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Abstract

In this paper from four ditferent viewpoints vig. the Bolun-De
Broglie hydrodynamical formulation, Dirac’s monopole theory, Zitter-
bewegung considerations within the Compton wavelength and Moller’s
centre of mass approach to relativistic systems, we arrive at a uuified
picture which corroborates a recent model of a charged Dirac particle
as a Kerr-Newman black hole with a naked singularity shielded by the

- Zitterbewegung region. These considerations, amongst other things,
give a rationale for why monopoles may not exist and why neutrinos
are lefthanded. .

1 Introduction

Our starting point is the well known hydrodynamical formulation of quantiomn
mechanics[l, 2]. In this formulation we start with the Schrodinger equatiou
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where R and S are real functions of ¥ and .

Substitution of (2) in (1) and separation of the real and imaginary parts
leads to,

op =, . .
9 + V. (pv) =0 (3)
1 oS 1 = o,V 1 V2R :
e - »S’ 2 e 4
h ot t ‘Zm(v ) T E: 2m R ' ()

where p = R?andv = 7—?;65'
ard @ = ~L(V*R/R).

Identifying (3) and (4) with tl.e equation of fluid flow, it is well known
that we get an alternative formulation of quantum mechanics, but with a
hidden variable viz. the definite value of position. This is the Bolim-De
Broglie theory. However the Bohm potential @ can be non local and this is
one of the important reasons why the formulation has not found favour.

It is well known that equation (2) is also the starting point of Dirac’s
theory of magnetic monopoles[3] which will be elaborated in section 3.

We will now examine both the hydrodynamical approach and the monopole
theory from a slightly different angle in the light of some recent work and
come to a harmonious view point.

2 The Hydrodynaniical Formulation

We begin with stationary solutions of the above formulation, viz. equation
(4), in the absence of external fields. In this case it is known that the non
local quantum potential ‘

'
N

(= constant = E,
the energy of the system. Further the velocity field is solenoidal,

V.i=0 (&
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Given (5) it is known there is a circulation which is given by (cf. vef.[1]).

— Y h o
= /[)’_d?' = fds = 2r n,n =1,2,... (6)

m

 Let us now consider the ultra relativistic case, |7] = ¢ for all particles of
the fluid for reasons which will become clear below. This time we get from
(6),

- nh _
ml = fm'u.dw‘ =5.n= 1,2, .. (7)
. [

where, an integration over all elements p, is implied. Here n is the number of
nodes (or, in three dimensions, the end points of nodal lines). We can inume-
diately identify (7) with the quantum mechanical spin §. Interestingly there
are 2 x ¥+ 1 = n + ! multiply connected regions, both in hydro-dynamics
and in the theory of spin.

It is also worth noting that in (7), if the radius of the vortex is taken tu
be 1, then [ turns out to be the Compton wavelength, which thus appears as
a fundamental length. This will be commented upon later.

The physical picture is as follows: A particle can be pictured as a Huid
vortex which is steadily circulating along a ring (or in three dimensions,
a spherical shell) with radius equal to the Compton wavelength aud with
velocity equal to that of light. Its total energy is given by, as seen above

Q=E (8)
and its angular momentum, which in quantum theory is quantized is given

by (7).

We now compare this result with the results of[4]. There the Schrodinger
equation was derived from first principles, allowing non local transitions, to
get (considering the one dimensional case for simplicity):
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The non local term in the integral in the right side of (9) was then identified
with the inertial mass term with the observations that,
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i) Such non locality, and apparently superluminal velocities are allowed
within the Compton deeleugth[ ], and,
ii)This non local term is an energy term as in the case of an analogous situ-
ation of the hydxogen molecular ion.

Finally the Schrodinger like equation,

O 2 P2

th— = [————= 4+ myc*|y 10
.l [ ‘Zmd.L o' _ v (10)
was obtained.

The presence of the extra non local term m,c? in (10) is easily explained
[6, 7, 8]: The Schrodinger equation is really the limiting case of the Dirac
equation in which process an inessential phase factor is dropped. Another
way of looking'at this is that the constant potential m,c? does not affec-
t the dynamics. That is the reason why the Schrodinger equation is not
Galilean invariant, as a non relativistic theory should be, and infact exhibits
the Sagnac effect, which a strictly Galilean invariant theory should not[9].

a3

The convergence of the above formulation and the Bohm hydrodynamical
formulation is evident once we restrict ourselves to the Compton wavelength
and luminal velocities. The particle is now a relativisitc fluid vortex circu-
lating along a ring of radius equal to the Compton wavelength. The Q given
by (8) is the energy of this system or particle and corresponds to the inertial
mass term given by the integral in (9) or equivalently the constant potential
term in (10).

3 Monopoles

It is well known that there is a close connection between the hydrodynanmic
theory and Dirac’s theory of monopoles[3]. The starting point in thislatter
case is precisely the decomposition of the wave function (2), but the focus
is on the phase function S which need not be integral: exactly as in the
case of the vortex above, there can be nodal singularities. Infact the S 1
this theory defines the function K, exac tly as it does the momentum vector
of section 2. But this time (A Ko) is identified with the electromagnetic

4



potential and an integral like (7) then consists of, in addition to the ttf}'ll]
%@ the electromagnetic Hux, again n being the number of nodal lines with
end points inside the vortex or region of integration. Thus the well known
equatiou of the magnetic monopole viz. g = %nﬁ%, on identifying

—

K =

e = ’
i 11}
hCH (11}

(H being the magnetic field) with the momentum of section 2 gives back
equation (7) for quantized spin. '

4 Zitterbewegung and the Compton Wave-
length

In the usual theory of the Dirac equation[10], it is well known that the eigen
values of thie velocity operator e@arezc, the velocity of light while the position
operator is non Hermitian: It consists of a real part which is the usunal position
and a rapidly oscillating (or Zitterbewegung) imaginary part,

v = (FpH') + é—ch(al —ep  HYH™! (12)

Both these puzzling facts are reconciled by the fact that our measurements
are really averaged over the space intervals of the order of i /mie, the Compton
wavelength and time intervals of the order i/me?. In this case the imaginary
part in (12) disappears (cf. ref.[10]). Hermiticity and Plysics begins alter
such an averaging necessitated by our gross measurements.

One could say that (12) applies in a non local region bounded by the
Compton wavelengtl as we saw in section 2. Within the region, we have to
contend with unphysical phenomena like superluminal velocities and nega-
tive energies and in general non hermitian operators. Outside the Compton
wavelength, that 1s on averaging over space time intervals of this order, we
are back i usua! Physics.

Let us for simplicity consider the free particle Dirac equation. The solu-
tions are of the type,

b =1a+ s , (13)
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where
0 0
Pq = entt U or en’! 0 and
, 1 0
0 1

(14)

1 0
o _ip 0 _r 1
g = e b 0 | ore nbt o

0 0

denote respectively the negative energy and positive energy solutions. From
(13) the probability of linding the particle in a small volume about a giveu
point is given by

[ha +1bs® = [l + s + (hatel + bse?) (15)

Equations (14) and (15) show that the negative energy and positive energy
solutions form a coherent Hilbert space and so the pwessibility of transition
to negative energy states exists. This difficulty however is overcome by the
Hole theory which uses the Pauli exclusion principle.

However the last term on the right side of (15) is like the Zitterbewegung
term. When we remember that we really have to consider averages aver s-
pace time intervals of the order of fi/me and fi /mc?, this term disappears and
effectively the negative energy solutions and positive energy solutions stand
decoupled in what is now the physical universe.

A more precise way of looking at this is[11] that as is well known, for
the homogeneous Lorentz group, !-% commutes with all operators and yet
it is not a multiple of the identity as one would expect according to Schur’s
lemma: . The operator has the eigen values &1 corresponding to positive and
negative energy solutions. This is a super selection principle pointing to the
two incoherent Hilbert spaces or universes [12] now represented by states ¢4
and ¥g which have been decoupled owing to the averaging over the Compton
wavelength space- time intervals: But all this refers to energies such that our
length scale is greater than the Compton wavelength. As we reach energies

o
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corresponding to the Compton wavelength scale, negative energy solutions
show up as anti particles. Thus the super selection principle which comes
into play on averaging over Compton waveleugth scales dispenses with the
Pauli exclusion principle.

5 A Classical Viewpoint
From a classical point of view, we could say that if in the Lorentz transfor-
mation,
@ =(a —vt),y = (1 —v?/c?)7? (16)
v > ¢ is allowed, then the coordinates become imaginary, this being true
within the Compton wavelength as in (12), in the sense that non locality is
allowed there. So (12) can be understood as representing a coordinate which
is imaginary within the Compton wavelength but becomes the usual position
coordinate outside, that is after averaging over these intervals. One way of
interpreting (12) would be that from our physical point of view using (16)
there is a region where v is > ¢, consisting of virtual or superluminal ghost
particles bounded by a region, a sphere of radius equal To the Compton wave-
length consisting of massless particlets (to distinguish them from partons-,
mstantons and the like, or to make a clean break, ” Ganeshas”) with velocity
of light. Only on averaging over this vortex like sphere or regton, do we come
to the domain of conventional physics and the usual particles moving with
sub luminal velocities. [t may be remarked that the De Broglie-Bolim picture
of a particle is that of an average over an ensemble (cf. ref.[1]) but the above
picture is different: It is an averaging over a physically inaccessible region.

Indeed it is known that for a collection of relativistic particles, the vari-
ous mass centres form a two-dimensional disc perpendicular to the ang,ulcu
momentum vector L and with radius (vef.[13])

L -
= — v(17)
me
Further if the system has positive energies, then it must have an exten-
sion greater than r, while at distances of the order of » we begin to encounter
negative energies.
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It we consider the system to be a particle of spin or angular momentum

h iy . ; . \
3, then equation (17) gives, r = E%I That is we get back the Compton
wavelength. '

Ou the other hand it is known that (cf. ref.[14]), if a Dirac particle
is represented by a Gausssian packet, then we begin to encounter negative
energies precisely at the same Compton wavelength as above. Thus a particle
can indeed be treated as a vortex or a spherical shell of relativistic sub
constituents or particlets (or Ganeshas). '

6 General Relativity

Taking the cue from the above considerations let us treat a particle as a
~y
7

relativistic fluid[7]. Our starting point is the linearized theory[15]

4Tvt- :‘:'__:':'I 7Y . )
u( le‘l’m]Ll,J’)djivl (18)

Juv = Ny + h;t‘u, h;w === /

€T —

(A bar on T has been dropped.)

In (18), velocities comparable to the velocity of light ¢ are allowed and
also, the stresses T7* and momentum densities 7% can be comparable to the
energy momentum density 7. As in ref.15, we can easily deduce that, when
[i}'l << 1, where r = |7], and in a frame with origin at the centre of mass
and at rest with respect to the particle,

Gm = /T00(13;v . (19)

Sy = / ema’ T (20)

where m is the mass (or approximate mass because of the linear approxima-
tion), and- Sy is the angular momentum. We next observe that, v

r_'[wp'v — p“‘uu"u ' (21)

- 14 . . . r
>« If we now work in the Compton wavelength regios-we have, while u® = 1,

lu'| = ¢ (22)
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(This is the Quantumn Mechanical input) Substitution of (21) and (22) in
(20) gives on using the Mean Value Theorem,

Sp=c<a > / pd’a

As < al >~ S using (19), we get, S, = & as required for a spin half
particle. Infact as pointed out in ref.[7] this relation becomes exact if we
treat the particle as etfectively a rotating shell distribution of radius k/2mec,
keeping in mind the fact that the interior region is in any case unphysical
as seen in section 4, and is described by complex space-time coordinates.
The gravitational potential can similarly be obtained from (18) and (19)
(cf.ref[15]). '

O = —— (g% —n") = _Gm + 0(.1_..) (23)

Infact (cl.ref.[7]) the particle can be treated as a Kerr-Newman black hole
and as is well known we get back the correct electromagnetic field of a Dirac
electron including the anamolous gyromagnetic ratio ¢ = 2 (Though there
is a naked singularity, as explained in [7], this is shielded by the Compton
wavelength regioun.)

Thus a particle could be treated as a relativistic vortex, that is a vor-
tex where the velocity of circulation equals that of light or a spherical shell,
whose constituents are again rotating with the velocity of light or as a black
hole described by the Kerr-Newman metric for a spin § particle.

The fact that we get'the gravitational potential * in equation (23) again
confirms that mass comes from the Compton wavelength region.

NLd

7 Discussion

'

.
L. The equation (G) emerges on using the fact that S is defined only up
to a multiple of 27, whence we get equation (7) giving quantized spin. As
pointed out from equation (7) the Compton wavelength emerges. On the
other hand equation (17) shows that given the spin %, we get the Compton
wavelength. It is also to be noted that equation (20) gives the spiu & if we

7
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use the Compton wavelength. The Compton wavelength itself appears in
guantum mechanics due to the Heisenberg nuncertainity principle. So it ap-
pears that the quantum mechanical quantized spin and Compton wavelength
can be obtained from classical considerations like relativistic vortices. The
same conclusion is drawn from a slightly different viewpoint in (7). In any
case the remarkable universality of the Compton wavelengh was pointed out
by Wigner[16] - the above considerations show why it emerges in a natural
way.

2. The fact that the spin of the particle is directly counected to the nun-
ber of end points of the nodal lines, as seen in Section 2 appears to indicate
that Fermious are primary and that Bosons can be treated as bound states
of Fermions. As pointed out in(7], quarks also could be treated as Quantum
Mechanical Black Holes in the foregoing sense, and as it is known pions are
indeed treated as bound states of a quark and an anti quark. (Indeed from
considerations of the symmetry between leptonic and hadronic currents, lep-
tons and hadrons appear to be the same[l17].)

3. The fact that the magnetic field which arises in the monopole formu-
lation as given by equation (11) and the quantized spin angular momentum
which arises in the hydrodynamical formulation as given by equation (7) ap-
pear to be one and the same is remarkable. This is caused by the fact that
the vector K and the momentum vector as given in the two formulations are
really one and the same, as pointed out in Section 3. Indeed the Coriolis and
other effects of rotating frames[18] bear a strong resemblence to the maguetic
effects. As pointed out in[7], electromagnetism and gravitation can be unified
in a general relativistic version ol quantum mechanics as symbolised by the
complete description of the electron in terms of the Kerr-Newman metric.
This has been indicated in Section 6. Thus in this picture monopoles disap-
pear. Indeed they have not been found todate and Dirac himself expressed
his conviction that they do not exist[19].

.

4. The double valuedness thot arises from a nodal singularity on the
one hand and half integral spin on the other findswn immediate echo in the
IKerr-Newman metric. This can be seen as follows.
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lu natural units the metric is given by (cf. rel.[15]).

c 2
. : : , s 0
ds* = «——%[dt’—- asin® 0do)* + i 12
P P

2
[(1'2 + az)(lq} — ad’t]2 + %rlv'z + /)21102.,

where, « is the Compton wavelength and,
2 . - 2,2 2 .2 2.2
A = ri— 2mr + o + m? + €2, pe =1+ a”cos” Y
- B N » .)
At r =a and 0 = 7/2, A = 2d? as both e and m << «, and p* = ”.

If further, we take a9 = A, we get,
! dt ?

. \ , 1.
ds* = (20* = D)dt* + ;)—drz

4

The choice A = 12“ leads to,

, . | S
2 Yt 1o
ds® = ‘,)dt + 2(1/ ,

£ b

which is Mirkowski like, except for the scale factor .\;,2‘ In the foregoing model,

a'i—”t’ = velocity of light = 1. The choice A = 1 can be understood as follows:

2
If the azimuthal angle measured by an observer at rest far away, is ¢', then
we get back the velocity of light at r = « for this observer, if ¢’ = 2¢, which
is precisely spinorial behaviour.

Iy other words, special relativity for the spin % electron can be scen to
emerge from the Kerr-Newman metric.

5. Treating the particle as a vortex as in Section 2, arguments for a
mounopole in Section 3 then show that there would be the Bohim-Ahranov

like effect[20] at the Compton wavelength scale.

6. It is interesting to note that the above model of a particle could
explain the left handedness of the neutrino in the light of Sections 4 and 5.
In the case of the neutrino, as the mass is vanishingly small, the Compton
wavelength tends to infinity or turns out to be very large. On the other
hand we encounter the negative energy solutions within this region. That is

11




we encounter negative energy neutrinoes only. The equation for a negative
energy neutrino is (cf. ref.[11]).

(—=po)v(p) = +3.pv(p)

This is the equation for a left handed neatrino in the physical world of posi-
tive energy solutions. '

7. It was pointed out in rel.[7] that a complex displacement,
at — ot 4t (24)

leads Lo the clectromagnetic field of an electron. Cousidering the time com-
ponent, for example, we have, for the wave function 1,

P(t) = p(t +2a®) = %—[zh—c% + (—?;]1/)(15)
\‘« ) h's

T a4 — .o - . ¢ s“ T .
So, as th; = p°, the usual fourth-component of the energy-momentum op-
erator, we can identify the electrostatic potential, ¢, from an equation like

ep = — (25)
et
Infact, we could identify K* of section 3 and the momentum vector p* from
section 2 with . If further «* is taken to be of the order of the Compton
wavelength, -~ andssimilarly «® to be of the order of =% in the light of
ST me - me :
equations (12) and (16), we get,

h
|pl|@| ~me— =k,
me
which can also be obtained from the Heisenberg uncertainity principle.

It is interesting to note that quite independantly, the space components
of (24) give the other components of the electromagnetic vector potential,
and infact as is kuown, given the charge (or equation (25)), the above dis-
placement leads us to the Kerr-Newman metric[21].



vy <

References

(1]

Vasudevan, R., ”Hydrodynamical Formulation of Quantum Mechanics”,
in "Perspectives in Theoretical Molecular Physics”, Ed. Srinivasa Rao,
K., and Satpathy, L., Wiley Eastern, New Delhi, 1994, pp216-225.

Rae, A.LLM., "Quantum Mechanics”, IOP Publishing, Bristol, p222 ff.
Dirac, P.A.M., Proc. Roy. Soc., A 133, 1931, pp.60 fI. 1931.
sidharth, B.G., Nonlinear World (USA), 1, 1994, pp403-408.

Weinberg, 5., 7Gravitation and Cosmology”, Johu Wiley & Sons, New
York, 1972, p.G2.
Dieks, D., and Nienhius, G., Am.J.Phys., 58 (7), 1990, ppG50-655.

Stdharth, B.G., ”Quantum Mechanical Black Holes”, TR BSC-CAMCS-
95-10-01, B.M. Birla Science Centre, Hyderabad.

Okolowski, J.A., and Slomiana, M., Am.J.Phys., §1(4), 1993.

9] Anandan, J., Phys. Rev., D 24, 1981, pp.338-346.

Dirac, P.A.M., "The Principles of Quantum Mechanics”, Clarendon
Press, Oxford, 1958, p.263.

Schweber, 5.5., "Relativistic Quantum Field Theory”, Harper and Row, .
New York, 1964, p.47.

Roman, P., "Advanced Quantum Theory”, Addison-Wesley, Reading,
Mass, 1965, p.31.

Moller, C., "The Theory of Relativity”, Clarendon Press, Oxford, 1952,
pp. 170 ff, '

Bjorken, J.D., and Drell, S.D ., Relativistic Quantum Mechanics”, M-
Graw Hill, New York, 1964, p.39.

| Misner, C.W., Thorne, K.S., and Wheeler, J.A., ”Gravitation”, W.H.

Freeman, San Francisco, 1973, pp.448 f, 543 ff.

13




S <

e

[16] Newton, T.D., and Wigner, E.P., Rev. Mod. Phys., 21 (3), 1949.

[17] Rajsekharan., G., ”Gauge Theories”, in ”Gravitation, Quanta and the
Universe”, Eds. Prasanna, A.R., Narlikar, J.V., and Vishveswara, (".V.,
Wiley Eastern, New Delhi, 1930, pp.208 1f.

(18] Vladimirov, Yu., Mitskievich, N., and Horsky, J., ”"Space Time Gravita-
tion”, Mir Publishers, Moscow, 1987, pp.87 If. '

[19] Craigie, N.S., Goddard, P., and Nahm, W., Lds., "Monopoles-in Quan-
vu Pield Theory”, World Scientific, Singapore, 1982.

[20] Alranov, Y., and Bohm, D., Phys. Rev., 1959, 115, p.485. ((Tﬁrrcnt
Science, 66 (10), 25 May 1994 carries a review article).

[21] Newman, E.T., Journal of Math. Phys., (14), L, 1973, p.102.


http:NeWl1lCt.11



