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Abstract 

In this paper, Fermions are treated as Kerr-Newman type Black 

Holes wherein we identify the horizon at the particle's COlnpton wave­

length periphery. A naked singularity is avoided and the singular pro­

cesses inside the horizon of the Black Hole are identified with Quantum 

Mechanical effects within the Compton wavelength. 

Inertial Inass, gravitation, electromagnetism and even QeD interac­

tions emerge from such a description including relative strengths and 

also other features like the anomalous gyromagnetic ratio, the discrete­

ness of the charge and the reason why the electron's field emerges from 

Newman's complex transformation in General Relativity. 

This model describes the most fundamental stable Fermions viz., the 

electrons, neutrinos an'd the quarks. 
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Introduction 

Quantum Mechanics works at distances much greater than the Cornptoll 
wavel~ngth of elementary particles or roughly lO-12cm[1, 2]. In the domain 
of Quantum Field Theory, particles are points, space-time is a continuunl 
and special relativity holds. On the other hand, in Quantum Gravity we at­
tempt to deal with phenomena at distances of the order of the Planck length 
or lO-33cm[3]. In this preliminary communication, we consider an alterna­
tive view point and deal with distances of the order <~ the Compton wave 
length. At this level, Quantum Mechanical phenomena like zitterbewegung 
and negative energies come in [4]. We show that it is possible to consider 
electrons, and more generally leptons and also quarks as "Quantum Mechan­
ical Black Holes" (QMBH in what follows), wherein features of Quantu111 
Mechanics and General Relativity are inextricably woven. At the sanle tinle, 
we can trace the origin of inertial mass, gravitation, electrolnagnetisrn and 
even QCD interactions in such a model. Section 2 sets the tone: the origin 
of inertial mass in purely Quantum ivlechanical non-local amplitudes within 
the Compton wavelength is deduced. Taking the cue from here, it is shown 

,. 	 in section 3 that an electron can be Identified with a QMBH. This identifica­
tion leads to the emergence of the gravitational and electromagnetic fields. 
In section 4, sta.rting from General Rela.tivistic considerations, we deduce 
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the results of section 3, enlarge their applicability to muons and additionally 
exhibit the emergence of QeD interactions. There is a discussion of some 
relevant matters in section 5. Section 6 states the main conclusion. 

2 Inertial Mass and. Quantum Mechanics 

2.1 Preliminary Remarks 

We first consider'the question of the origin of a particle's inertialillass. Such 
a question has been considered in the spirit of Mach's principle in the past[5] 
and even recently with specified forms of macroscopic forces[6]. Even lllore 
recently [7], it has been argued from a totally different angle that inerti­
a is a result of the int~raction of a particle's constituent partons with the 
vacuunl elcctrolllagn ..tic zero-point field. Yet another view poiut is adopted 
here. The origin of inertia is attributed to a particle's properties in ordinary 
QuantuIll l\1echanics, rather than due to the global result of the ullivcrse as 
a whole or due to the medium. We first deduce both the or1inary and nOll 

local Schrodinger equations from simple considerations, invoking Quantuill 
Mechanical axiOlllS only, without using Newtonian Illechanics. FrOlH th(~sl"' 

considerations we will show that inertial mass, Newtonian Illechanics and 
even special relativity eIllerge. An interesting consequence of these consider­
ations is that the energy of inertial mass can be recovered or destroyed under 
suitable conditions. 

2.2 The Schrodinger Equation 

In the sequel we will use the following from a' larger set of well known pos­

tulates of Quantum Mechanics[8, '9]: 

i) All physical observables correspond to Her~itian operators - the only mea­

surable values of these observables being the various Eigen values of the cor­

responding operators. 

ii) The state of a physical system is exhaustively characterized by a vector 

of Hilbert space, the state vector 11/J > upon which the Hermitian operators 

corresponding to the observables act. The state \1/J > can be specified by 

an exhaustive state of observables, like the space time coordinates and any 

other relevant Quantum numbers. ' , 
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iii) Any state of the system can be expressed as a linear super position of a 
complete set of Eigen statesl<pi >(of, for example commuting or compatible 
Hermitian operators representing corresponding physical observables). 
iv) The average or expectation value of -a physical observable, that is operator 
H operating on a state vector 11fJ > is proportional to < 1fJ\HI1fJ >, or if 11fJ > is 
normalized and is expanded in terms of the complete set of orthonormalized 
Eigen vectors of H,I<pi > corresponding to Eigen values hi, 11fJ >= Cd~i > 
where Ci =< <Pil,p >; < H >=< 1fJIHI1fJ >= L ICi l2 hi . So Ci =< q),d'~l > is 
the probability amplitude for the state 11fJ >to be found in the Eigeu staLe 
l<Pi >. More generally the probability amplitude for a state I'¢, > to l)t~ found ' 
in any state 14> > is < <p11fJ >. 
v) Quantunl Mechanically, the momentum is defined by the operator ~ (;~:, 
while the Halniltonian or energy is,.assumed to be the operator 'lh;fi(Later 

" 	 these are identified with the corresponding classical quantities). 
We now denote the state of a system at tilne t by I'¢,(t) >: Let 't be the conl­
plete set of base states and U(t2' tt) the "time elapse operator" that denotes 
the passage of tiine between instants tt and t 2 , t2 greater than t I • We denote 
by, C~(t) =< zl,¢(t) >, the anlplitude for the state 11fJ(t) > to be in. the state 

. 	 Iz >, and 

< llUlj >= Ulj, Ulj(t +!It,t) = 6,j - iH,j(t)!lt. . .. 
We can now deduce, as is well known [10], fronl the super position of states 
principle, postulate,(iii) above, 

and finally, in the limit, 

. (1) 

The matrix Hlj(t) will be identified with the Hamiltonian operato,f accord­
. 	ing to postulate v. (To facilitate comparison we stick to the notati~n and 

development as given in [10]. Before proceeding to derive the Schrodinger 
equation,. we apply .equatio~ (1) to the simple case of a two state systenl 
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('t, j = 1,2 respectively; (cf. ref.pO]). This will provide a physical 1111<\('1' ­

standing of the later work. For a two state system we have 

ind~t = EllCt + H12C2 

dC2 . 

t'hdf: = H21 C1 + H22C2 

leading to two stationary states of energies E-A and E+A, where E == Hll = 
H22 , A 1112 = H21 • We can choose our zero of energy such that E = 2A. 
Indeed as has been pointed out [10], when.this consideration is applied to the 
hydrogen 11l0lecular ion, the fact that the electron has arnp1itudes C1 and C2 

of being with either alf the hydrogen atoms, lnanifests itself as an attractive 
force which binds the ion together, with an energy of the order of lnagllitude 
A = H12 • 

To proceed, we consider in (1), the t to be the space point X t and we denote by 
C(xn) == Cn the probability for the particle to be at this space point. Further 
let X n+l - Xn = b. Then considering only the point Xn and its neighbours 
X n±l, the equation (1) goes over into 

aC(Xn) (xu at = EC xn) - AC(xn - b) L AC(xn + b) (2) 

In the limit b ~ 0, with our choice of the arbitrary zero of energy, (2) goes 
ovetinto 

t'h8C( x) = _'h2 82C( x) 
(3)

8t 2m' 8x2 

where we have now dropped the subscript distinguishing the space point, and 
'In' u2 /2Ab2 

• 

So far, we have only reproduced the developments of[IO] ..We now obse,rv(-:, 

that while equation (3) resembles the free Schrodinger equation, as has been 

pointed out in [10], m' is not really the inertial mass, but an "effective 111as8" 

that emerges from the probability amplitude for the particle to be found at 

a neighbouring point. So (3) is not the Schrodinger equation. 

The Schrodinger equation can be obtained from (3) if it can be shown that 

m' can somehow be replaced by m. This is what we propose to do. 

To start with let us suppose that the particle has no mass other than the 

effective mass m', so that we can treat equation (3) as the Schroclinger tyP('> 
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equation for such a particle which has only amplitude to be at neighbouring 
points. Let us now suppose that the particle now acquires non zero proba­
bility amplitude to be present non locally at other than neighbouring points. 
We can then no longer work with equations (2) and (3). We will have to 
use the full equation (1) which explicitly exhibits this possibility. We rewrite 
equation (1) as 

+L: H",+j(t)Cj(t), (j = ±2, ±3,),.
j 

or a~ in the trall~itioll of equation (2) to equation (3), 

~ac(x) = -1i 
2 

8 
2 
C(x) fH(' ')C( ')d ' 

'lit a ( 8 2 + x, X X X (4) 
, t ~m' x 

where we have replaced H,; by H(x, x') and the points x, are in the lilnit 

taken to be a continuum. 

The Hlatrix H(x, x') gives the probability amplitude for the particle at ~l: to 

be found at x', that'*s by Postulate iv, 


H(x,x') =< 1/J(x' )I1/J(x) > , (5) 

where" as is usual we write C(x) =1/J(x), and denote the state of a particle 
at the point x by 11/J(x) >. 
Usually the amplitude H(x, x') is non-zero only for neighbouring points x 
and x', that is, H(x, x') = f(x )t5(x -:- x'). But if H(x, x') is not of this fonn, 
then there is a non-zero amplituae for the particle to "junlp" to an other 
than neighbouring point. In this case H(x, x') may be described as a non 
local amplitude. Indeed such non-local alnplitudes are iInplicit in the Dirac 
equation also and this will be commented on later. 
We now give a quick derivation of how th~ inertial mass enlerges fr01n equa­
tion (4). The non local Schrodiner 'eqU:aion (4), given only the effective nla~s 
n/, can be written, with the help of (5), as, 

.Ii~~ = ;!: ~:~ + J,p*(x'),p(x),p(x')U(x')dx', (6) 
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where, 
i) U(x) = 1 for Ixl < R, R arbitrarily large and also U(x) falls off rapidly as 
Ixl -t 00; U(x) has been introduced merely to ensure the convergence of the 
integral; and I 

ii) H(x,x') =< w(x')I1jJ(x) >= 1jJ*(x')1jJ(x). 
(6) is an integro-differential equation of degree three. .. 

The presence of the, what at first sight nlay seeln troublesonle, H0l1-1111(~ar aut! 


non-local tenn, viz., the last term on the right side of (6), win bt, satisfactorily: 


explained in section 2.4. ' 

In (6), in the first approxilnation 1jJ(x) can be taken to be the solution of tllt' 

Schrodillger like equation (3)., viz., ", 
.. 


a1jJ _li2 821jJ
zli- = ---- (7)

at 2m' ax2 

In effect, we linearize' (6), so that we get, 

2m' 

,. . 

a1/J' 1;,2 a2 

di- = [---,-~+ mo]1jJat 2m' ox2 
(8) . 

where, 

mo = J1jJ*(x')1jJ(x')U(x')dx'. 

In operator language, (8) becomes., 

_ p2 
H=-+rno (9) 

where by Postu~ate v, fl is the Halniltonian op,erator,p the InOlnentu1l1 
operator and where, what can now be a.nticipated as (t'rest mass li,ke tenl1 
rno, appears for a. particle assumed not to have any rest mass in the absence of 
the non-local amplitude term in (6). Also we have replaced the Hamiltonian 
lnatrix H by fl to stress that, to start wi~h, in (4) and (6), the particle has 
no inertial mass. To facilitate comparison with the usual theory, we next 
nlultiply both sides of (9) by the constant :;:, where, 

m = (n~om/)t Ie, 

~ being the velocity of light. (The reason for the appearance 01 the ve10city 
of light, e can be seen below (cf.equation (11)) and the constant could be a.b­
sorbed into the state vector, whose direction is all that lnatters (cf. Postulate 
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ii). We then get, 
2 

fl = L+mc2 ( 1 0) 
2m 

The physical meaning of (10) is now clear. In an expansion of the classical 
rdati vistic expreHsion for energy, 

2 4E = (p2 c2 + rn c )1/2 

as is well known, if we keep terms up to the order (p/mc)2, we get, 

p2
E= -+mc2 (11 ) 

2m 

Anticipating for convenience (though it is not necessary), the discussion af­
ter (12), regarding the identification of Quantum Mechanical Operators and 
their Eigen values with corresponding classical quantities, we can now eas­
ily identify m in (10) with the rest mass on comparing this equation with 
(11). (Interestingly it is not accidental that equation (10) corresponds to the 
approximation (11) as will be seen in section' 2.4). If further, we denote 

" 2H=H-mc, 

where H can be easily identified with the usual kinetic energy operator (or 
energy operator in non-relativistic theory, remembering that we an' cOllsid­

ering a free particle only), (10) becolnes 

2 

H"= .L (12)
2m 

In a strictly non relativistic context, where the rest energy of the particle 
is not considered, the Hamiltonian is given by (12); otherwise, it is given 
approximately Py (10). Remembering that as yet Hand p are operators 
and that (11) has been introduced only to facilitate an identification with 
classical quantities, we get from (12), by using Pustulates i, ii and v, the 
Schrodinger equation, 

All these considerations can be generalized in a simple way to three dilnen­
siotls [11], but as there is no new physical insight, the details are not givcll 
and we continue to work in one-din1ension. 

7 



2.3 	 NEWTONIAN MECHANICS AND INERTIAL 
MASS 

The usual derivation of the Schrodinger equation (13) IS rather different. 
First, the Newtonian relation, 

E = p2j2m, 	 (14 ) 

is invoked, where E and p are the classical energy and 1lIOlll(-mtUI1l of a rn~(~ 

particle. The scalars E and p are then identified wit.h the correspulJuiug 
Quantunl Mechanical operators. Thus Newtonian Mechanics is all input. 
The equation (1~1) h~wever has been'oeduced only frorn Quantulll Mechauical 
Postulates, without invoking Newtonian Mechanics. 
If we now invoke Postulates i and ii in equation (12), we get (14), where 
E and pare IlO,w Eigen values of the operators l,n1t and -'tn d: which we 
have defined tOI'be the energy and momentum operators in Postulate v. It is 
these Eigen values which show up as classical quantities. In other words, the 
Newtonian relation (14) is a consequence of Quantum I\1echanical Postulates. 
Once we view equation (14) as the Eigen ~alue - and classical - version of the 
Quantunl Mechanical operator equation (12), it is easy to deduce the classical 
Laws of Motion frori: (14), using now, classical concepts. For example, (14) 

, P 
~E = -~p, 

m 

while 

~E == F.~x = F p~t,
rn 

F being the (classical) Force, so that we get, 

~p= F~t, 

from which Newton's first and second Laws follow. 

This is also the reason why we can compare the Quantum Mechanical equa­

tion (10) with the classical equation (11) and identify 'm' in (10) with the 

rest nlass of the particle. The physical origin of the rest mass in (10) is also 

clear: In the two state Hydrogen molecular ion case considered earlier, it was 

the alnplitude for the single electron to be with one Hydrogen aton} or the, 
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other, which Inanifested itself as a binding energy. In our case; the arllplitudc 
of a particle to be at x or x', viz., the second term on the right side of (6), 
lllanifests itself as an (attractive) energy, the mass energy of t. he particle, or 
what 111ay be called self energy (or self interaction on energy). 1'h~s is the 
origin of a particle's inertial mass. 

2.4 	 THE ORIGIN OF SPECIAL RELATIVITY AND 
DISCUSSION 

In section 2.2 it was mentioned that the appearance of the rest lnass ter­
111 in (10) corresponding to the approximation (11) of the relativistic en­
ergy momentum relation, was not accidental. Infact it is well known [4] 
that the Schrodinger equation can also be obtained as the non-relativisitic 
limit of the Dirac equation. However, in this transition, the phase factor 
4> =exp[-~mc2t/n], of the original relativistic wave fUllction is dropped. If 
this phase factor is taken into account in the Schrodinger equation (iha.i is 
if we continue to work in ternlS of the original wave function), it can b<-> 
easily verified that we get equation (10). Conversely, if in the equation witll 
Halniltonian (10), the wave function is transformed by the factor (j), we get 
back the usual Schrodinger equation (13). 
This is to be expected because the energy operator ~n1t operating on 4> gives 
the mc2 term. To the extent that the Quantum Mechanical phase or the rest 
lllass which corresponds to a constant potential in the Schrodiuger equatioll, 
is inessential, this is of no consequence. 
However, there are subtler issues in this context which are worth notillg. 
Firstly, 	as is well known, the Sch~~dinger equation is not quite invariant 

" 	 under the Galilean group, as one would expect a strictly non-relativistic e­
quation to be [12]. For, Galilean invariance would imply that there would be 
no Quantum Mechanical Sagnac effect - a purely relativistic effect due to the~ 
interference of different phases. However the Quantum Mechanical Sagnac 
effect has been ·observed [13]. 
There has been much discussion about all this recently [12, 14]. As has beell 
pointed out, under Galilean transfornlations, the phase of the Sdll'odiuger 
wave function is not invariant and this is what leads to the Sagnac effect. But 
if the phase factor 4> .bove, which is dropped in the passage fronl the Dirac to 
the Sc.hrodinger equation is retained, then under a Lorentz transforlnatioll, 
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to the order (v / C)2, there is phase invariance also; and the relativistic Sagnac 
effect is satisfactorily explained. It has been correctly concluded in references 
[12] alld [14], that tlif original de Broglie theory, on which Schrodinger based 
his work, was relativisitic. 
To stllll up, in the usual theory, the Schrodinger equation can also be ob­
taiut'd as th(~ linlit of the Dirac equation together with the· suppression of 
tilt' phase factor </>, which amounts to dropping the rest energy ternl in (11). 
It is this latter step which gives a non-Galilean character to the Sduoding;er 
equation, viz., the appearance of the Sagllac eft'ect. 
The second point is that in the usual theory, in the above discussion, we 
start with the relativistic energy monlentulTI relation, then deduce the Dirac 
equation and finally take the non-relativistic limit to get the Schrodinger 
equation. However, in section 2.2 we have deduced the equation (10) and 
subsequently the Schrodinger equation (13), from an independant, purely 
Postulative Quantum Mechanical view point without the inputs of Newto­
nian or relativistic mechanics. So equation (10) shows the origin of Bot just 
Newtonian ~1echanics, but special relativity also, in Quantum Mechanics. 
This is not surprising, because the very concept of rest energy or energy of 
Blass is relativistic. Infact, for a particle at rest, the operator equation (10) 
and its Eigen value classical version would give (as p::= 0), the well known 
relation, 

However, we have not deduced Einstein's mass-energy relation - the constant 
c was introduced only to facilitate cOlnparison: We have not QuantulTI Me­
chanically proved that c is the velocity of light. Infact what we have deduced 
IS, 

Eam 

This has been elaborated in an earlier conlmunication[11] and will be justi ­

fied in section 5. 

We finally comnlent on the non-local term in (6) which is also non-linear. 


" 	 This gives rise to the inertial mass"of a particle. Non- locality implies su­
perluminal velocities and l~he breakdown of causality. Classically this is im­
possible. But in Quantum Mechanics, owing to the Uncertainity Principle, 
this is allowed within the Compton wavelength Ii/me of a particle(15]. So 
there is no con11radiction if the non-local amplitude is integrated within this 
region of the particle's Compton wavelength. That is, the luertial lnas~ is a 
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result of non-local, non-linear processes within the Compton wavelength of 

the particle. 

One could argue that the usual Dirac equation also has a non-local char­
acter: the operator cii.p + {3mc2 is equivalent to and replaces the non-local 

square-root operator, (_li2V2 + m 2c4)1/2. Here also, the non-local effects in 

the fornl of negative energies are encountered - again within the Comptoll 

wavelength region (cf. ref. [4]). 

In the light of the preceding considerations, we can derive the Schrodinger 

equation from an alternative angle: It appears that the "point" particle is re­

ally spread over the non-locality region b = ':c' the Compton wavelength.
1'-1 

Further, the energy of the particle i.e., the energy tied up within this region 
viz., '2A of Section 2.2 is the inertial mass energy rnc2

• We could now, as ill 
Sec.tion 2.2 (equation (3)), speak of the aillplitude for the particlp at. .1' tu IH' 
found (locally) at a neighbouring point x +b, except that ill the lilllit., h II 
(aud Hot 0). The effectiye Inass Tn' ill equation (3) is theu given hy, 

, .. Ii 
m = ---=m,

2Ab2 

that is the Inass itself. 

So, equation (3), can be interpreted as the Schrodinger equation. 

It is worth re-elllphasizing that it is the force of binding of non-local positions 

within the COlnpton wavelength, rather like the Hydrogel! Inolecular iOIl 

binding, that manifests itself as inertial ~ass. 


According to this reasoning, if a particle is subjected to a field powerful 

enough to penetrate.the Compton wavelength region, in contrast to usual 

relatively low energy fields which merely accelerate the particle as a whole, 

theu it can be disruptively destroyed and the Inass energy released (cf. also 

ref. [16]). 


3 Particle~ as Black Holes 
The fact that the mass generating non-local amplitudes are confined to a 

region of width 1'-1 ::c suggests that the particle could be a black hole, because 
in this case also, there is a width, the horizon, inside which such unphysical 
phenonlena appear. The possibility that a particle could be a Schwarzchild 
black hole has been examined earlier by Markov and others[17] and leads to 
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a high particle nlass of 1'0-5gm. 

However, our approach in what follows is different. Let us consider a charged 
Dirac (spin half) particle. If we treat this as p. spinning black hole, there is an 
iInmediate problem: The horizon of the Kerr- Newman black hole(18] becomes 
in this case, cornplex, .. 

GM G2Q'l G'12M2 
• _'..1 'b b - ( J '2 J 1/21+---+Z, == --+a - ) (15)2 c8 c4c

where G is the gravitational constant, M the nlass and a =L/IvI c, L being 
the angular Illomentum. That is, we have a naked singularity apparently 
contradicting the cosmic censorship conjecture. However, in the Quantulll 
Mechanical domain, (1.5) can be seen to be "meaningful. \ cf-Append'ix) 
Infact, the position coordinate for a Dirac particle is given by [9] 

(16) 

where at is an arbitrary constant and cal is the velocity operator with elgen 
values ±c. The real part in (16) is the usual position while the ilnaginary 
part arises frolll zitterbewegung. Interestingly, in both (15) and (16), the 

t
ilnaginary part is of the ord'er of ':c' the Compton wave length, and leads to 
an imnlediate ide'ntification of ,these twoequati9ns. We must renlelnber that 
our physical measurements are gross - they are really measureluents averaged 
over, a width of the order ':c (cf.ref. [1]). SiInilarly, time lneasurernellts are 
imprecise to the tune "" m:2 (cf. ref.[9]): Very precise measurements if pos­
sible, would imply tliat all Dirac particles would have the velocity of light, 
or in the Quatum Field Theory atleast of Fermions, would lead to diver­
gences. (This is closely related to the non-hernliticity of position operators 
in relativistic theory as can be seen fro~ equation (16) itself [19].) Physics 
begins after an averaging over the above unphysical space-time intervals. In 
the process as is known (cf. ref.[19]), the imaginary or non-he,nnitian part of 
the position operator in (16) disappears .. That is in the case of the QMBH 
(Quantuln Mechanical Bla:ck Hole), obtained by identifying (1.5) lind (16), 
the naked singularity is shielded by a Quantum Mechanical censor. 
,To continue, we first naively treat a Dirac particle as a Kerr-Newman black 
hole of mass m, charge e and spin ~. The gravitational and electronlagnetic 
fields at a distance are given by (cf. ref. [5]) , 

" 
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e2cP (r) = - Gm + O( r~ ) E; = r + O( r13 ), E9 = O( r14 ), E J, = 0, (<17) 
2ea r ( 1 ) en Sill (J 0(1 B 0Bf -;:3 COS () + 0 r4 , B9 = ~ + r 4 ) ,J, , 

exactly as required. Infact, as is well known, (17) also exhibits the electron's 

anomalous gyromagnetic ratio 9 = 2. 

We next exalnine more closely, the identification of a Dirac particl(-' with 

a Kerr-Newman black hole. We reverse the arguments after equation (Ui) 

which lead from the complex or non-Hermitian coordinate operators to Her­

mitian ones: We consider the displacement,
., 

(18) 

and first consider the temporal part, t -t t + taO, where aO ~ 21~c2' as before. 
That is, we prqbe into the QMBH or the zitterbewegung region inside the 
Compton wavelength. Remembering that lal « I, we have, for the wave 
function, 

aO. a Ii 
1jJ(t) -t 'ljJ(t + taO) = Ii [tli at + ao]VJ(t) 

As zh /;t == pO, the uf'ual fourth component of the energy 11lOJnentufJl oper­
ator, we identify, by cOInparison with the well known electronJagllp.tl~nn ­
1110fllentu111 coupling, pO - ec/>, the usual electrostatic charge as, 

Ii 2 
e = -0 = 2rnc (19) 

a 

111 the case of the electron, we can verify that the equality (19) iH satisfied: 
the charge is seen to be related to the mass and the velocity or light. 
It may be noted in passing that in the usual displacernent op(~rator theory 
([9] )the operators like d~ or :t are indeternlinate to the extent of a purely 
ilnaginary additive constant which is adjusted against the hennicity of the 
operators concerned. We next consider the spatial part of (18), :viz., 

. - -t X- - h I-I = Iix + 'la, were a --, 
< 2mc 

given the fact that the particle is now seen to have the charge e (and nlass 
m). As is well known [20], this leads in General Relativity fronl the static 
Kerr metric to the Kerr-Newman metric where the gravitational and electro­
lllagnetic field of the particle is given by (17), including the anomalous factor 
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.lI = 2. In Gell(~ra) Rela.tivity, the cOlnplex tra.nsfornui.tion (1 ~) aud Llte Sll I)se­

quent elnergence of the Kerr-Newman metric has no clear explanation. But 
in the QuantuIIl Mecha.nical context we can see the rationale: the origju of 

" 	 (18) lies ill the QMBH. We started wIth a massless particle. Then we saw the 
elnergence of Inass and also the origin of gravitation and electromagnetism in 
the processes inside the COlnpton wavelength - the nonlocal QMBH region. 
Then~ is another' way to see the emergence of electromagnetism. It is well 

known that fori the Dirac four spinor (~), where () denotes the positive 

energy two spinor and X the negative energy two spinor, at and within the 
COlnpton wave length, it is X that dorniilates. Further, under reflections, 
while 0 -t 0, X behaves like a psuedo-spinor[4] .. 

X -t-X 

l-lenec the operator a~JA acting on X, a density of weight N- = 1, has the 
following behaviour[21], 

ax 1 a 
- -t -[1i.- - NA~]X 	 (:20 ) 
ax~ 1i. ax~ 

where, 

(21) 

As before we can identify N A~ in (20) with the electro- magnetic four poten­
tial. That N = 1, explains the fact that charge is discrete. It will be shown 
in the next section that, 

(2:2) 

in agreement with (19). That is, electromagnetism is the result of the covari­
ant derivative that arises due to the Quantum Mechanical behaviour of the 
negative energy components within the Compton wavelength region. 
We observe, that in case the mass m -t 0, the considerations of section 2 

inlply that there are no negative energy components while (19) and· (22) show 
that such a particle has no charge. The massless neutrino fits this description 
exactly: it has a two component wave function and is chargeless. 
There is also the muon which satisfies (22) in the order of magnitude sense. 
But it is unstable and disintegrates into an electron (or positron) alld twu 
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neutrinos anyway. , 
Thus these considerations describe the stable leptons, viz., electrons and neu­
trinos, and approximately the remaining unstable lepton. 
It is interesting that an application of Maxwell's equations in this C0l11pton 
wavelength region of "charged matter" leads to meaningful results: In this 
case the fact that AIJ. in (21) is a four gradient poses no problelll. We have, 
using Maxwell's equation~ (22). 

4> =AO = ~~,B = VXA = VX(Vn) = 0, (:23)
15 = -~1- V4> = -2vn,15 = -2Vlj> 

Also, 
..... ..... 2
\1.E = 2\1 lj> = 47r0" • (~4) 

V.B=O, 
while 

..... ..... a15 
'VXB = 0.= 411"8 +- (25) 
~ at 

and, 
..... ..... ..... . aB .......... 


\1XE = -O"-a = \1X(2\1lj» = 0 , . t 
Equations (23),(24), and (25) show that effectively this is a st.eady field with 
potential 4> that is, we could .work as if'vvc have a. steady field of potential ¢ 
except that there is an anomalous doubling ofthe charge and current. Now, 
as is well known the usual orbital magnetic momentum is given by [23]

• e 
P = --Ptb (26)

2mc 

where Pt/l is the angular momentum and e is the charge. In our case, e in 
(26) is effectively replaced by 2e, so that.in the usual units of e/2rnc, we now 
have for the Dirac particle, instead of (26), 

Pg=-= 2 
Ptb 

This is the anolualous gyromagnetic ratio. 

•. 
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4 A General Relativistic Approach: Origin 
of QeD Interactions 

Thus far it appears tha.t the QMBH description applies to electrons and 
lllore generally Leptons. In the light of the preceding considerations, we will 
now approach the problelll from a General Relativistic point of view. This 
will also reveal the origin of QCD interactions. Our starting point is the 
linearized theory[5]: 

(27) 

(A bar Oll T has been dropped.) 

In (27), velo,cities cOlnparable to the velocity of light care allo,wed aud also, 

the stresses Tjk aU<."lnonlentum densitities Toj can be comparable to the 

t'uergy 1l10lll<::'ntulll density TOo. As in re£.5, we can easily deduce that, WItCH 


i~'1 « 1, where T == Iii, and in a frame with o,rigin at the centre of Blass 

aBel at rest with respect to, the particle, 


(28) 

(29) 

where rn is the lnass (or appro,ximate mass because of the linear approxiIna­
tion), and Sk is the angular momentum. We next o,bserve that, 

(:30 ) 

If we now wo,rk in the Compton wavelength region of the QMBH, we have, 
while 'U 

0 = 1, 
(:31 ) 

(This is the Quantum Mechanical input) 

Substitutio,n of (30) and (31) in (29) gives on using the Mean Value Theoreln, 


Sk = C < xl > Jpd3 
X 
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As < J;l >"" -"-, using (28), we get, Sk .~ L2t, as required for a Spill half
2mc 

particle. Infact this rela,tion becomes exact if we treat the QMBH as effec­
tively a rotating shell distribution of radius h/2mc, keeping in nlilld the fact 
that the iuterior region is in any case unphysical as seen i~ section 3, and 
i~ descri bed by cOlnplex space-tilne coordinates. The gravitational potential 
can sinlilarly be obtained from (27) and (28) (cf. ref.[5J), 

1 00 00 Gm 1
<P=--(g -T/ )=--+0(-) (32)

2 . r r3 

We saw in section 3 that the electromagn~tic potential is given by, 

• 
Using thf> expression for the Christoffel synlbols, we have, 

so that, fronl (27), 

A = 2 J ~v ~[T~v(t - Ix - xii, xl)]d3 ,.' 
o T/ at ,.... _'I xIX - x 

Relnelnbering that Ii - i'l ~ r for the distant region we are considering, we 
have, 

"" 2 J ~v[ a T ( -I) d ( 1- -/I)]d3 I 2 J ~v d ( ) 3 IAo "" - T/ -a·- ~v 7", x '-d t - x - x x ~ - T/ -dT~v. 1 + c d :r , 
r' 7" t r' 7" 

or finally 

2c J IJ.V d T Id3Ao~- T/ - v x (33)
r d7" ~ 

as c > > 1, and where we have used the fact that in the Compton wavelength 

region, luvl = c. 

It has already been observed that QMBH can be treated as a rotating shell 

distribution with radius R =2!C' SO we have, 
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where w, the angular velocity is given by, 

a luvl 2mc2 

w-----	 (:35 )- R - 'Ii 

\Ve get the saIne relation in the theory of the Dirac equation, rernelnbering 
that in (28) and (29) the centre of lnass is at rest: 

'l'li dt 
d 

(cal) = -2mc2 
( ca~), 

where cal i:-; the velocity operator (cf.ref.[9]) Finally, on using (aO), (:34) aud 
(:~!)) ill (;l:~). we get, 

~ 3 2 
e ftC 3 I f 3 1ncJ- = Ao "" - pwd x "" (G1TLC )-	 (;j(j ) 
r r 	 r 

If we u:-;e the value of G, m and c, we get as in section :3, for the electroIl, 

e "" 14 X 10- lO esu 

in agreelnent with its value and with (19). In the order of magnitude sense 

the above holds for the muon also. 

Our input in the above has been the value of the Gravitational constant G. 

On the other hand, if we had used the value of e from (19), this analysis 

would have yielded an approximate value for C. 

Equally important, (36) yields the well known ratio 10+40 for the electromag­

netic and Gravitational interactions. 

So far we have been considering distances far from the particle: Ix' - xl > > 

Ix'i. This is the approximation invoked in a transition from (27) to equations 

(28), (29) etc. Let us now see what happens when Ixl "" Ix'i. In this case, we 

have froin (27), expanding in a Taylor series about t, 


hJiv = 4 f TV;~~~')d3x' + (terms independent ofx) + 2 
(:37)

J :t22 TJiv(t, x').lx - x'ld3x'+ O(lx - X'12).. 

" 	 The first term gives a Coulombic ;- type interaction except that the coefficient 

a is of much greater magnitude as compared to the gravitational or electro­
Inagnetic case, be,cause in this approximation, in an expansion of (1/ Ix - x'l), 
all tenns are ofcoIIIparable order. To proceed further, using (34), we have, , 
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so that, 
d2 

_T'"'v = 4pU'"'uvw 2 = 4w2 T'"'v 
dt2 

where'W is given by (35). Substitution in (37) gives, 

13M, Mc2 
2 

h,",v ~ --r- + 8{3M(-u-) .r (38) 

/3 being a constant. 
This resenlbles the QCD quark potentia] [24], with both the Coulombic and 
confining parts. Taking for M the mass of a typical Cquark "'-I 1.8()ev (cf. 
ref. [24]) , the ratio of.he coefficients of the r term and the;' ternl as obtaiued 
from (38) is "'-I -,b-(Gev)2 as in the case of QCD (ref. [24]). 
In this picture, how do we accommodate anti-particles, for exanlPle positron­
s'! While tf(~ating the negative energy spinoI' as a density in sectiolJ :l we had 
assulued that N == 1. Equally well, we could have chosen.IV - I. Th is 
reverses thp sign of the charge, all else renlaining the sanle. So with N -1, 
we get a positron. Similarly for quarks, N can be taken to be fractional. 
But this apart it 111ust be relnembered that whereas for electrons we took the 
aSYluptotic expansions of equations like (27), in the case of quarks we bad 
to consider the region near the Compton wavelength itself. 
Thus, it appears that the treatlnent of Leptons and quarks as QM Bll leads 
to Ineaningful results. On the other hand, these are the 1110st fundalnental 
constituents of lnatter. 

Discussion and Comments 

1) As has been pointed out, QFT works with point particles and a space­

time continuum in a special relativistic context. Divergences appear when we 

go right upto l' == O. However, it appears that for Fennionic Fields atleast, 

this picture may be valid only for distances greater than the Compton wave­

length: The above model forbids such a limiting process for Fermions and sets 

a cut off. Once we enter the QMBH region, a very high energy phenolnenon, 

space-tilne in the conventional sense becomes unphysical. The appearance 

of c0111plex coordinates or non-Hermitian operators is a manifestation of this 

unphysical feature. 

2) In the usual formulation of the Hole Theory, the Dirac sea is filled with 
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negative energy electrons, and by invoking-the Pauli exclusion principle, tran­
sitions to negative energy states are forbidden. In the present formulation, 
in effect, the Dirac sfa 'of negative energy states is squeezed into the Q1tlBH 
and the Quantum Mechanical censor of section 3 forbids transitions. 
:J) In ordinary Quantum Mechanics, '¢ being the wave function, 'tInt'''' is pro­
portiollal to the p1'obability densit.y. On the other hand, we saw in section 
2 that the Blass density is produced by the non-linear alllplitude '~)'t/!'" ill the 
COlllpton wavelength region. More specifically we saw in sections ;,3 and 4 that 
it is x, the negative energy part of the Dirac four spinor (which dOlninates 
in this region)., that is relevant. That is, p being the material density, 

paxx* (:39 ) 

As observed in section 3, for the two component neutrino, X = 0, aud the 
neutrinos are luassless. 
It was shown in an earlier communication[25], how Gravitation call f'merj!;e 
fronl the Schrodinger equation self-consistently. Again, it is the identificatioll 
of the luaterial density in (39) which gives substance to that result. 
4) More general than the radius of the horizon given in (15) is the static 
limit of the Kerr-Newman Black Hole, wherein 'a' is replaced by acos f), () 

being the usual polar coordinate. However in the QMBH, as we approach 
the Compton wavelength"" a, we encounter the unphysical zitterbewegung 
region where () ceases to have any physical meaning. In other words, the spin 
is insensitive to () unlike in the classical Citse. This is of course well known in 
Quantulll Mechanics. 
5) The elllergence of electromagnetism from spin should not be too surprising. 
As is well known, rotating frames and the accompanying drag do produce 
effects similar to magnetism[26]. 
6) It luay be remarked that we started in section 2 with purely Quantuln 
Mechanical postulates al)d deduced nlechanical effects. We canle a full circle 

in section 4 wherein, from purely classical considerations, we deduced Quan­

tUIU Mechanical phenomena. 

7) It is interesting that from a different angle, llsing considerations of self­

siluilarity, if we assume that the scale of the Universe is broken at sonle stage, 

that. is, that there is an ultimate micro-level, then the Compton wavelength 

again appears qs a fundaluentallength[27]. 

8) If in the position formula (16), we consider the real part ftnd also a tjnlf' 
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_<2 ~ 

iULerval of rv ~, we get for p == 'Inc,
'II.e' • 

'Ii 
x=­

mc 

This result can also follow from the Heisenberg Uncertainity'Principle. 

As in the spirit of the preceding observation, we see the enlergence of tlH'\ 

Planck constant h in the extreme situation of the maximuln velocity and lniu­

ilnu111 physical space-time intervals. Moreover, h, m. and c are inter-relat(~(l. 


Taking the cue from here, we pick up the result in section 2 viz., 


Eam or E == my, 

where y is the constant of proportionality which was identified adhoc earlif'r 
with c'l.. Using now Heisenberg's Uncertainity relations, and considering the 
extrenH:~ case, we have, firstly, 

'Ii 
trv - , 

my 

so that x == ct rv k, where c is the maximum possible velocity. Further, in 
my 

this case, 
'Ii my 

p = mc rv - ==-, 
x c 

so that y == c2
• 

This provides a Quantuln Mechahical justification for the fonnula E == ntc2 
, 

without taking recourse to special relativity. Indeed as pointed out in sec­
tion 2, the origin of special relativity could be traced to these Quantum 
Mechanical considerations. 

Conclusion 

It appears that the lnost fundamental Fermions, viz., the quarks, the elec-. 

trons and the neutrinos can be thought of as· Quantum Mechanical Black 

Holes. These are' Black Holes apparently exhibiting a naked singularity, but 

which are nlealiingful in terms of the Quantum Mechanical Compton wave­

length and processes near and· within this region. 

In classical terms, effectively this is a rotating shell distribution with a radius 
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equalling half the Coolpton wavelength and where the velocity equals that 

of light as at a Black Hole horizon. 

All this explains the origin of mass, gravitation, electromagneti~ln and even 

QCD interactions, their relative magnitudes and also features like the dis­

creteness of charge and the anomalous gyrolllagnetic ratio of the electron. 
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· APPENDIX 

There is another way in which the result of section 3, viz., the treatrnent 
of elementary particles as black holes can be viewed. 
What we call the position of the point particle is given by the real part of 
equation (16) - after accounting for Quan,tum lVlechanical effects in the forn) 
of the illlagiuary part. In this case, we have the Hermitian position operator 
x. From here on we~re in the dOlnain of point particles and the usual space­
tilHe cOlltinuulll described by the Lorentz llletric both ill Quantulll Theory 
and QFT. FroIll this point of view, we can interpret (15) as follows. 
After accounting for the Quantum Mechanical effects in the forn} of the 
ilnaginary parts of (15) and (16), the radius of the Kerr- Newlnan black hol(-~, 
as described by the real part of (15) (and (16)), is given by, 

r+ =M, 

where for convenience, we work in units such that G = 1, c = 1. Now, 

1'+ f'V 10-56cnl, for the electron and a few orders higher for protons and 

quarks. 

This is well below the Planck length and effectively the particles are points. 

The Kerr-Newman metric which gives (15) is: 

~ . 26 . 2 

ds 
2 

= ---2 [dt - a sin2 6d4>]2 +~[(r2 +a2 )d4> - adt]2 + Ldr·2 + p2dlP 
P p2 ~' 

where 
~ =r2 _ 2Mr +a2 +Q2,p2 =r2 +a2 cos2 () 

Even for distances much smaller than the Compton Wave length a, as above, 
this goes over to, 

-de +a2sin2 6d<jJ2 + cos2 6dr2 +a2 cos2 6d(P, 

25 



-


where 0 #- 1r /2.' 

This is broadly similar to the Lorentz metric of special reiativity. 

The concept of point particles vis a vis Heisenberg's uncertainity principle 

which denies precise positions is, in any case, one of the paradigms of nlodern 

physics (cf. "Super ~trings and the search for the Theory of Everything", 

F.D. Peat, A bacus, London, 1992, for a detailed discussion.) 
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