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I. INTRODUCTION

A discussion of physical properties of the vacuum should begin with a few general
remarks attempting to elucidate general notions of the problem. Consider a cavity made
of "matter” enclosing a section of vacuum. Quantum theory has a unique prediction for
the structure of the ground state of the latter: each oscillator degree of freedom
(for a precise definition see below) contributes £ = %‘Kwu , W, is the frequency of
this degree of freedom, to the energy of the ground state; degrees of freedom of the

matter walls are not accounted for and we have

EVu = Z %ﬁw"

Now, the frequency spectrum of the modes in our cavity is unbounded from above and we

conclude
E = ©0
wae

However, this infinity depends on the quantum-field theoretical model and its para-
melters, on the geometry and the physical properties of the cavity and, therefore, is of
physical interest. In order to extract information on the structure of the vacuum from
this quantity we have to classify divergences, clarify dependences on the cavity
parameters and model measuring procedures.

Let us begin with a *Gedankenexperiment’ and consider an electro-magnetic radia-
tion field enclosed in cavities of identical shape but made of different materials. We
decouple thermal black-body radiation modes by going to zero temperature: only *vacuum
fluctuations’ or "zero point oscillations’ contribute to the field energy. Different
materials used for building the cavities provide natural cut-offs for the spectrum of
the zero point modes, in particular for its high-frequency components. Hence, in actual

fact the vacuum energy is given by a cut-off sum

EVac = %Z COuC.,(A)

where the C.((A) are material-dependent functions which are expected, with reasonable

confidence, to provide a cut-off and to lead to a convergent series for the vacuum

(1.1)

(12)

(13)

energy. Its value, however, then is predominantly determined by the experimental
arrangement and the question of physical interest arises, Can we identify and experi-
mentally disentangle components in Eyac  which unambigously reflect the structure of
the theory for the fields making up the vacuum state and which are independent of the
apparatus, in particular of the cavity materials?

The parameter A stands for a length characterising the cut-off scale such that

C. (A)IA:0 = 1. (19

The other parameter in this game carrying a dimension is a length, L, characterising
the spatial extension of the cavity.
We expect Evac to contain terms proportional to the volume, to the surface etc. of

the cavity. Therefore, we write E . 2 a series
I p-U 2,-3 -2
Evee = a A + 0, lA 4 a,LA
- -4 -2
Fa A7 e l” 4 allA

(1.9
which we rcad as an asymptotic scries for smalIA . The coefficient a, can be deter-
mined by measuring Evac as a function of A (remember that we are discussing a
Gedankencxperiment!), varying the cavity materials. It is the very point of this
cnterprise to realise that a, has a universal meaning.

This is guaranteed by a theoreml) due to Ramanujan which we state in a loose form
appropriate for our purposes.
Let
o
- o0
2 a,
n=A4 (1.6)
be a divergent series such that
X
Ay, ™~ N , K > - 1
n—) 00 (n



and {(.,\l/”} a set of [unctions with a sufficiently rapid decrcase for v —3» oo such that Aww&

the series = C“ (A) = b B (1.12)
2. 2. C(A) | A#+o0 a8 |

haxy

and obtain for the vacuum energy (1.3) per unit area

is convergent. Choose { CH("‘ )-} such that AOO!!

C0)= 1 “ Eud CAA) = 45 21rﬁ<»“< T B

=~
the A -independent part of (1.8) is then independent of the choice of the B /\ n-2 2 f\ "_Q
0] as 1 19) hold — n (——) -
{C(/ ¥aq ong as (1.9) holds. T'— 1 + /\3
3

The set Z‘C (/\)} is realised by choosing a C° -function 2\ (x) with
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Do)= 1 for x = 0
)20 sufficiently rapidly
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X —> 00 (1.13)
and puttin
P C.A)=n(2A) : . . o
w oA we observe consecutively the volume term (proportional to d since we are considering an
where d is an irrelevant length scale. cffectively one-dimensional problem), a surface term (proportional to d® accounting for
Since the use of cavities made of different aterials translates into different the point-like surface) and the A -independent part

seis of functions { C“(A)Jl we conclude that

By (O = ;tzo — )

(1.14)
Et“) = A -independent part of E— Z—~. G, Cm(/\) (1.10)
unc 2,
the Casimir potential.
is also independcntz) of the physical properties of the experimental set up and thus To measure the latter in its pure form we consider an experimental set-up of three
represents the universal component of the vacuum energy which only follows from the parallel, conducting, infinitely extended plates: two plates fixed at a distance D, the
quantum theory for the ’radiation’-field (actually containing all degrees of freedom third plate between them at a distance d from one of the plates such that
making up the ground-state of the world) and the global geometrical properties of the
'piece’ of vacuum enclosed by the cavity. 0( < D -
How do we measure and compute in practice this upiversal component? Let us con- The vacuum energy per unit area is then
sider an old story in the new lght of (1.10): the original Casimir c(fcctS). The _u ¢ ; 4
experimental arrangement originally consisted of two infinitely extended parallel metal EW\(( o(‘ D'/\) = 2" ( ‘/‘\“q ( o‘ + D -d ) + Ny
plates at a distance d. The frequency spectrum of the electro-magnetic ficld modes is
given by ] 4 -3 3 )
c\;h - ‘""\} (2)1—*1‘!2.4.‘(2.1 “360 (0‘( +(D‘D‘) ) ‘}' wee .
ol x y (L11) (1.15)

me Z. ; k, 3 continuous. The Casimir potential is measured by varying d, we neglect the (D-d)'3 term and note

’
We choose an exponcntial cut-off that the cut-off dependent volume and surface terms are irrelevant constants not



contributing to the force between the two close plates. We sce that in the fight of our
definition of a universal component in the vacuum encrgy (which can he literally
extended to other obscrvables), no artificial subtraction procedures have to bhe intro-
duced, procedures which arc not modelled in cxperiment.

A final rcmark seems in place. It logarithmic terms appeared in the expansion
(1.5), the A -independent part would be ohviously ill-defined and the vacuum energy

wonld not contain a universal component in the sense discussed above.

We now turn to the question of how to compute this universal compouent in quantum

theory and distinguish two cases. We first trcat theories in which the single particle
dispersion is determined by the Laplace or, rather, the Laplace-Beltrami operator, ie.
theorics of the electro-magnetic radiation field and of non-relativistic matter fields.

The case of relativistic matter-fields has to be discussed separately since the single-
particle dispersion operators are not bounded from below and the phenomenon of anti-

particle states has to be accounted for.

I, THE VACUUM FNERGY FOR JLAPLACIAN MODELS

The laplace-Beltrami operator

A- -A +V®
A = ‘3)%%l3'%3l‘w3‘, 21

where ‘Mv(;) is the metric tensor (and ‘%f its determinant) on a position space mani-
-

fold parametrised by coordinates X on which our system is found to move, is known (o

describe  the single-particle excitation spectrum of the radiation-field (V=0) and of

non-relativistic particles moving in the potential V(;) . Our goal is to compute the

universal cut-off independent part of the vacuum encrgy described in the preceding

chapter. To this end we regularise Evac

Fue = 5 S e = FAA

(22)

by introducing the same cut-off function C.( (A) as in our calculation of the Casimir

effect

(23)
such that
FuelA) = S e = L (AM)
Ay L d
= M) = -z
(2.4)

~4
The partition function Z (A) , le. A can be visualised as temperature, allows for
an interesting ‘high-tcmperature’ expansion, asymptotic for A'* O, which is preciscly
the expansion we have been anticipating in (1.5). We now give a short description of
the method.
Lo (% "‘)) . .
The central object is the ’heat-kernel’ KA X, X"} determined (rom the equation

- AKEE) = 0 @
with

Kazx)|, =13:’%‘5(:¢_;‘)

(26)
We brutally abbreviate a long and fascinating smry4'6) on local differentiability and
global topological properties of geometrical entities if we simply state that this
heat-kernel has un asymptotic expansion for A”“)O . By taking its trace and thus com-
puting Z(A) we obtain the asymptotic expansion used in (13), (1.4) and (1.10) and
its A-indcpendent part.
The point is that there exist algorithms for a systematic computation of the
cocfficients Ck(i ’ %') in the said asymptotic expansion
00
..oL/l - ‘.’Lf[; A k/z_ ( ; _‘,)
oA
Ky (2,%) ~ (4vA) " 2 > ¢ lx)x
=0
A k @7




- . S kv; o)
where r denotes the geodesic distance in d-dimensions between X and X . For the

regularised vacuum cnergy we then find

ko k;’lﬂfl
-4 -d ) 4 R
s lf Q X
Ew,(/\)A_M( ) kZ k=2 A ja(x o (3,%)

2.8)
and, hence,
[ (Qw)"l/‘fo(’lx ¢, (%] 29)
- Vet k 4 k - 6("’2

The coefficients Ck(?l§\) can be found in refs. /5-11/ for the case of compact mani-
folds without bonndary and in ref. /12/ and ref. /13/ for compact manifolds with
boundary in d=2 and d=3 respectively, It is clear that the last casc corresponds to the
physical situation, vacuum enclosed in a cavity, discussed in the previous chapter.

For the sake of completeness we cite the first few cocfficients; more precisely,

we give only the diagonal parts since those arc the ones needed in the computation
( A) E (w)
of EVM and €.

d=3: ¢, ZFx) = A4

R3) - »—1"—\/3—3?

¢, (&%)

1]

GGF) = HAVFH - 5k - 5378,
S 3
"}1*6”/?“/3—3?9338 - 2;'—(333) 13‘333)3 3
etc.; (2.10)

SB is the 8 -function with support on the houndary of our 3-dimensional manifold which
we paramelrised with normal coordinates, the 3-direction being the normal on the

sulficicutly smooth bonndary; R is the Riemannian curvature scalar, H the average- and

K the Gaussian curvature of the surface xy={. Dirichlet boundary conditions have been
imposed. Similar formulae hold for Neumann boundary c:omjitions‘I *

Summarising we may state that heat-kerncl expansions provide a general method to
extract E:,:: , the cut-off independent part of EVM(A) , from a given model for single-
particle excitations. Generally speaking, for odd dimensions, the latter is a pure
boundary effect and depends only on the global geometry of the cavity since odd coeffi-

cients Cop4q (?,3’7 ) can be shown to be proportional to S B and its normal derivatives.

We should stress again that only the coefficient € A2 (?,3} ) leads to a physicatly
relevant contribution in Evzu (A) : the cut-off functions Cu(AN) provided by a specific
material used to construct the cavity are, in general, not parametrised
by 1-/\{" and the coefficients & , i+l in (1.5), hence, are not reproduced in a heat-

kernel expansion since they do depend on the set {(.(U\) .

HI. THE VACUUM ENERGY OF RELATIVISTIC, MASSIVE FIELDS

We sow turn to the more involved case of relativistic systems. Here the main
complications come from the fact that the single-particle dispersion operator A is
unbounded from below and the question of stability poses itself The generally accepted
solution of this problem is to imbed a given single-particle theory into a many-body
theory formulated in terms of local quantum fields, i.e. into local quantum field
theory: a spectrum of single-antiparticle states and the corresponding pair-creation
processes appear. We should like to give a cnl}sory sketch of the main issues pertinent
for a discussion of vacuwm propertics,

We treat simultancously the cases of spin 0 bosons and spin 1/2 fermions, the

single-particle spectrum of which we take to be given by

- 2 2 4/1
Spin 0 Bosons: A = (‘(t) + iﬁ.A) + W‘~‘) + le

Spin 1/2 Fermions: A L %&‘(3 + ilA) + Pm + 2 Ao

> RN
where (A, Ao) is the clectro-magnetic 4-potential, m the particle mass, & p the usual

Dirac matrices; both signs of the squarc-root arc understood.

)

We shall work in the Schridinger picture of quantom field tl‘\e(’.sryM , more precise-

ly speaking in its coordinate representation. Here, the coordinate is a complex ficld



acting as a muliiplicative operator and the adjoint momentum acts as the functional

derivative versus this field :

. - . . . .
coordinate: cr(x) , complex ficld acting as a multiplicative operator
momentum: TT(Q) = —i 3

; «ST(X) ’

The dynamics of a physical system is determined by a Hamiltonian

H o= Mgl
quantum states are represented by functionals

Y = Yigitl

the time-dependence of which is governed by the Schrisdinger eguation

(;D{‘)—()‘i/ = 0.

In this formulation quantum ficld theory is directly interpreted as the wave-mechanics
of a continuum of degrees of freedom, as quantum continuum mechanics.

Generalising the Hamiltonian of an harmonic oscillator accordingly we have
3 YAl /-
o= [&f-v'w6) + 9N

Its diagonalisation proceeds as follows. We first use the spectrum of A

A\Vﬁ(sz) = fx‘{’x(i))

to define the operator A

Ve 3d

A - A’WX"A

by its eigenvalues

I

£& =3 I{«]

(3.2)

(33)

(3.4)

(35)

(36)

@7

10

e
The square-root A being well-defined we then introduce two sets of creation and

annihilation operators

¥, A T o A | N
a (X) = ~"m 5S¢ + ¢ ()

b~
7~
X}
!
]
[+ ]
oy
xy
e
)
-
—~
X}

—‘;~ (38)
+ _K’Ai é /K-% =N
b (X < ./—2—' 5‘(‘(’? + \/2" (P(x
~e_ e A~ A,
= A $ AT %
(3.9)

with the usual commutation (bosons) or anticommutation (fermions) rules
+ X el
[a2), aG) ]y = [ b, b'GN], = §G-%)
[a (32), [o (3\()]~ = O pte. (3.10)

where the fermion anticommutators arc caiculated by considering the fcrmion field as an
anticommuting Grassmann variable.

15)

The Hamiltonian is then written in diagonal form
W o= [ fa@hat) + @A EA-A

where the (+)-sign holds for bosons, the (-)-sign for fermions.

It is obvionsly diagonal in a Fock space built up by creation and annihilation

operators
ap = [at@yp& | g
an = [dxpl@DalR)

and
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[d b e (2)
the Fock states arc direct products

(f - f(ﬂ@ i}(b) j (3.12)

the two factors are distinguished by their charge structure which we depict schemati-

cally by plotting the (a)- and (b)-spectra

Q= -1 €,<0 QR=+1 >0

S| N I (@
- ™

Q=41 <0 =1 g<0

S }»-—-gu~-~—--~--5 ()
-m ™

Because of the external charges distinguishing the charges Q = 11, the spectral  densi-
tics on the left- and right-hand branches arc different.

Charge conjugation now serves to cross-identify the (a) and (b) spectra; the
single-particle and -antiparticle states are then doubly counted in the states (3.12).

Defining occnpation numbers
(f) occupation number for particles Q = +1
. occupation number for antiparticles Q = -1
we have for the energy of (3.12), defined as

)'( Y = 2 E ['L:M, ":)J EE (3.13)

the following cxpression

ELnnl] = 3<YINT YD

™~ ~)~ ¢
=2 w8 2 0%, LA

f‘(>0 éﬁ((o
(3.14)
The vacuum energy obtains if we set
) )
Ry =Ny =0 forall @ (3.15)
and we find the relativistic analogon for (1.1) and (2.2) ( ‘r\ = ”)
Pt
-+ 4
Evuc - - 2 Aor A
T (2
=13 ( £ — S
>0 IR (3.16)

We emphasise that only positive energics enter in our disgonalisation of )‘( ,
states ¥ correspond to physical states.
The vacuum encrgy is infinitc and nceds a regularisation. The procedures intro-

duced in the previous chapter can be applied literally if we start from

lad f‘/l
E..(A) = i%/{',r(A,(AA) G17)
(w)

and extract the universal componcnt E'th(.

We shall not pursuc this line any longer but rather discuss another intriguing
aspect of the vacuum: the charge deansity induced by vacuum deformation, effected c.g.
by cavities.

The charge density is given as the first order response of the total encrgy versus
the time componcnt of the external 4-potential; the vacuum energy, in particular, leads

to the vacuum charge density SVM .
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We find

SE.
S 1 AL

2 ay 12
- £ 5 (2 ol = 2 1y ).

£>0

"

g\/u( (%)

(3.18)

The physical meaning of this formula is clear: the vacuum charge density is induced by
an external ficld distinguishing positive and negative charges.

The total induced charge, ie. the integral

Quoe = .zfoﬁz Quac (x) (3.19)

is of particular interest since it is nothing but the famous Atiyah-Patodi-Singer

16)

spectral  invariant "} which is non-trivial for topologically non-trivial external

fields produced eg. by monopoles, dyons etc. There is & number of very interesting

17) 18)

physical phenomena 7, subsumed under the name of fermion fractionisation related to

this quantity.

Up to now we have covered the cases of charged bhosons or fermions interacting with
an external electromagnetic field. If we promote the latter to a dynamical degree of
frcedom by adding its kinetic tcrm to the Hamiltonian (3.4) using eg. Coulomb gauge we
end up with the full Hamiltonian of quantum clectrodynamics (QED). The construction of
Fock states proceeds by introducing single-particle orbitals. The latter are produced
in a mean-field ansatz, the simplest of which is, perhaps, the Hartree-field: in (3.1)

we write instead of .(Ao

N o iy A4 =)
lAcIH = "-q’l‘ fa(x’ ';_ 91, ?(x) (320)

vhere

1l

N ) 2 ) a2
g(x) > n, |\]u_‘(3?)l - gn“ )\V«(X)'

6‘50

(321

+ gVac (;)

and determinc the \Vq sclf-consistently,
We have recently sh()wnlg)
Hartree fields, allows for a unique determination of the energy shift produccd by
vacuum dcformations, which one might call the Casimir effect in atoms.

The g-Hartree potential contains an cxchange tcrm ,(,Ao

axch

H (4-3)‘A° axch

lela_H =9 1A,

where g = g can be chosen such that

E = E " ]
QED n !3=3° )

i.e. such that the exact {otal energy predicted by QED is given by g-Hartree single
particle excitations. Since the vacuum contribution to the latter can be identified
unambiguously, it can be extracted from the experimentally measured EQED‘ Its measure-
ment in highly ionised atoms is of great interest since it gives insight into the

structure of the vacuum component due to all charged quanta; not only electrons and

positrons but also other charged fundamental fields contribute to it.

IV. CONCLUSIONS

We have discussed the regularisation of the vacuum energy which in actual experi-
ments is provided by the physical propertics of the cavity walls enclosing the region
of vacuum under consideration. A very poweriul theorem by Ramanujanl)lcd us to the
notion of the cut-off independent component in the vacuum euncrgy which is solely deter-
niined by the structure of the quantum theory describing the degrees of freedom building
up the vacoum state and by the geometry of the cavity. To compute the cut-off indepen-
dent part we are free to choose a convenient regularisation: the heat-kernel provides a
cut-off and allows for an algorithm for the computation of the cut-off indepcndent
part; global geometric quantities like integrated curvature and Riemann scalar for the
cavity walls appear in it.

The case of relativistic matter fields requires further analysis in order to in-
corporate the antiparticle spectrum in a physically adequate manner: the diagonali-
sation of (3.4) under the requirement that only positive energies appear in its
spectrum leads to (3.11) from which we read off that the eigenvalues are determined by

Ll A ~
the positive €4 and that a constant contribution 4 7 Ar A has to be taken into

and reads

that the usc of generalised Hartree mean-ficlds, the g-

(3.22)

(3.23)




account which is finally due to this positivity. This is thc vacuwn energy which is a
non-trivial infinity since it depends on physical degrees of freedom and geometrical
propertics of boundaries in an essential way. This becomes apparent if we compute (he
vacnum charge density Qvac (%) the intcgral of which is the famous Atiyah-Patodi-Singer
spectral invariant which led to the interesting plicnomenon of fermion fractionisa-

tionm)‘

We pointed out, in an extension of the theory to full QED, thal encrgy shifis
self-consistently  produced by SVM(?) arc physically interesting quantitics, measure-
able in highly ioniscd atoms.

The case of scll-interacting fields like the one described by the Landau-Ginzburg

]

Hamiltonian and its relativistic generalisations, the scalar 4 -models, remains to be

b

tieated. We refrain from doing so here and merely refer (o the literature™™
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