goes through both of 
them and the region inbetween, 

(ii) between resonances' with tunneling away from both, and 

(iii) inside resonances where the energy splitting is caused by the 
tunneling in momentum sp~e between two resonances but 
not inside them which is negligible for m = 1 (see Section 1). 

In evaluating the energy splitting under condition A» 1 the' 
combined action of both resonances can be neglected. Then, by a 
change of variables the problem is reduced to a single resonance 
with 

E = (n - no)2, 2t: 
9 = ---­ (4.2)

2 (n - no)2 

In the simplest case 9 « 1 we can use expression (2.2) to obtain, 
assuming C = 1, the following rough estimates (see Appendix 
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A). In regions (ii) and (iii), defined above, the tunneling action is 
given by Eq.(A.5), and we have: 

O<n~no (4.3) 

where gO(n) = 9(0). In region (i) the tunneling is generally more 
complicated. If n ~ 2no the tunneling through each resonance is 
incomplete at one side: 0 < n < no. Then, using Eq.(A.6) we 
obtain: 

n ~no (4.4) 

In the interval no ~ n ~ 2no there is a. competi.tion of two tunnel­
ings, one between the resonances, Eq.(4.3), and another through 

. both of them. If the latter is decisive that is providing less Lln 

then 
m ~ 

mLln - In - no 19 (4.5)"-I 

11' 

otherwise estimate (4.3) holds. The transition between both tun­
nelings is roughly at n ~ 3no/2. In all regions the energy splitting 
Lln ---+ 0 as quantum parameter n ---+ 00. 

For a timedependent.HaIil.iltonian like (4.1) the mean quasienergy 
level spacing '. 

- nLl=­ (4.6)
N 

where N is the total number of states (cf. Section 3). As N ---+ 00 


mean spacing Ll ---+0. However, in a conservative system with 

compact energy surfaces Ll is always finite and, f01' two freedoms, 

is independent of quantum parameter n . 


• 
5. Conclusion: a new tio"le scale of quantum chaos 

.. . 
,How simple and specific the model of a single (1.1) or even dou­

ble (4.1) resonance may seem it actually represent, at least qual­
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itatively, a rather general picture of the bulk quantum quaside­
generacy. Indeed, the principal condition for the la.tter is the 
existence of a discrete and only discrete symmetry between some 
well separated domains in phase space [7]. The present results 
provide additional confirmation to the physical interpretation of 
the Shnirelman theorem in Ref. [7]. .~ 

The models'discussed above do not include chaotic motion 
where the global quasi degeneracy may also occur [20,8,7] (see also 
Ref.[23] where a similar dual problem in symmetric random po­
tential is considered). The main condition for th~ chaotic quasi de­
generacy is a strong quantum localizatron which separates sym- ' 
m~tric.domains. For example, in model (3.1) this condition takes 
the form 

I. « N (5.1) 

where l. ~ D is the localization length ( in the number of states) 
of the quantum steady state [21], D stands for the classical diffu­
sion rate, and N is the total number of states. The quasienergy 
splitting is given by the estimate [22] (see also Ref.[S]): 

a ~ A. exp (_ 2 n) (5.2)
l.1" 

where n is the distance of a localized state from the center of 
symmetry (n = 0, see Section 3), l." R::: l., and A is some constant. 

In a sense, the tunneling counteracts quantum localization. It 
is characterized by the tunneling time scale 

1 (2n)tt "J - exp -. - (5.3)
d 

"J 

lilp 

This is the third principal time ~cale in addition tprandom (tr) 
and relaxation (or localization) (tR) time scales which, for model 
(3.1), are given by the estimates [21]: • 

tr In k; (5.4)"J 
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The, quasi degeneracy can be observed only if (cf. Section 1) 

!!.-",d>l (5.5)
tR d '" 

Unlike two scales (5.4) which indefinitely grow with quantum pa.. 
rameter k the scale tt decreases (5.3) until the quasidegeneracy 
gets lost (5.5) within level fluctuations. 

The first, to my knowledge, direct observation of the tunneling 
time scale was reported in Ref.[20] (see Fig.2 there): a narrow 
wave packet was shown numerically to oscillate.1 Due to disper.. 
sion of tunneling frequences (5.2) in the quantum steady state 
which we assume in the form 

4/rr I. 
(5.6) 


where m = n-flo, the oscillation deca.ys, roughly as (see Appendix 
D) 

< ~> ~ cos ( T cos (7r2q)) .exp ( - T sin C2Q
) ) (5.7) 

with parameter q = l8!18P ' and T = dot, Ao = d(no) (5.2). From 
asingle exalnple of tunneling relaxation in Ref. [20] it is difficult 
to judge whether the variation of < n > shows some residual 
oscillation or just a fluctuation. In the latter case ls = l8P as 
expected [8], and the relaxation (5.7) would be a pure exponential. 
In any case the tunneling relaxation leads to a new, "double­
hump", steady state with two synlmetric "humps" at n = ±no. 
The fluctuation of < n >. in this steady state can be roughly 
es~imated inthe same way as that for energy [24] (see also Ref. [8]): 
d < n > Ino '" k-O

•
6 ~ 0.4, which does not contradict with 

numerical data in Ref.[20]. 

1The tunneling throllgh chaos between regular domains was studied much before in 
many papers (see [26] and references therein). 
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Appendix A: tunneling in momentum space 

Consider a slightly different form of Hamiltonian (1.1), namely 

[2 . 
H(J, 0) == ~ + €. cos(mO) (A.I) 

Then, in classically forbidden. domain of 0 including resonance 
(/2 < 2£(1 - 1) = Il) 
. ' 

, 12 eml61 + e-m161 
cos (mO) = 1 - 2f = 2. =F( I) ~ 1 

whence 
101 = ..!.. In (F + ";F2 _ 1).~ In (2F) (A.2) 

m m 
if f » 1. The action integral 

lo
ll 2 loll . 21

S = 2 IO(J)ldJ ~ - In(2F(J»dJ ~ --' In(Cg)
o mom 

(A.3) 
where F(ll) =1 and 9 = 1/1 = 2f/12: Asymptotic Value of 
factor C = e2/8 = 0.92 (g « 1) while C --+ 1 as 9 --+ 1. Using 
Eq.(1.8) with prefactor mw(g)/1r we arrive at Eq.(1.7) for m =2 
(standard Mathieu equation), and 1 ~ n. Multiplier m accounts 
for the coherent backscattering from m barriers of the potential 
in Eq.(A'.I). 

Notice also that approximations (104) and (1.9) are fairly good 
for ~mall g: 

2 
2a ~ n (1 + g:) , w(g) ~ n (1 _ 9) (AA)

16 . 
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There is also a classically forbidden domain in 9 outside reso­
nan~ (/2 > 2f(1 + 1) = Ii) where Eq.(A.2) holds as well with 
F = 12/2f ....:. I > 1. Here the action integral 

lo lo

i 212 i 0 (e2 

S = 2 19(/)fdl. ~ - ' In(2F(/»dl ~ --In -go) 
12 m 12 m 2 

(A.5) 
if 10 » I = ..j2f/9, and go = 2f/I~ « 1. I~ this approximation 
Eq.(A.5) remains unc4anged upon substitution of any I > 0 in­
stead ,of 12 that is by starting integration inside the resonance. 
Rela.tions (A.5) and (A.3) are similar, in both S is determined by 
thel~ger value of I on the integration path. However, asymptotic 
value of C = e2/2 in (A.5) is larger than in (A.3). 

Finally, consider the incomplete tunneling through half of a 
resonance (cf. Eq.,(A.3»: 

f~ .~ (~)S = 10 19(I) Idl ~ - m In "2 (A.6) 

where 10 < I = J2f/g. Again, the result is similar to Eqs.(A.3) 
and (A.5) with a different factor C = 1/2. For rough -estimates 
to logarithmic accuracy we can use in all cases C = 1. 

Appendix B: O-tunneling within the resonance 

Thequasiclassical asymptotics of the spectrum for Hamilto­
nian (A.l) at f = l/g = En/f < 1 is given by the action integral 
(see, e.g., Ref.[16]): 

Sa'= f"I(O)dO = 4V2€ reo JI + cosxdx = 
m 10 . 

16y'f ·[E(k) _ 1 - f ~(k)] = 211" (n + 12) ~ (B.l) 
nl 2 
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..fi 1 + 1 
7.23 -;; . (j _ ItlS 

where E(k) is the complete elliptic integral. of the second kind, 
and k2 = (1 + f)/2. The last shnple expression in (B.I) provides 
a fairly 'good approximation to SCI in the whole range IfI ::; 1. At 
the bottom of the potential well Eq.(B.I) gives the spectrum of a 
linear oscillator with frequency m..fi: 

(B.2) 


which is also well known asymptotics of the Mathieu equation 
[13]. Near the sepa.ratrix we obtain the total number of states 
within each of m wells: 

8v'f 
nw ~-- (B.3)

7rm 

which is very close to the total number of rotating states up to 
~ ." . 

sepa.ratrix energy Ell = f ~ ~(I+g2 /8) = 9nh/I6 (see Eq.(AA». 
In this approximation we have (m =2) TiW/nR ~ 3/1r =0.95. 

The tunneling action in {} is givenhy the integral (cf. Eq.(B.I»: 

2 v'2f 13:0 . S (- I)
86(/) = 1/(0)1 dO = --m 10 Jcos x-Idx . CI 2f 

" (B~4) 

In the upper half of-the potential barrier f > 0 (and in the lower 
half of the well) we can neglect a slight variation of denominator 
in approximate relation (B.I) to obtain still simpler expression 

86 ~ 7r ..fi (1 - f) .~ 7r (nw - n) (B.5) 
m 

It corresponds to the harmonic oscillator approximation for Sa. 
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Appendix C: intermediate critical harmonic in the Hill 
equation 

Rewrite the contribution of m-th harmonic (2.·2) in the form 

A() I (n) I G() G(m) __ lnl .+ v(m)In L.1 m = n ;- + n m - 2n· m; m 

(C.. 1) 
where I = n2/2(, = 1/9 > 1, and v(m) = -In Vm • Asymptoti­
cally, as n -+ 00, the main contribution comes from the harmonic 
m = me which minimizes G(n~), whence 

Then, 
(C.3) 


provided me > 1 and me < min(m" 2n) (see Section 2). 
For example, if Vm exp (-(1m) Eq.(C.2) has no solution, and I".J 

the critical harmonic me' = 'min(m" 2n) is as large as possible. 
Another example is a faster exponential decay of Vm with 

(C.4) 


Then, Ae = A> 1, and 

me = ( I I ) 1/>. (C.5)u(>.ll_ 1) 

The above inequality me > 1 implies 

9 < e-O'(>.-I) (C.6) 

otherwise me = 1, and Eq.(2.2) should be used instead of Eq.(C.3). 
Another condition me < m, where m, = min(m" 2n) leads to 

(C.7) 
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otherwise me =m, in Eq.(2.2). 
A more interesting example is the perturbation 

00 ..­

V(9) = sin (,8 sin 9) = 2 E Jm (,8) sin (m9) (C.S) 
m::;l 

where Jm (,8) are the Bessel functions, and all m are odd. For 
sufficiently large m 

. . 1 
v(m) = (n." + 1/2) Inm - m In (,8e/2) + 2" In (,../2) 

and 

, . 1'" Inln1 ­
me ~ lnl + 2 ~ ln/; .xc ~ 1 + In (2) (C.9) 

~ 
(Je 

where j . I· If. For f3 « 1 the distortion of r~sonance (1.1) 
with V(O) = cos(9) by perturbation (C.S) is very small, yet its 
effect on the energy splitting may be quite big: 

In(~)
p~ {J «1 (C.10) 

m 

if 9 <.,8, (me» 1). 

Appendix D: tunneling relaxation 

For each degeneracy doublet the state initially localized in one 
of two symmetric domains, e.g., at n = no (for model (3.1» will 
oscillate so that 

<n>
v(t) = = cos (8 . t) (D.1) 

no 
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where < n > denotes the quantum averaging in an instantaneous 
state, and 

8 = 8 0 .exp(_2m) (D.2) 
. L,P 

is the energy splitting with m = n -- no and 80 - 8{no) in 
Eq.(5.2}. The relaxation"v -+ 0 as t -+ 00 is determined by the 
spectrum w{8) which, in turn, depends on the quantum steady 
state assumed in the form 

)12 4/7r I. . 
f.(m) = ItP8(m = e2m/ l• + e-2m/ l• 

(D.3) 

Combining Eqs.{D.2) and (D.3) we obtain for the spectrum 

P 

w(w) = 1.(m) 1-:-1 = _2: .-l-:--w-\-p (DA) 

where w = 8/~o is dimensionless freguency, and p = 18p/ I. stands 
for. the ratio of splitting and localization scales. Assuming de­
coherence of chaotic eigenstates, the relaxation is given by the 
integral . 

v{r) = (00 (1.+ ~).cos{wr)w(w)dw ~ (00 cos{wr)w(w)dw10 no . 10 
(D.5) 

neglecting a small term with m/no "-' ls/no in the latter expres­
sion, T = ~ot. cJn a particular case p = 1 (l6p = l8) the relaxation 
is a pure exponential 

v = exp{ -r) (D.6) 

Otherwise the oscillation arises due to the singularity at w = iq
• 

Asymptotically as r -+ 00 

v(r) - cos [T .cqs (7I"2q)] . exp [ - Tsin (7I"2q) ] (D.7) 

where q = lip. 
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