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Abstract

In this paper, Fermions are treated as Kerr-Newman type Black
Holes wherein we identify the horizon at the particle’s Compton wave-
length periphery. A naked singularity is avoided and the singular pro-
cesses inside the horizon of the Black Hole are identified with Quantumn
Mechanical effects within the Compton wavelength.

Inertial mass, gravitation, electromagnetism and even QCD interac-
tions emerge from such a description including relative strengths and
also other features like the anomalous gyromagnetic ratio, the discrete-
ness of the charge and the reason why the electron’s field emerges from
Newman’s complex transformation in General Relativity.

This model describes the most fundamental stable Fermions viz., the
electrons, neutrinos and the quarks.
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1 Introduction

Quantum Mechanics works at distances much greater than the Compton
wavelength of elementary particles or roughly 107*2¢m/[1, 2]. In the domain
of Quantum Field Theory, particles are points, space-time is a continuum
and special relativity holds. On the other hand, in Quantum Gravity we at-
tempt to deal with phenomena at distances of the order of the Planck length
or 10733¢m[3]. In this preliminary communication, we consider an alterna-
tive view point and deal with distances of the order <~ the Compton wave
length. At this level, Quantum Mechanical phenomena like zitterbewegung
and negative energies come in [4]. We show that it is possible to consider
electrons, and more generally leptons and also quarks as ”Quantum Mechan-
ical Black Holes” (QMBH in what follows), wherein features of Quantum
Mechanics and General Relativity are inextricably woven. At the same time,
we can trace the origin of inertial mass, gravitation, electromagnetisin and
even QCD interactions in such a model. Section 2 sets the tone: the origin
of inertial mass in purely Quantum Mechanical non-local amplitudes within
the Compton wavelength is deduced. Taking the cue from here, it is shown
_ in section 3 that an electron can be dentified with a QMBH. This identifica-
tion leads to the emergence of the gravitational and electromagnetic fields.
In section 4, starting from General Relativistic considerations, we deduce

J
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the results of section 3, enlarge their applicability to muons and additionally
exhibit the emergence of QCD interactions. There is a discussion of some
relevant matters in section 5. Section 6 states the main conclusion.

-2 Inertial Mass and. Quantum Mechanics

2.1 Preliminary Remarks

We first consider the question of the origin of a particle’s inertial mass. Such
a question has been considered in the spirit of Mach’s principle in the past[5]
and even recently with specified forms of macroscopic forces[6]. Even more
recently [7], it has been argued from a totally different angle that inerti-
a is a result of the interaction of a particle’s constituent partons with the
vacuum electromagngtic zero-point field. Yet another view point is adopted
here. The origin of inertia is attributed to a particle’s properties in ordinary
Quantum Mechanics, rather than due to the global result of the universe as
a whole or due to the medium. We first deduce both the ordinary and non
local Schrodinger equations from simple considerations, invoking Quantum
Mechanical axioms only, without using Newtonian mechanics. From these
cousiderations we will show that inertial mass, Newtonian mechanics and
even special relativity emerge. An interesting consequence of these consider-
ations is that the energy of inertial mass can be recovered or destroyed under
suitable conditions.

2.2 The Schrodinger Equation

In the sequel we will use the following from a larger set of well known pos-
tulates of Quantum Mechanics(8, 9]:

i) All physical observables correspond to Hermitian operators - the only mea-
surable values of these observables being the various Eigen values of the cor-
responding operators. , ,

i1) The state of a physical system is exhaustively characterized by a vector
of Hilbert space, the state vector | > upon which the Hermitian operators
corresponding to the observables act. The state [1) > can be specified by
an exhaustive state of observables, like the space time coordinates and any
other relevant Quantum numbers. -



ii1) Any state of the system can be expressed as a linear super position of a
complete set of Eigen states|@; >(of, for example commuting or compatible
Hermitian operators representing corresponding physical observables).

iv) The average or expectation value of a physical observable, that is operator
H operating on a state vector |1) > is proportional to < ¥|H|y >, orif | > is
normalized and is expanded in terms of the complete set of orthonormalized
Eigen vectors of H,|@; > corresponding to Eigen values h;, ¢y >= C;|¢; >
where C; =< ¢;|Y >;< H >=< ¢|H|¢p >= T |C;|*h;. So C; =< ¢i|yp > is
the probability amplitude for the state ) >to be found in the Eigen state
|¢; >. More generally the probability amplitude for a state |¢» > to be lound
in any state |¢ > is < @|Y >.

v) Quantum Mechanically, the momentum is defined by the operator %—;%
while the Hamiltonian or energy is assumed to be the operator zﬁg—t(Later
-~ these are identified with the corresponding classical quantities).

We now denote the state of a system at time t by |i(¢) >. Let ¢ be the com- -
plete set of base states and U(t,,%;) the "time elapse operator” that denotes
the passage of time between instants t; and t,, t; greater than ¢,. We denote
by, C,(t) =< 1| (t) >, the amplitude for the state |1(¢) > to be in the state
| >, and

. . . ' 4 |
<a|Ulg >= Uy, Uy(t + At,t) = 6,5 — gH”'(t)At. i
‘ &
We can now deduce, as is well known [10], from the super position of states
principle, postulate,(iii) above,

Ot + 00 = Yléy - ©

J

H.,;(t)At]C;(t)

and finally, in the limit,

WS = 5 00s0) S

The matrix H,;(t) will be identified with the Hamiltonian operator accord-
ing to postulate v. (To facilitate comparison we stick to the notation and.
development as given in [10]. Before proceeding to derive the Schrodinger
equation, we apply equation (1) to the simple case of a two state system



(2,7 = 1,2 respectively; (cf. ref.[10]). This will provide a physical under-
standing of the later work. For a two state system we have

i‘hg—'c'l" = H1;,C1 + H12C2
dt
dC. '

373—3;3 = Hy1Cy + HpCy

leading to two stationary states of energies E—A and E+ A, where E = Hy; =
Hi3, A = Hyy = Hjy. We can choose our zero of energy such that £ = 2A.
Indeed as has been pointed out [10], when.this consideration is applied to the
hydrogen molecular ion, the fact that the electron has amplitudes C and C,
of being with either wf the hydrogen atoms, manifests itself as an attractive
force which binds the ion together, with an energy of the order of magnitude
A = 1112.

To proceed, we consider in (1), the : to be the space point z, and we denote by
C(z,) = C,, the probability for the particle to be at this space point. urther
let z,41 — z, = b. Then considering only the point z, and its neighbours
Ty41, the equation (1) goes over into

’ié%%“)' = EC(an) — AC(n — b) = AC(, + b) (2)

In the limit b — 0, with our choice of the arbitrary zero of energy, (2) goes
over into ‘

zha

C(z) —HK*9*C(a) 3
ot  2m' Ox? ( )
where we have now dropped the subscript distinguishing the space point, and
m' = h?[2Ab. ' '
So far, we have only reproduced the developments of[10]. We now observe
that while equation (3) resembles the free Schrodinger equation, as has been
pointed out in [10], m' is not really the inertial mass, but an ”effective mass”
that emerges from the probability amplitude for the particle to be found at
a neighbouring point. So (3) is not the Schrodinger equation.

The Schrodinger equation can be obtained from (3) if it can be shown that
m’ can somehow be replaced by m. This is what we propose to do.

To start with let us suppose that the particle has no mass other than the
effective mass m/, so that we can treat equation (3) as the Schrodinger type



equation for such a particle which has only amplitude to be at neighbouring
points. Let us now suppose that the particle now acquires non zero proba-
bility amplitude to be present non locally at other than neighbouring points.
We can then no longer work with equations (2) and (3). We will have to

use the full equation (1) which exphcxtly exhibits this possibility. We rewrite
equation (1) as

dC,(t
¢ dt( ) = HuCt(t) + H:,t—lct—-l(t) + H"‘+1C‘+1 (t)

+ 3 Hoai(1)Ci(1), (7 = £2,%3,)

or as in the transition of equation (2) to equation (3),

,9C(z) _ —h? §*C(a)
ot T oml 922

+me£W@%£ (4)

where we have replaced H,; by H(z,z') and the points x, are in the limit
taken to be a continuum. :

The matrix H(z,z') gives the probability amplitude for the particle at = to
be found at 2, that # by Postulate iv, .

H(z,z') =< $(2")[¢(z) >, (5)

where as is usual we write C(z) = 9(z), and denote the state of a particle
at the point = by |[¢(z) >

Usually the amplitude H(z,z') is non-zero only for neighbouring points z
and z’, that is, H(z,z') = f(z)é(z — «’). But if H(z,z') is not of this form,
then there is a non-zero amplitude for the particle to "jump” to an other
than neighbouring point. In this case H(z,z’) may be described as a non
local amplitude. Indeed such non-local amplitudes are unphc1t in the Dirac
equation also and this will be commented on later.

We now give a quick derivation of how the inertial mass emerges from equa-

tion (4). The non local Schrodiner equaion (4), given only the effective mass
m', can be written, with the help of (5), as,

a —h*d? ! ' / ) .
zh*gf— = %—,—% + /zp*(x')?j)(:c)z/)(m YU (z')d', (6)

o]




where, '
i') U(z) =1 for |z| < R, R arbitrarily large and also U(z) falls off rapidly as
|z| — oo; U(z) has been introduced merely to ensure the convergence of the
integral; and ‘

i) H(z,2') =< 0(2)|(z) >= $*(=')(z).

(6) is an integro differential equation of degree three. R
The presence of the, what at first sight may seem troublesome, non-lincar and
non-local term, viz., the last term on the right side of (6), will be satisfactor ily
explained in section 2.4.

In (6), in the first approximation z/J(x) can be taken to be the solution ol the
Schrodinger like equatlon (3) viz.,

/

08 _ oy B
» ot~ 2m! Ox? o
In effect, we 1in§a,rize'(6), so that we get, ) )
! o . R o7
har = 1- a;;zm*m‘ﬂ'ﬁ ! ®)

where,
mo = [¥"(&’ ¢(w')U( ')de
In opemtor language (8) becomes,

_ pz' ‘ . *
H=—+4+m¢ - ' 9
2m/! +; 0 ' (9)
where by Postulate v, H is the Hamiltonian operator, p the momentum
operator and where, what can now be anticipated as & rest mass like term
mg, appears for a pa.rtxcle assumed not to have any rest mass in the absence of
the non-local amplitude term in (6). Also we have replaced the Hamiltonian
matrix H by H to stress that, to start with, in (4) and (6), the particle has
no inertial mass. To facilitate comparlson' w1th the usual theory, we next
multiply both sides of (9) by the constant Z- , where,

m = (mem') 5/c,

¢ being the velocity of light. (The reason for the appearance of the velocity
of light, ¢ can be seen below (cf.equation (11)) and the constant could be ab-
sorbed into the state vector, whose direction is all that matters (cf. Postulate
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ii). We then get,
2
a=2 1me (10)
2mn
The physical meaning of (10) is now clear. In an expansion of the classical
relativistic expression for energy,

E = (p*c* + m2ct)1/?
as is well known, if we keep terms up to the order (p/mc)?, we get,

2
E=L +me (11)
2m
Anticipating for convenience (though it is not necessary), the discussion af-
ter (12), regarding the identification of Quantum Mechanical Operators and
their Eigen values with corresponding classical quantities, we can now eas-
ily identify m in (10) with the rest mass on comparing this equation with
(11). (Interestingly it is not accidental that equation (10) corresponds to the
approximation (11) as will be seen in section 2.4). If further, we denote

H = H — mc,

where H can be easily identified with the usual kinetic energy operator (or
energy operator in non-relativistic theory, remembering that we are cousid-
ering a free particle only), (10) becomes
P
Ho= o~ (12)
In a strictly non relativistic context, where the rest energy of the particle
is not considered, the Hamiltonian is given by (12); otherwise, it is given
approximately by (10). Remembering that as yet H and p are operators
and that (11) has been introduced only to facilitate an identification with
classical quantities, we get from (12), by using Pustulates i, ii and v, the
Schrodinger equation, ‘
" 22 _ B (13)
& ot~ 2m Oax? ‘
All these considerations can be generalized in a simple way to three dimen-
sions [11], but as there is no new physical insight, the details are not given
and we continue to work in one-dimension. ’




2.3 NEWTONIAN MECHANICS AND INERTIAL
MASS

The usual derivation of the Schrodinger equation (13) is rather different.
First, the Newtonian relation,

E = p*/2m, (14)

is invoked, where £ and p are the classical energy and momentum ol a {ree
particle. The scalars F and p are then identified with the corresponding
Quantum Mechanical operators. Thus Newtonian Mechanics is an input.
. The equation (13) however has been"deduced only from Quantum Mechanical
Postulates, without invoking Newtonian Mechanics.

If we now invoke Postulates i and ii in equation (12), we get (14), where
E and p are now Eigen values of the operators zh&‘% and ——zhf; which we
have defined to,be the energy and momentum operators in Postulate v. It is
these Eigen values which show up as classical quantities. In cther words, the
Newtonian relation (14) is a consequence of Quantum Mechanical Postulates.
Once we view equation (14) as the Eigen value - and classical - version of the
Quantum Mechanical operator equation (12), it is easy to deduce the classical
Laws of Motion from (14), using now, classical concepts. For example, (14)
gives,

AE = E-Ap,
m

while

AE = FAz = EpAt,
m
F being the (classical) Force, so that we get,
Ap = FAt,

from which Newton’s first and second Laws follow.

This is also the reason why we can compare the Quantum Mechanical equa-
tion (10) with the classical equation (11) and identify ‘m’ in (10) with the
rest mass of the particle. The physical origin of the rest mass in (10) is also
clear: In the two state Hydrogen molecular ion case considered earlier, it was
the amplitude for the single electron to be with one Hydrogen atom or the



other, which manifested itself as a binding energy. In our case; the amplitude
of a particle to be at z or z', viz., the second term on the right side of (6),
manifests itself as an (attractive) energy, the mass energy of the particle, or
what may be called self energy (or self interaction on energy). This is the
origin of a particle’s inertial mass.

2.4 THE ORIGIN OF SPECIAL RELATIVITY AND
DISCUSSION

In section 2.2 it was mentioned that the appearance of the rest mass ter-
m in (10) corresponding to the approximation (11) of the relativistic en-
ergy momentum relation, was not accidental. Infact it is well known [4]
that the Schrodinger equation can also be obtained as the non-relativisitic
limit of the Dirac equation. However, in this transition, the phase factor
¢ = exp[—wmc®t/k], of the original relativistic wave function is dropped. It
this phase factor is taken into account in the Schrodinger equation (that is
if we continue to work in terms of the original wave function), it can be
casily verified that we get equation (10). Conversely, if in the equation with
Hamiltonian (10), the wave function is transformed by the factor ¢, we get
back the usual Schrodinger equation (13).

This is to be expected because the energy operator zh% operating on ¢ gives
the mc? term. To the extent that the Quantum Mechanical phase or the rest
mass which corresponds to a constant potential in the Schrodinger equatiou.
1s inessential, this is of no consequence.

However, there are subtler issues in this context which are worth noting.
Firstly, as is well known, the Schrodinger equation is not quite invariant
* under the Galilean group, as one would expect a strictly non-relativistic e-
quation to be [12]. For, Galilean invariance would imply that there would be
no Quantum Mechanical Sagnac effect - a purely relativistic effect due to the
interference of different phases. However the Quantum Mechanical Sagnac
effect has been ‘observed [13].

There has been much discussion about all this recently [12, 14]. As has been
pointed out, under Galilean transformations, the phase of the Schrodinger
wave function is not invariant and this is what leads to the Sagnac effect. But
if the phase factor ¢ gbove, which is dropped in the passage from the Dirac to
the Schrodinger equation is retained, then under a Lorentz transformation,




to the order (v/c)?, there is phase invariance also; and the relativistic Sagnac
effect is satisfactorily explained. It has been correctly concluded in references
[12] and [14], that t1# original de Broglie theory, on which Schrodinger bascd
his work, was relativisitic. .

To sum up, in the usual theory, the Schrodinger equation can also be ob-
tained as the limit of the Dirac equation together with the suppression of
the phase factor ¢, which amounts to dropping the rest energy term in (11).
- 1t is this latter step which gives a non-Galilean character to the Schrodinger
equation, viz., the appearance of the Sagnac effect. \;

The second point is that in the usual theory, in the above discussion, we
start with the relativistic energy momentum relation, then deduce the Dirac
equation and finally take the non-relativistic limit to get the Schrodinger.
equation. However, in section 2.2 we have deduced the equation (10) and
subsequently the Schrodinger equation (13), from an independant, purely
Postulative Quantum Mechanical view point without the inputs of Newto-
nian or relativistic mechanics. So equation (10) shows the origin of not just
Newtonian Mechanics, but special relativity also, in Quantum Mechanics.
This is not surprising, because the very concept of rest energy or energy ol
mass is relativistic. Infact, for a particle at rest, the operator equation (10)

and its Eigen value classical version would give (as p = 0), the well known
relation,

E = mdc
However, we have not deduced Einstein’s mass-energy relation - the constant
¢ was introduced only to facilitate comparison: We have not Quantum Me-
chanically proved that c is the velocity of light. Infact what we have deduced
1s,

FEam

This has been elaborated in an earlier communication[11] and will be justi-
fied in section 5.

We finally comment on the non-local term in (6) which is also non-linear.
.. This gives rise to the inertial mass of a particle. Non- locality implies su-
perluminal velocities and the breakdown of causality. Classically this is im-
possible. But in Quantum Mechanics, owing to the Uncertainity Principle,
this is allowed within the Compton wavelength i/mc of a particle[15]. So
there is no contradiction if the non-local amplitude is integrated within this
region of the particle’s Compton wavelength. That is, the inertial mass is a

10



result of non-local, non-linear processes within the Compton wavelength of
the particle.

One could argue that the usual Dirac equation also has a non-local char-
acter: the operator c@.p 4+ fmc? is equivalent to and replaces the non-local
square-root operator, (—A*V? 4 m?c?)!/2. Here also, the non-local effects in
the form of negative energies are encountered - again within the Compton
wavelength region (cf. ref.[4]).

In the light of the preceding considerations, we can derive the Schrodinger
equation from an alternative angle: It appears that the "point” particle is re-
ally spread over the non-locality region ~ b = %, the Compton wavelength.
Further, the energy of the particle i.e., the energy tied up within this region
viz., 2A of Section 2.2 is the inertial mass energy mc?. We could now. as in
Section 2.2 (equation (3)), speak of the amplitude for the particle at o to he
found (locally) at a neighbouring point z + b, except that in the limit, b — b
(and not 0). The effective mass m' in equation (3) is then given by,

I__nh —_—
™= oAR T

m,

that is the mass itself.

So, equation (3) can be interpreted as the Schrodinger equation.

It is worth re-emphasizing that it is the force of binding of non-local positions
within the Compton wavelength, rather like the Hydrogeu molecular ion
binding, that manifests itself as inertial mass.

According to this reasoning, if a particle is subjected to a field powerful
enough to penetrate,the Compton wavelength region, in contrast to usual
relatively low energy fields which merely accelerate the particle as a whole,
then it can be disruptively destroyed and the mass energy released (cf. also

ref.[16]).

3 Particles as Black Holes

The fact that the mass generating non-local amplitudes are confined to a
region of width ~ ;T:; suggests that the particle could be a black hole, because
in this case also, there is a width, the horizon, inside which such unphysical
phenomena appear. The possibility that a particle could be a Schwarzchild
black hole has been examined earlier by Markov and others[17] and leads to
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a high particle mass of 10~%gm.
However, our approach in what follows is different. Let us consider a charged
Dirac (spin half) particle. If we treat this as a spinning black hole, there is an

immediate problem: The horizon of the Kerr-Newman black hole[18] becomes
in this case, complex, ,

G 22
M+ bb—(pQ

2 A02
ry = a2___9__(_£_4___)l/2 (15)
where G is the gravitational constant, M the mass and a = L/Mc, L being
the angular momentum. That is, we have a naked singularity apparently
contradicting the cosmic censorship conjecture. However, in the Quantum
Mechanical domain, (15) can be seen to be meaningful. {cf..Appendij_x)
Infact, the position coordinate for a Dirac particle is given by [9]

¢ =(p H 't +a1) + -;—cﬁ(oq — e H ) H™, (16)
where a; is an arbitrary constant and ca; is the velocity operator with eigen
values +¢. The real part in (16) is the usual position while the imaginary
part arises from zltterbewegung Interestmgly, in both (15) and (16), the
imaginary part is of the order of £ the Compton wave length, and jeads to
an immediate identification of these two equations. We must remember that
our physical measurements are gross - they are really measurements averaged
over.a width of the order ~—(cf ref. -[1]). Similarly, time measurements are
imprecise to the tune ~ —; (cf. ref.[9]): Very precise measurements if pos-
sible, would imply that all Dlrac particles would have the velocity of light,
or in the Quatum Field Theory atleast of Fermions, would lead to diver-
gences. (This is closely related to the non-hermiticity of position operators
in relativistic theory as can be seen from equation (16) itself [19].) Physics
begins after an averaging over the above unphysical space-time intervals. In
the process as is known (cf. ref.[19]), the imaginary or non-hermitian part of
the position operator in (16) disappears..That is in the case of the QMBH
(Quantum Mechanical Black Hole), obtained by identifying (13) and (16),
the naked singularity is shielded by a Quantum Mechanical censor.

To continue, we first naively treat a Dirac particle as a Kerr-Newman black
hole of mass m, charge e and spin 2. The gravitational and electromagnetic
fields at a distance are given by (cf. ref.[5]),

‘
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®(r) = Gm+0(,3) £ +0(%), Eg _0(‘),5,’5:0, a7
B; = %2 cos 0 + 0(% ),B = msu=9+0( 7, B; =0,

exactly as required. Infact, as is well known, (17) also exhibits the electron’s
anomalous gyromagnetic ratio g = 2.

We next examine more closely, the identification of a Dirac particle with
a Kerr-Newman black hole. We reverse the arguments after equation (16)
which lead from the confplex or non-Hermitian coordinate operators to Her-
mitian ones: We consider the displacement,

¥ — ¥ + a* (13)

S . h
and first consider the temporal part, t — t +1a®, where a° =~ 5o as before.

That is, we probe into the QMBH or the zitterbewegung region inside the

Compton wavelength. Remembering that |a| << |, we have, for the wave
function,

, on @ 8

D) = (i +1a%) = TR+ Tl
As thi = p°, the uSual fourth component of the energy momentum oper-
ator, we 1dentify, by comparison with the well known electromagnetisin -
momentum coupling, p® — e, the usual electrostatic charge as,

esE=2mc2 (19)
In the case of the electron, we can verify that the equality (19) is satisficd:
the charge is seen to be related to the mass and the velocity of light.

[t may be noted in passing that in the usual displacement operator theory
([9)the operators like j‘; or 2‘% are indeterminate to the extent of a purely
imaginary additive constant which is adjusted against the hermicity of the
operators concerned. We next consider the spatial part of (18), viz.,

h

mc

- T — & +1d, where|d| = ,

given the fact that the particle is now seen to have the charge e (and mass
m). As is well known [20], this leads in General Relativity from the static
Kerr metric to the Kerr-Newman metric where the gravitational and electro-
magnetic field of the particle is given by (17), including the anomalous factor

13




g = 2. In General Relativity, the complex transformation (18) and the subse-
quent emergence of the Kerr-Newman metric has no clear explanation. But
in the Quantum Mechanical context we can see the rationale: the origin of
. (18) lies in the QMBH. We started with a massless particle. Then we saw the
emergence of mass and also the origin of gravitation and electromagnetism in
the processes inside the Compton wavelength - the nonlocal QMBH region.
There is another'way to see the emergence of electromagnetism. It is well

known that for' the Dirac four spinor (i), where 8 denotes the positive

energy two spinor and x the negative energy two spinor, at and within the
Compton wave length, it is x that dominates. Further, under reflections,
while 6 — 0, x behaves like a psuedo-spinor([4]

s
X=X
Hence the operator (—,—Z—; acting on x, a density of weight N = 1, has the
following behaviour[21],
dx 1. 0 o
il C(2
dz+ h[ﬁam“ NAx - (20
where,
o_p 0 _ .
A* = hle = h—é-g;-“— log(y/lg]) = V*Q (21)

As before we can identify N A* in (20) with the electro- magnetic four poten-

tial. That N = 1, explains the fact that charge is discrete. It will be shown

in the next section that,

me®: e

pw,me €
A* ~ - - (22)
in agreement with (19). That is, electromagnetism is the result of the covari-
ant derivative that arises due to the Quantum Mechanical behaviour of the
negative energy components within the Compton wavelength region.
We observe, that in case the mass m — 0, the considerations of section 2
imply that there are no negative energy components while (19) and: (22) show
that such a particle has no charge. The massless neutrino fits this description
exactly: it has a two component wave function and is chargeless.
There is also the muon which satisfies (22) in the order of magnitude sense.
But it is unstable and disintegrates into an electron (or positron) and two

14
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neutrinos anyway.

Thus these considerations describe the stable leptons, viz., electrons and neu-
trinos, and approximately the remaining unstable lepton.

It is interesting that an application of Maxwell’s equations in this Compton
wavelength region of "charged matter” leads to meaningful results: In this
case the fact that A* in (21) is a four gradient poses no problem. We have,
using Maxwell’s equations (22). ' '

$=A'=82 B=VXA= VX(VQ).-O

- N Ot 23
E=-2%_V¢=-2VQ,E=-2V¢ (23)
Also, L.
‘ V.E =2V?%¢ = 4no (24)
V.B =0,
while | N
VXB=0= 471's~|——(2E (25)
at
and,
VXE = —a%é = VX(2V¢) =0

hquatlons (23) (24) and (25) show that effectively this is a stPady field with
potential ¢ that is, we could work as if wc have a steady field of potential ¢
except that there is an anomalous doubling of the charge and current. Now,

as is well known the usual orbital magnetic momentum is given by [23]
s
: e

= : 26
B=5—Ps (26)
where p; is the angular momentum and e is the charge. In our case, ¢ in
(26) is effectively replaced by 2e, so that.in the usual units of e/2me, we now

have for the Dirac particle, instead of (26),

g=t =2

2

This is the anomalous gyromagnetic ratio.

»




4 A General Relativistic Approach: Origin
of QCD Interactions

Thus far it appears that the QMBH description applies to electrons and
more generally Leptons. In the light of the preceding considerations, we will
. now approach the problem from a General Relativistic point of view. This

will also reveal the origin of QCD interactions. Our starting point is the
linearized theory[5]: '

' 4T, (t — | — &', &'
gu‘v:nm"*'huv’h#”:/ - 7 -7 , )

&>’ (27)

(A bar on T has been dropped.)

In (27), velocities comparable to the velocity of light ¢ are allowed and also,
the stresses T7% and momentum densitities 7% can be comparable to the
energy momentum density 7%°. As in ref.5, we can easily deduce that, when
%ﬂ << 1, where r = |Z|, and in a frame with origin at the centre of mass
and at rest with respect to the particle,

Gm = / Tz (28)

S, = / ektm e T™ Pz (29)

where m is the mass (or approximate mass because of the linear approxima-
tion), and Si is the angular momentum. We next observe that,

T = putu” (30)

If we now work in the Compton wavelength region of the QMBH, we have,
while u® =1,

[u'| =c¢ (31)

(This is the Quantum Mechanical input)
Substitution of (30) and (31) in (29) gives on using the Mean Value Theorem,

Sk=c<xl>/pd3w
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As < 2! >~ —2-’—‘;, using (28), we get, Sp = ’5", as required for a spin half
particle. Infact this relation becomes exact if we treat the QMBH as effec-
tively a rotating shell distribution of radius i /2mec, keeping in mind the fact

that the interior region is in any case unphysical as seen in section 3, and
*is described by complex space-time coordinates. The gravitational potential

can similarly be obtained from (27) and (28) (cf. ref.[5]),

L= (™ 1) =~ 0() (32)

r3

We saw in section 3 that the electromagnetic potential is given by,
. A¥ = hl'%?

Using the expression for the Christoffel symbols, we have,

1 v
= "2;(77“ h;w), o

so that, from (27),

2/ uv d Tuv(t ——-‘lil‘ :/r: 1 }d:}wl

|z —

Remembering that |Z — &'| = r for the distant region we are considering, we
have,

2 ot 0 2 . d, .
Ao ~ ;—/7]“ [‘d‘“:; “.U(T :13’) —(t - ‘SB - II)]d3 "'~ ;/7]‘“ Ef‘w(l -+ C)dls.'l?’,
or finally
2¢ d

. n“”a-l;,,f* ! (33)

as ¢ >> 1, and where we have used the fact that in the Compton wavelength
region, |u,| = c.
It has already been observed that QMBH can be treated as a rotating shell

distribution with radius R = 2:,‘16. So we have,

A(]N

du,
dt 1 = |u,|w (34)
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where w, the angular velocity is given by,‘

s luy]  2mc?
w =

= 35]
R h (35)
We get the same relation in the theory of the Dirac equatlon remeinbering
that in (28) and (29) the centre of mass is at rest:

d .
zh;l—t-(ca,) = —2mc*(ca),

where ca, is the velocity operator (cf.ref.[9]) Finally, on using (30), (34) and
(35) in (33). we get,

2

€ mc

- = Ap ~ ————/pwdsL ~ (Gmc?)
,

(36)
T

If we use the value of G, m and ¢, we get as in section 3, for the electrou,
e~ 14 x 107 %su

in agreement with its value and with (19). In the order of magnitude seuse
the above holds for the muon also.

Our input in the above has been the value of the Gravitational constant G.
On the other hand, if we had used the value of e from (19), this analysis
would have yielded an approximate value for G.

Equally important, (36) yields the well known ratio 10%4? for the electromag-
netic and Gravitational interactions.

So far we have been considering distances far from the particle: |&' — Z| >>
|z’]. This is the approximation invoked in a transition from (27) to equations
(28), (29) etc. Let us now see what happens when |Z| ~ |#|. In this case, we
have from (27), expanding in a Taylor series about ¢,

huw =4 —fg’l%af—)-d%' + (terms independent ofZ) + 2
JET.(t,7).1% - #|da' +0(2 - &)

The first term gives a Coulombic ¢ type interaction except that the coefficient
« is of much greater magnitude as compared to the gravitational or electro-
magnetic case, because in this approximation, in an expansion of (1/|% —&’|),
all terms are of comparable order. To proceed further, using (34), we have,
¢
d L, du# du’

T — bkl ut
dt pu di T dit

(37)

= 2putu’,
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s0 that, s
-ét—zT‘“’ = 4pyrutw® = 4w’ T
where w is given by (35). Substitution in (37) gives,
M . Mc? )
‘ by = _tM + SﬂM(—i—ic—f.r (38)
f r

A being a constant.

This resembles the QCD quark potential[24], with both the Coulombic and
confining parts. Taking for M the mass of a typical C'quark ~ 1.8Gev (cl.
ref.[24]), the ratio of ¥he coefficients of the r term and the % term as obtained
from (38) is ~ %(Gev)? as in the case of QCD (ref.[24]).

In this picture, how do we accommodate anti-particles, for example positron-
5?7 While treating the negative energy spinor as a density in section 3 we had
assumed that N = 1. Equally well, we could have chosen N = —1. This
reverses the sign of the charge, all else remaining the same. So with N = —1.
we get a positron. Similarly for quarks, N can be taken to be fractional.
But this apart it must be remembered that whereas for electrons we took the
asymptotic expansions of equations like (27), in the case of quarks we had
to consider the region near the Compton wavelength itself.

Thus, it appears that the treatment of Leptons and quarks as QMBI leads

to meaningful results. On the other hand, these are the most fundamental
constituents of matter.

5 Discussion and Comments

1) As has been pointed out, QFT works with point particles and a space-
time continuum in a special relativistic context. Divergences appear when we
go right upto » = 0. However, it appears that for Fermionic Fields atleast,
this picture may be valid only for distances greater than the Compton wave-
length: The above model forbids such a limiting process for Fermions and sets
a cut off. Once we enter the QMBH region, a very high energy phenomenon,
space-time in the conventional sense becomes unphysical. The appearance
of complex coordinates or non-Hermitian operators is a manifestation of this
unphysical feature.

2) In the usual formulation of the Hole Theory, the Dirac sea is filled with
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negative energy electrons, and by invoking the Pauli exclusion principle, tran-
sitions to negative energy states are forbidden. In the present formulation,
in effect, the Dirac s#a of negative energy states is squeezed into the QMBH
and the Quantum Mechanical censor of section 3 forbids transitions.

3) In ordinary Quantum Mechanics, ¥ being the wave function, ¥~ is pro-
portional to the probability density. On the other hand, we saw in section
2 that the mass density is produced by the non-linear amplitude ¢ iu the
Compton wavelength region. More specifically we saw in sections 3 and 4 that
it is y, the negative energy part of the Dirac four spinor (which dominates
in this region), that is relevant. That is, p being the material density,

poxx” (39)

As observed in section 3, for the two component neutrino, x = 0, and the
neutrinos are massless.

[t was shown in an earlier communication[25], how Gravitation can emerge
from the Schrodinger equation self-consistently. Again, it is the identification
of the material density in (39) which gives substance to that result.

4) More general than the radius of the horizon given in (15) is the static
limit of the Kerr-Newman Black Hole, wherein ’a’ is replaced by acos 0, ¢
being the usual polar coordinate. However in the QMBH, as we approach
the Compton wavelength ~ a, we encounter the unphysical zitterbewegung
region where 0 ceases to have any physical meaning. In other words, the spin
is insensitive to # unlike in the classical case. This is ofcourse well known in
Quantum Mechanics.

5) The emergence of electromagnetism from spin should not be too surprising.
As is well known, rotating frames and the accompanying drag do produce
effects similar to magnetism([26].

6) It may be remarked that we started in section 2 with purely Quantum
Mechanical postulates and deduced mechanical effects. We came a full circle
in section 4 wherein, from purely classical considerations, we deduced Quan-

tum Mechanical phenomena.

7) Tt is interesting that from a different angle, using considerations of self-
similarity, if we assume that the scale of the Universe is broken at some stage,
that is, that there is an ultimate micro-level, then the Compton wavelength
again appears as a fundamental length[27]. :

8) If in the position formula (16), we consider the real part and also a time
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mterval of ~ ;—:‘7;, we get for p = me,
"

h
zr=—

mc
This result can also follow from the Heisenberg Uncertainity Principle.
As in the spirit of the preceding observation, we see the emergence of the
Planck constant h in the extreme situation of the maximum velocity and min-
imum physical space-time intervals. Moreover, h, m and ¢ are inter-related.
Taking the cue from here, we pick up the result in section 2 viz.,

Fam or F =my,
where y is the constant of proportionality which was identified adhoc earlier

with ¢?. Using now Heisenberg’s Uncertainity relations, and considering the
extreme case, we have, firstly,

h
t o~ ——,
my
so that ¢ = ¢t ~ z—;, where ¢ is the maximum possible velocity. Further, in
this case,
h my
p=mcn~ — = ——,
z c

so that y = ¢2.
This provides a Quantum Mechanical justification for the formula E = me?,
without taking recourse to special relativity. Indeed as pointed out in sec-

tion 2, the origin of special relativity could be traced to these Quantum
Mechanical considerations.

133

6 Conclusion

It appears that the most fundamental Fermions, viz., the quarks, the elec-,
trons and the neutrinos can be thought of as’Quantum Mechanical Black
Holes. These are Black Holes apparently exhibiting a naked singularity, but
which are meaifingful in terms of the Quantum Mechanical Compton wave-
length and processes near and within this region.

In classical terms, effectively this is a rotating shell distribution with a radius

= C21



equalling half the Compton wavelength and where the velocity equals that
of light as at a Black Hole horizon.

All this explains the origin of mass, gravitation, electromagnetisin and even
QCD interactions, their relative magnitudes and also features like the dis-
creteness of charge and the anomalous gyromagnetic ratio of the electron.
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APPENDIX

There is another way in which the result of section 3, viz., the treatment
of elementary particles as black holes can be viewed.
What we call the position of the point particle is given by the real part of
equation (16) - after accounting for Quantum Mechanical effects in the form
of the imaginary part. In this case, we have the Hermitian position operator
Z. From here on wegre in the domain of point particles and the usual space-
time continuum described by the Lorentz metric both in Quantum Theory
and QIFT. From this point of view, we can interpret (15) as follows.
After accounting for the Quantum Mechanical effects in the form of the
imaginary parts of (15) and (16), the radius of the Kerr- Newman black hole,
as described by the real part of (15) (and (16)), is given by,

T+:M7

where for convenience, we work in units such that G = 1,¢ = 1. Now,

r+ ~ 107%cm for the electron and a few orders higher for protons and
quarks.

This is well below the Planck length and effectively the partxcles are points.
The Kerr-Newman metric which gives (15) is:

sin? 0

A . 2 Py e
ds?® = —;};[dt — asin® 0d¢]* + pz ——(r*+a )d¢ adt]’ + B&d?'z +ptdt,

where
A=l —2Mr 4+ a® + Q% p* =% + a*cos® 0

Even for distances much smaller than the Compton Wave length a, as above,
this goes over to,

—dt? + a%sin? 0d¢? + cos? Odr? + a? cos? 9d92,
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where 0 # 7/2.

This is broadly similar to the Lorentz metric of special relativity.

The concept of point particles vis a vis Heisenberg’s uncertainity principle
which denies precise positions is, in any case, one of the paradigms of modern
physics (cf. ”Super Strings and the search for the Theory of Everything”,
F.D. Peat, Abacus, London, 1992, for a detailed discussion.)
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