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.Ahstract 

In this pa.p(~r frolll four different viewpoints vit;. the Boluu- Ut> 
Broglie hydrodynaluical formulation, Dirac's lllOnopole theory, Zitter­
bewegung considerations within the COlnpton wavelength and Moller's 
centre of mass approach to relatlvistic systems, we arrive at a unified 
picture wl~icll corroborates a recent model of a charged Dirac particle 
as a KelT-NeWIUali blaek hole with a. llakf>cl singularit.y shielded by the 
Zittel'bewegung region. These considerations, arllongst other things, 
give a rationale for why Inonopoles Inay Hot exist and why neutrinos' 
are lefthanded.;:.; 

Introduction 

Our starting point is the well known hydrodynaulical fonllulation of qua!.ttUJfI 
lllechanics[l, 2]. In this forn1ulation 'Ne sta.rt with the Schrodine:er f'(pwt iUU 

' .." , 

. \ ' Ii ., 
(4) ,1.... 'l. . 

(. i ) zn, -.-' ::..:: -- -:-- \/1/' + V '1/'
iJt :~'!n 

\ J. 

and write 
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wh~re Rand .'; an~ l'~al fllnetions of 7"7 aud t. 

Substitution of t?J in (1) and separation of the real and illlagillary parts 
leadt:j to, 

ap .... , ....at + \7.(pv) == 0 (:3 ) 

1 as 1.... 2 V 1 \72R --. +-.(\78) + -:- - -,-. == 0 (iJ )
Ii dt 2H~ ~ iiI, 'bn R 

wh~re p == R2 alldv == .!l fJs1 

m. 

Identifying (:3) and (4) with tL~ equation of fluid flow, it is well known 
that we get an alternative formulation of quantU111 lllechanics, but with a 
hidden variable viz. the definite value of position. This is the Boh111-De 
Broglie theory. However the Bolull potential Q can be non local and this is 
one of the i111portant reasons why the fOl'lllulation has not found favour. 

-
It is well known that equation (2) is also the starting point of Dirac'~ 

theory of lllagnetic 1l1onopoles[3] which will be elaborated in section :3. 

We will now exalnlne both the hydrodynaluical approach and the Iuonopolf> 
theory frolll a slightly different angle in the light of SOlne recent work and 

COine to a hanl1onious view point. 

The Hydrodynamical Formulation 

We begin with stationary solutions of the above fOflllulation, viz. equation 
(4), in the absence of external fields. In this case it is known that the non 
local quantulll potential 

I' 
)< 

q == constant == E, 

the energy of the systelll. Further the velocity field is solenoidal, 

(5) 
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Given (5) it is l(l~wn there is a circulation which is given by (cf. ref.[i]). 

f .2rrnn
f'= ;iJ.d1'= ds=--,n=1,2, ... (6) 

c rn1 ­
Let us now consider the ultra relativistic case, Ivl = c for all particles of 

the fluid for reasons which will becOtlle clear below. This titne we get frOlll 
(6), 

nn .)11,1"' = 1rnv.d1' -- = -.-, n = i, 2, ... (7) 
c -:2 

where, an integration over all elelnents p, is illlplied. Here 'n is the nUll~ber of 
Hodes (or, in three dilnellsions, the cnd points of nodal lines). ~e can inlllle­
diately identify (7) with the quantulll tllechallical spin }. Interestingly there 
are :2 x ~ + 1 = n + 1 nntltiply connected regions, both in hydro-dyuarnic.s 
and in the theory of spin. 

It is also worth noting that in (7), if the radius of the vortex is ta.k(~n tu 

be 1, then 1 turns out to be the COlnpton wavelength, which thus appears as 
a fundalnental length. This will be cOllllnented upon later. 

The physical picture is as follows: A partich-" can be pictured as a fiuid 
vortex which is stf~adily circulating along a ring (or ill three dilllensions, 
(l spherical shell) with radius equal to the COlupton wavelength alld with 
velocity equal to that of light. Its t,()tal energy is given by, as seen above 

Q=E (8) 

a.nd its angular !llOlnentlllH, which in quantulll theory is quantized is given 
by (7). 

) < We now COIllpare thi:; result wi~h the results ofI4J. There the Schrodinger 
equation was derived froll1 first principles, allowing non local transitious. to 

get (considering the one dilllensional case for sitnplici ty): 

.~ I -1: '2 82 ,I. 
i: 0 V /l, 'lp f * ( ') '( ) ( /\ .,. '\ ,zn-.:- = ::-=--.. -. + 1/J x "l/) a: '1/' x jl;(x )dx (9)at bn i)x 2 J I 

The non local teflll in the integral in the right side of (9) was th(~n identified 
with the inertial lllass tenn with the oln.;ervations that, 
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i) Such 11011 locality, and apparently superlulninal velocities are allowed 
within the Conlpton waveleugth[5], and, 

ii)This non local tenn is an' energy tenn as in the case of an analogous situ­

ation of the hydrogen 1110lecular ion. 


Finally the Schrodinger like equation, 

82 
r 8'1/) n? 2 

Ut-,- = [--,-, - + rn C ]'1/) (10) . iJt 2rn dx2 0 

was obtained. 
'> < 

The presence of the extra non local tenl1 n~oc2 in (10) is easily explained 
[6, 7, 8]: The Schrodinger equation is really the lillliting c,ase of the Dirac 
equation ill which process an inessential phase factor is ch·opped. Another 
way of looking' at this is that the constant potential rn o c

2 does not affec­
t the dynalnics. That is the reason why the Schrodinger equation is not 
Galilean invariant, as a non relativistic theory should be, and infact exhibits 
the Sagnac effect, which a strictly Galilean invariant theory should not(9]. 

The convergence of the above fOrlllulation and tIle Bolull hydrodyua.lllical 
fonnulation is evident once we restrict ourselves to the COlnptcHl waveleugth 
and IUlninal velocities. The particle is now a relativisitc fluid vortex circu­
lating along a ring of radius equal to the COlIlptoll wavelength. The Q giveu 
by (8) is the energy of this systenl or particle and corresponds to the inertial 
111aSS tenn given by the integral in (9) or equivalently the constant potential 
tenn in (10). 

Monopoles 

I t is well known that there is a close connection between the hydrodynaniic 
theory and Dirac's theory of 11l0nopoles[:3]. The starting point in this ,la.tter 
case is precisely the decolllposition of the wave function (2), but the focus 
is on the phase function 5' which need not be integral: exactly as in the 
case of the vortex above,there can be llc,dalsiugularities. Infact the S' iu 
this theory defines the function i(, exactly as it does the nl0111entuIJl vector 
of section 2. But this tilne (i(, J{o) is identified with the electrOlllagnetic 
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potential and an integral like (7) then consists of, in addition to the tenn 
"~ti the dectrolnagnetic Hux, again 11, being the nUlllber of nodal lines with 
e~ld points inside the vortex or region of integration. Thus the well known 

('qllatioll or tlw Ina~netic mOllopole viz. Jt = ~n1i,;, on identifying 

--	 e-­l{= 	-H (11 )
'he 

(H being the Inagnetic field) with the 1l101nentulll of section ;! gives back 
equation (7) for quantized spin. 

4 	 Zitterbewegung and tIle Gpmpton Wave­
length 

'd 

In the usual theory of the Dirac equation(lO], it is well known that the eig{~n 
values of the velocity operator caare±c, the velocity of light while the po;:;itiol1 
operator is non Hennitian: It consists of a real part which is the usual position 
and a rapidly oscillating (or Zitterbewegung) lluagina!)' part, 

(12) 

Both these puzzling facts are reconciled by the fact that our IlleaSUrellH~nts 
are really avel'ag<.:.>d over the space intervals of the order of iilna:, tlH~ COlnptuiI 

wavelength and titne il1tl.'~rvals of the order n/,mc2 . In this case tLI.(.\ irnaglnary 
part in (12) disappears (cf. r~L[lO]). Henniticity and Phy::;ics hegins a.fter 
sllch an av~raging necessitated by our gross Ineasnreinents. 

One could say that (12) applies in a non local region bounded by the 
COlllpton wavelengtll as we saw in section 2. Within the region, we have to 
contend with unphysical phenoillena like superltllninal velocities and nega­
tive energies and in general non Eennitian operators. Outside the COlupton 
wavelength, that is Oil averaging over space tilne intervals of this orc~r, we 
are back in usual Pbysics. 

Let us for sinlplicity consider the free particJe Dirac equation. The solu­
tions are of the type, 

(1:1) 
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where 

(14) 

d('llot(' n'!·ijwctiv(·ly tll<' Il<'p;ativf~ (~Jlerp;'y a.nd p():.;itiv(~ (~!lerp;y :.;olllt.ioIIS. prolll 

(1:») tlH~ proba,l,ility of lindiug the particle in a l:llllall vohulle about a gi veu 
point is given by 

ll) 

( 15) 

Equations (ILl) and (15) show that the negative energy and positive energy 
solutions fonn a coherent Hilbert .;;pace and so the pt1ssibility of tranl:lition 
to negative euergy states exists. This difficulty however is overCOlue by the 
Hole theory which nses the Pauli exclusion principle. 

However the last tel'ln on the right side of (15) is like the Zitterbewegung 
tenll. When we reillelllber that we really have to consider averages over s­
pace tillle intervals of the order of li/rnc and li/rnc2 , this tenn disappears and 
effectively the negative energy solutions and positive energy solutions stand 
decoupled in what is now the physical universe. 

A lllore precise way of looking at this is[ll] that as, is well known, for 
the hOlllogeneous Lorentz group, I:~I COllllllutes with all operators and yet 
it is not a llluitiple of the identity as one would expect according to Schur's 
leullna: The operator has the eigeli"values ±l corresponding to positive and 

. I 

negative energy solutions. This is a super selection principle pointing to the 
two incoherent I-Elbert spaces or universes [12] now represented by states 'ljIA 
and 'ws which have b~ell decoupled owing to the averaging over the COInpton 
wavelength space- tilne intervals: But all this refers to energies such that our 
length scale is greater than the CI)}ppton wcwelength. As we reach energies 

, < 
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corresponding to the C01npton wavelength scale, llegativ(~ energy solutions 
show Ui) as anti particles. Thus the super selection principle which conws 
into play on averaging over COlnpton wavel(~l1gth scales dispen'i~->s wit.h tiw 

Pauli ,exclusion principle. 

A Classical Viewpoint 
., < 

) 

FroIll a classical poiut of vit'w, we cOilld say that if in the Lorelltz tra.I1sfur­

Blat ion. 
I . 2/ 2 1/2;c I' (;r - 'vt), I' == (1 - v c)- ( 1 (j ) 

v > c is allowed, then the coordinates becoine iIllaginary, this being true 
within the Conlpton wavelength as in (12), in the sense that non locality is 
allowed there. So (12) can be understood as representing a coordinate which 
is iUlaginary within the COlllpton wavelength but becoilles the usual position 
coordinate outside, that is after averaging over these intervals. One way of 
interpreting (12) would be that froin our physical point of view using (l G) 
there is a region where v is > c, consisting of virtual or superhnninal ghost 
particles bounded by a r<~gion, a sphere of radius equal 'to the COlllptOll wave­
length consisting of l11assless particlets (to distinguish thenl froill partons- ~ 

illstantons and the likf\ or to luake a clean brea.k, "Ganeshas") with velocity 
of light. Only on averaging over this vortex like sphere or regron, do we ('ulll<-' 

to the dOlllain of convt:ntional physics and the usual particles lllovillg with 
sub lUlnillal vducities. It lllay be reillarked that the De Broglie-Bohnl picture 

of a particle is that of an average over an enseillble (cf. ref. [1]) but the above 
picture is different: It is an avera..~ng over a physically inaccessible region. 

Indeed it is known that for a collection of relativistic particles, the vari­
ous Blass centres forB} a two-diIllensional disc perpendicular to the angular 
1l10lllelltulll vector L and with radius (ref.[1:3]) ­

L 
,/'=- (17)" 

r-nc 

Further if the systPlll has positive energies, theu it lllust have all extcll­

sion greater than 1', while at distances of the order of l' we begin to encounter 
negativE' energies. 

7 
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If Wt> consider the systenl to be a particle of spin or angular lllonlentulll 
%, then equati()n (17) gives, l' = 2~\,c' That is we get back the Ccnnpton 
wavelength. 

On the other hand it is known that (cf. ref. [14]) , if a Dirac particle 
is represented by a Gallsssian packet, then we begin to encounter negative 
energies precisely a.t the saIHe Conlpton wa.velength as above. Thus a particle 
can indeed be treated as a vortex or a spherical shell of relativistic sub 
constituents or particlets (or Ganeshas). 

Gelleral Relativity 

Taking the cue frOIll the above considerations let us treat a particle as it 

relati vistic fiuid[7]. Our starting point is the linearized theory[15] 

(18) 

(A bar on T has been dropped.) 

In (18), velocities cOlllparable to the velocity of light c are allowed and 
also, the stresses Tjl.: and 11101nentulll densities Toj can be cOlllparable to the 
energy 11l0lnentulll density TOO, As in ref.I5, we can easily deduce that, when 
I~ I < < 1, where l' =1X'1, and in a fralne with origin at the centre of Inass 
and at rest with respect to the particle, 

Chn =JTOo(px (19) 

" J.. .IT'HO ·l:l (2U)I.,SI.: = fklm,:r (;1: 

where rn is the Blass (or approxinlC:t.te lllass because of the linear approxima­
tion), and- Hk is the angular 1l101nentulll. We next observe that, I 

(21) 

0 
'> ( If we now work in the COInpton \h~~elength regioiFwe have, while 'U = 1, 

l'Utl = c (2~) 

8 
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7 

(This is the Quanturn Mechanical input) Substitution of (21) and (22) ill 

(20) gives on using the lVlean Value Theoreln, 

As < ~r{ >'" '2';~Ll" using (19), we get, 8/..; ~ ~, as reqllir~cl for a spin half 
part.icle. hIfact a,s pointt:>d out in ref.[7] this relation beco1l1es eX(l,ct if we 
treat tlw p~lrticle as effectively a rotat:ing shell distribution of radius Il.j2rnc, 
keeping in lllind the fact that the, interior region is in any case unphysica.l 
as seen in section 4, and is described by cOll1plex space-tilue coordinates. 
The gravitational putential can silllilarly be obtained froln (18) and. (19) 
(cf.ref.[15]). 

1 00 00 Chn 1 
<I> == --:-(9 - n ) == -- + O( -:-):2 l' ']'.3 

Infact (cLref.[7]) the particle can be treated as a Kerr-Newlllall black bole 
and as is wPll known \\'e get back the correct electrolllagnetic field of a. Dirac 
electron including the analuolollS gyrolllagnetic. ratio 9 == 2 (Though there 
is a naked singularity, as explained in [7], this is shie~led by the Cornpton 
wavelength regioll.) 

TillIS a pa,rt.i('h' could he trf'aLed as a n'laiivistic vortex, that is (\ vor­

tex where the velocity of circulation equals tha.t of light or a spherical sllPll) 
whose constituents are again rotating with the velocity of light or as it black 
hole described by the I\err-Newlllan llletric for a spin &partic1~. 

Tht:> fa.ct that we get 'the gravitational potential 1;t in equation (L:3) again 
confinns that lllass COUles frc>111 th·P,.•Colllpton wavelength region. 

, < '.j 

Discussion 

1. Thf' equation (G) ernerges on using the fact, that 5' is defined only up 
to a 11lllltiple of :br, whence we get equation (7) givillg quantized spin. As 
pointed out frolll equation (7) the COlnp.ton wavelength elllerges. On tlj(-' 
other hand equatiOll:J 17) shows that given tlIe spin 4, we get the Cumpt.on 
wa.velength. It is a.lso to be noted that equation (20) gives the spiu ~ if \V(' 

9 
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, 
use the C(Hnpton wavelf~ngth. The COlllpton wavelength itself appears in 
quantnHl nlechanics due to the Heisenberg uncertainity principle. So it ap­
pears that tlH~ qllautnlll nH~cha.llical quautized spin and COlupton wavelength 
can be obtained froln classical considerations like relativistic vortices. The 
sallle conclusion is &i'awn frOlll a, slightly different viewpoint in (7]. In any 
case tht:; rel11arkable universality of the COlupton wavelengh was pointed out 
by vVigiwr(lG] - thp ahov(~ consid(~ratiollS sltow why it elnerges ill ii, natural 
way. 

2. ']'Ile fact that tite spill of the particle is directly cOllllected tu tbe 1I11111­
bel' of end points of the nodal lines, as seen in Secti.m :2 appears to indicat(~ 
that Fennions are prinw,ry aud that Bosons can be treated as bound states 
of F'ennlulJ:" As poilJted out in[7], quarks also could be treat(~d as QuantU111 
l\1echauical Black Holes ill the foregoing sense, and as it is known pions are 
indeed treated as bound states of rt quark and an anti quark. (Indeed frOlll 
considerations of the synuuctry between leptonic and hadronic currents, lep­
tons and hadrolls appear to be the saIlle(17].) 

3. The fact that the Inagnetic field which arises in--the Illonopole fonllU­
lation as given by equation (11) and the quantized spin angular 1110lnentulll 
which arises in the hydrodynalnical fonnulation as given by equation (7) ap­
pear to be one and the saille is relnarkable. This is caused by the fact that 
the vector l{ and the llHHnenttun vector as given in the two fOrInulations are 
really one and the saIne, as pointed out in Section :3. Indeed the Corioli:; and 
other effects of rotating fralnes(18] bear a strong reselnblence to the ulaguetic 
effects. As pointed out in(7], electrOlllagnetisnl and gravitation can be unified 
in a general relativistic version of qUClutulll Ineci1auics as sYlnbolised by the 
cOlllplete description of the' electro!} in tenns of the Kerr-Newlnan ll)etric. 
This has been indicated ill Section 6. Thus in this picture l1lonopoles disap­
pear. Indeed they have not been found todate and'Dirac hil11self expressed 

his convIction that they do not exist(19]. 

" 

4. The double valued ness tInt arises frOlll a nodal singularity on the 
.,. < one hand and half intf~gral spin Oli the other finds"-dn iuunediate echo ill the 

Kerr-Newllla.n l11etric. This can be seen as follows. 

10 



, ( 

III llatural nl1it:-; the Ind,rie is given by (cf. \'(~r.[1!)]). 

. 2 2 
,D.. . 2 . 2 SIn () [2 '2) L ' 1· ]2 P I '2 '!. LO'2dsl. = - ~ [lit: - it!:H Il Odq» + --2- ('r + a ((P - (I,( t + ~ ('/, + p (. , 

p P 

where, 0, is the COlnpton wavelength anel, 

2 2 2 2 2 22 20 
~ = 1'0.- :!xnr + 0, + rH + e ,p = + itl' COS 

At l' = a and () = 7r /2, .6. = 2et2 as both e and rn < < 0" and p2 = a,2. 

If further, we take a d4 
> = A, Wf>: get,(l t 

The choin' /\ = ~ leads to, 

'2 1 '2 1 ')d.'i :=- -lit + -(I1'­
"22' 

which is Mirkowski lilH\ l~xcept for the scale factor "7i. In the foregoiug In()del~ 

(J, (:/~ = velocity of light = 1. The choice A = 1can be understood as follows: 
If the azillluthal angle llleasured by an observer at rest far away, is q/, then 
we get back thf> velocity of ligllt at l' = a for this observer, if q/ = 24), which 
is precisely spinorial behaviour. 

III otiH'l' words, special relativity fur the spiu ~ electron calJ 1)(' S(~(~ll tu 

eillerge froln the Kerr- NeWlllan llletric. 

5. Treating the particle as a vortex as in Section 2, argulnents for a 
1l10nOpolf> iu Section :~ then show that there would bf> the Bolllll- Ahral10v . 
like effect[20] at the COlllpton wavelength sca.le. 

6. It is interesting to note that tIw above nwdel of a particlc' ('Ull Itt 
explain the left handedlless of the neutrino in the light of Sections 4 and :l. 
In the case of the lwutrino, as the luass is vanishingly ~nnall, the COlnptoll 
wavelength tends to iufinity or turllS out to lH~ very large. On the other 

, ( hand we encounter tlH~ lwgative ent~rgy solutions within this region. That is 
- ~~. 
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we encounter negative energy neutrinoes only. The equation for a negative 
eUt-'rgy neutrino is (cf. ref.[ll]). 

(-Po)v(p) = +if.jYv(p) 

This is tll(-'~ t~qlla.tiun for a Jeft handed neutriuo in the physical world of pusi­
tive energy solutions. 

7. It was poillted out ill r(-'L[7] that a cUlllplex dispJaC(~lllellt, 

(~4) 

kads tu the dectrolliaguetir fidd of all e1ectroll. COllsicierillg tlH'\ tilli<:' ('OllJ­
ponent, for exaillple, we have, for the wave function '1/), 

So, as tn.l~t = pO, the usual fourth~c8n~i)onent of the energy-llloillentuill op­
eratoI', we can identify the electrostatic'potential, q>, frtnll an equation like 

(~5) 

Infact, we could identify J{tt of section :3 and the 1110lnentuill vector III frol11 
lsection :2 with +. If further a is taken to b.e of the order of the COlllptOl1

n"­

wavelength, ~ and::;.sinlilarlv (to to be of the order of ~ in the light of 
- . 1nc v 1ftC­

equations (12) and (1G), we get, 

n.
li>11 ill ~. rnc- = 'Ii, 

r-nc 

which can also be obtained frolll the Heisenberg uncertainity principle. 

It is interesting to note that quite independantly, the space COnlp(~nents 
of (:24) give the other cOlnponents of the electrolllagnetic vector potential, 
and infact as is known, given the charge (or equation (25)), the above dis­
placelnent leads us to the Kerr-Nc.'.Vlllan fllt-'tric[21]. 

12 
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