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_ Abstract

A‘ quark-antiquark potentialv is ca.lcnla(_ed by involving vacuum condensates
up to dimension-S in QCD in the background fields. The undeﬂying assumption
is fhat a gluon (quark) propagates, not in the empty space, but through the
physics vacuum, filled with the background ﬁeids. The interactions of the gluon
with the background fields manifest themselves as the corrections of vacuum con-
densates to the free gluon propagatoi. It is shown that these corrections extend
the potential from the short distances to the intermediate range. Indeed, with

some reasonable parameters, the resulting potential is similar to those popular

phenomenological potentials in shape in the region 0.1 < » < 1fm.
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I. Introduction

t is well known that a critical feature of QCD is asymptotic freedom. Hence the
strong interaction becomes weak, and even perturbatively calculable with decreasing
of distances!l. At very short distances all perturbative ca!culations’ become extremely
simple and one gluon exchange diagram dominates the hard processes. Experiments
at large momentum transfer, ‘both inclusive and exclusive processes, are consistent

with the perturbative QCD.

Based on the one gluon exchange, it is easy to find the Coulomb potential is

responsible for the quark interaction at short distances, i.e.

a,(Q? '
vig = 230 M
where a,(Q?) is the running coupling constant,
n 4 )
o, (Q°) = ———=5 . 2
Q) Tlog & (2)

However we are still far from being able to reach the interaction structure at large
distances from QCD. Richardson suggested? an interplated potential which was a
simple interpolation between the asymptotic freedom and confining regions by making

a replacement

r
B log(1+ $z)

It is similar to the Coulomb-plus-linear potential proposed by Cornell groupl®. Ob-

a,(Q%) - (3)

viously, one can not expect to get the equation (3) from the perturbative QCD, since

it is a consequence of non-perturbative effects.

In order to consider non-perturbative effects we assume that the physical vacuum
in QCD is greatly different from the perturbative vacuum(¥, The physical vacuum can
be considered as a classical average effect and described by means of background field

interactions!®l. Therefore, the quarks (gluons) propagate, of course, not in an empty
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space, but through the physicai vacuum, filled with the non-perturbative quark and
gluon fields. These non-perturbaiive corrections are expressed throngh the vacuum
expection values of Lorentz invariant composite operators, such as the quark conden-
sate < @ | ¥ | 0 > and the gluon condensate < € | wa!] 1 >. One can use the
background fields to account for all those nonvanishing expectation values. The per-
turbative effects can be described by the quantum fluctuations. In previous papers
- we have built a {ramewqu for a quantum chromodynamics théory in the background
fieldsl®). The corresponding quantum fields are quantized in the Furry representaiion
and the physical states are defined on the physical vacuum. We hope it can provide
a way to extend the pure perturbative QCD theory to the nonperturbative rangé.
Also we have discussed the quark and gluon propagators and the Bethe- Salpeter
equation!® by introducing the perturbative and the non-perturbative contributions

" in this framework.'

In particular, the B-S equation and the Salpeter equation for the pseudoscaiar
mesons in the zero-order and the first-order approximation, where only the lowest-
dimension gluon and quark condensate corrections are taken into account in the

78], The spectrum and decay constants

gluon piopaga.tot as the kernel, are solved!
_for the pséudoscala.r mesons are obtained.b The predic@ions from these solutions are
quite reasonable. It has been shown that there are three terms in the interaction
kernell®®. The first term is the Coulomb potential which is from the one gluon
exchange diagram. The second term is mainly the linear potential which is induced
by the correction of the quark condensate. The third term is a higher power potential
r3 which is induced by the correction of the gluon condensate. However the r® term
has an oppusite sign to the linear confinement term, and the resulting potential will
fall down at the large distances. In fact, the potential is consistent with the Cornell

model as r < 0.6fm and it provides a good agreement with data for the ground

states of the pseudoscalar mesons. -




It should be noted that this approach is valid when the interacting distance is still
small. The higher dimension vacuum condensates have to be taken into account if
one wants to extend this approach to the larger range. However, the higher dimension
condensates, such as < Q l99¥y |2 >, <R[ GGG|R>,.. wi contribute
the higher-power term, like 73, %, ... . It is interesting for us to calculate the quark-
antiquark potential in QCD in the background fields involving higher- dimension
operators. In this paper we will calculate it involviﬁg vacuum condensates up to

dimension-6 as r goes to 1 fm.

The reminder of this paper is organized as follows. In Sec. II we give the kernel
of the Bethe-Salpeter equation which is determined by the one gluon exchange and
vacuum condensates up to dimension-4 in the first order approximation. In Sec. III

the quark-antiquark potential, which involves vacuum condensates up to dimension-6,

is analyzed in the background field QCD. The final section is reserved for a summary

and discussion.

II. The B-S Kernel and the Potential

In the previous papers we have derived the Bethe- Salpeter equation from the QCD

in the background fields!®l. The equation can still be written into the homogeneous

integral form,
Xpa(T1,22) = - / d*yd ydysdty Sr(z1 — 1) Sr(z2 — ¥2)
X G (Y1, Y23 Y41 ¥3)Xpa (Y3, Us) @

as long as we appropriately define the complete quark propagator Sr(z — y) and the
kernel G(y1,¥2; Y4, ¥3), which is determined by the QCD theory in the background

fields. The kernel can be divided into two parts:

G(Y1,Y23 Y1, ¥3) = Gp(Y1,Y2; Y4, ¥3) + Ga(¥1, 92394, ¥3) 5 (5)



where G, is usually the perturbative contribution which represents the sum of all
the irreducible perturba'tive graphs; and G, represents the sum of all the irreducible

' . I
graphs with vacuum condensates contributing to the four-point Green’s function.

The effective QCD Lagrangian L.;; in backgronnd fields can be divided into two
parts: |

L.y = Lo + Ly | (6)
with
Lo = (D(4) —mn + 2630 DI(4) = (1 ~ 1)(D*(A)D*(4))uc + 20 furc G165, (1)
é.nd
L = g(§d°Tn+6"T*%) = g?f fou ABL65
~gI (OB, ~ 387 I Jog HEBIHL+ 90T (o)

where A5(z) and ¥(r) denote gluon and quark background fields, and ¢3(z),n(z) are
quantum fluctuations around their classical solutions, respectively. The background
fields A%(z) and ¥(z) satisfly the equation of motion. 7%z = 1,...,8) and D, in

Eq.(7)-(8) are Gell-Mann matrices and the covariant derivatives, respectively.

The background field Aj(z) has been fixed by means of the Schwinger gauge or

"the ﬁxed»pbint gauge” (17

z* As(z) =0 . - (9)
The "background gauge” for the gluon quantum field ¢}(z) is chosen as
D% (A)y(z) =0 . (10)

It can be seen from Eqs.(6)-(7) that there exists a gluon background field A§(z) in

Lo and there are no free quark or gluon states in the eigenmodes of Lg. L.;; contains




not only the interactions between quantum fields and quantum fields but also the

couplings between quantum fields and background fields.

Thus the B-S kernel should be determined by the QCD L.y in the background
fields. As an example we turn on the zero and the first-order approximation in the
L;. Thus the quark condensate and gluon condensate diagrams will contribute to the

kernel G, and the one gluon exchange diagram will contribute to the kernel G, too.

For simplicity, we make the following three assumptions: i) We do not try to
solve Schwinger-Dyson equation for quark self-energy instead of the constituent quark
mass as parameters in the quark propagators; ii) Only three light quark condensates
are involved in the kernel G; iii) Only the lower condensate diagrams in the gluon
propagator are taken into account and all of higher orders and higher dimension

condensates are neglected. For the leading terms we have
. 1 1 -
<RG0 | 2>~ Sl m et} e <Q1¥P 0> (1)
and
1 v
Ay(z) ~ 27 G,u(0) .
Now the B-S kernel can be determined by the gluon propagator in this framework

Di(q) = [d'ser* <QIT(s3(x)d(0)[ >
= —ig,, D(¢")6® (12)

in the Feynman gauge. D(g?) is defined as,

11 Cmy <Yy Q> 1 1
D 2 == 4+ = 2 1 — e —
W= * &7 ,234 ¢*(q’ — m3}) [q2 q’—mi]
3 <G> '
+_592 qugl . (13)

< | Yy | 2> and < 0] G?| Q> in Eq.(13) denote the quark condensate with

flavor f and the gluon condensate. They are parameters which have been determined
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phenomenologically(*!

a
< Q| —7}162 [ >~ [(360 £ 20)MeV]*
<Q|dd|Q>=< 0 |ua |0 >=[(225 + 25)MeV] ,
<$H3§|Q~>=0.8<S.Huﬁ]ﬂ> . (14)

It was pointed out(®®] that the first term in Eq.(13) is the Coulomb potential in
the coordinate space and the second term is mainly the linear potential, which is
induced by the correction of the quark condensates. The third term is induced by
the correction of the gluon condensate which gives a higher power term r. However,
the 7 term has an opposite sign to the linear term. Thus, the resulting potential in
the coordinate space becomes

¢#<a|Ga>

g< |y i2> 1 .,
e ! — -
367m, (e +n) 1927 r (15)

92
U(r)v = -*5;; + };:

which can compare with the phenomenological potentials/®!*!¥] in the region r <
0.6fm. It is the reason why this B-S kernel can give a reasonable pséudoscalar'

spectrum and decay constants of the ground states.

However, U(r) will fall down as r> 0.8 fm since the r® makes a cancellation of the
linear confinement potential. By carefully studying the potential U(r), it can be easily
found that the potential will rise up if higher dimensional condensates are involved.
Thus we should calculate all higher condensates and all loop contributions to get the
full gluon propagator. In fact it is impossible to sum over all such contributions at

present. In principle, it is conjectured that the D(g?) may be written as

c A B
D)= 5+ 2 Y S 16
(¢) e mEyn (¢ "'m%)” g g +? (16)

where the coeflicients C, Ann and Bj, can be determined by the QCD theory in the

background fields which includes the contribution from ‘the perturbative and non-
perturbative condensate diagrams. In this paper we are not going to obtain the {ull

gluon propagator and we only consider the next higher dimensional condensates, up
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to dimension-6, to see what’s happen with the potential behavior since we can not
really go to the large distancesin this way. Also we ignore all loop contributions. Thus

A,,, and B;, are determined simply by the vacuum condensates up to dimension-6,

they are
0! = m< QY| > . quark condensate,
0f = a, < QGH G0 > | gluon condensate,
of =<0 g udly | 92 > four quark condensate.

05 = gfac < QIGE G, 3G, |0 > triple gluon condensate,

0% = mg < QYo ™4G: Y| > mixed condensate.

Here ¢ denotes u, d or s quark. The corresponding Feynman diagrams of the gluon

propagator at tree level are shown in Fig.1.

I{ Eq.(14) and the following assumption about vacuum condensate parameters are

emplcyed[‘f“]

g°fare < QG GL G210 > = 0.045 GeV®, (17)
. _ )¢ . _
g< ﬂ|¢a"‘—é~Gﬁ,‘¢|ﬂ > = M} < Qug| >, M? = 0.2 GeV? (18)

< QUITITIR > = ij};i[rr,r,:r,rz - T < QPR >, (19)

- D(q?) can be determined by the Fig.1.

III. Vacuum Condensate Corrections to the Poten-

tial

As the first step we calculate the vacuum condensate corrections to the potential

(up to dimension-6) at tree level.



From Fig.1 it may be seen that the vacuum expectation values of the background
fields are the multiple-point functions of the positions. They can be expanded in
terms of vacuum condensates, such as those in eq.(11). For our aim, the relevant

formulas, in the fixed-point gauge!!’l, are

< Q| Pia(z)¥;s(0) | 2 >= ‘1'15'5«;{(555 + mzP(y) < Q| Py | Q>

4
1, i T
~16% Wi + gme* ()il 9 <R[ Yo G | 0>
3 . A9 - A
to=2' 2 (n)iig’ <, Sv vy 19>}, (20)
288 2 7 2
< Qia(z)AG(2)¥;s(0)IQ >
# N8 m | i L e -
= o5 ‘é‘)ﬂa{["w - 3‘(%% - T,Y) + 2 ™% YO uplji < QP0G ’2-¢|9 >
2 2 i NS U T
+ (=32 + 32M) + 35 Woulig < QY Y Ef:%’v“{?fqlﬂ >}, (21)

1 ai
<G (OE,WIN> & —= < QI > 6%,

2 _ ,\a - Xx a-
+ L < IS Y Tt =1l > (2 = ¥) g
384 h 2 h 2

1, - Al 7oA @
+550° <UD IV 98 D VRt ¥nlR > (= y)u(z — y)6” , (22)
192 o 25 2 |

< Qia(2)Gh (¥)Yjsl > = < RPis Gl jal >

= T;E(%t)ﬂa[a#VIﬁ < oGP > (23)
< QP ()Y (¥)9(2)T9 (0)|R > =~ < QYT 19yYT|Q >, (24)

and

< QIGZu(x)Gbyp(y)chA(j)‘Q >x< ﬂleruG”ch’A'n >
- gggp foept < Q6L GTGhIn > . (25)
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‘I ne method of deriving these formulas were given in Ref.[15].

Using these formulas, through a straightforward and long calculation, we obtain

the gluon propagator in the momentum space,
D (g) = du(g)w - (26)
with

1
dwl(q) = "‘;;\'g;w

2 T - -
gm; < Ql‘!/!f’ﬁbflﬂ > . —1 1 -1
+ — + v
,:‘E,.{ 6 [q* ¢ -mi (¢ - m%)“]g“
+g3m? < ﬂlﬁf”fﬁGcr‘%"‘/’!!n > 1
6 (g —m3p ™
g°my < QUPgor G RY0 > gt < Qi >
+
: 12 ' 81
% }—-[ ! - 10¢° + 2¢* =
(¢ - m%):: o3¢ - m?‘)3 (¢ — m%)-ﬂ“f‘"
myg® < QITJ/;!&:IQ >q
3¢ (¢ -m})?
+[93m§ < QUsorsG 4|0 > S Q10 >2]
12 81
G 16000 44940 1
¢*'3(¢* —m})y (¢ -m}) |
1 -1

3 —1 1 -
+59° <QUGCI> g + 320" < Udsil0>? S
!

+ ]

v

8

1 ]
+ 2294 < Qg0 >? -q-;a‘hqu
!

>:{gamf < RYronGT R YR > gt < QY0 >’]f._[ G
7 96 216 q* (qz - m?)’
49,9v 24’ g
G
g <P >—i - gw 2,00 _ 209w

D R (= e

Z gam! < ﬂw,o,,‘G”"%—qb,[ﬂ > 3_ 1 g

7 | 8 | ¢’ -mp"
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4 1' 1
gt 1
+ ; 0 < Qdsysle >? P mmw
9 i
5 falc < Q'G‘vap,bG glﬂ > a—s'ggv : (27)

Here, the vacuum condensates are the fixed parameters showed in eqs.(15, 17, 18);

the three light quark masses and the strong coupling constant are free parameters.

Transforming eq.(25) from momentum space into coordinate space in the instan-

taneous approximation, we get the quark-antiquark potential,

4 a3 i
Vir) = gzj'(z";rg)‘ae" doo(q)lge=0

— —-myr e _p—Mgr
39 iy + Zf:Afe + };B;(r re )
+ ZC,re‘"'f»' + Dr + }:E,ee‘"""r2 + Fr* + Gr (28)
! ! ‘
with o
4 - 392[92 < le,b,zl;,lﬂ > _ 5592 < QIJ;O,,‘G“’.”%’-QMQ >
! 487m? 4608mm}
gt < lvgie>?
103867m}
B, = 1 139 <Qsor G Y0 > | 10" < QY910 T,
! 3 2887m} 81xm}
ch = 4 3 597 < Q0GP0 > 3 5g* < Q9,0 >2]
! 3 46087m} 34567m} |
D = Z:4 2[9 2 < Qyyy 10 > N 19g° < QoG Ly, |0 >
T4 487m; ‘ 768Tm}
181g* < Q9,10 >’]
51967m}
B, = i@ <WonG 50> gl < AlbyiyI0 >
d 3 11527m} 7T767m}
F oo 4 2[_92<RIG’IQ> B 2(93<nh5fm6°"‘5§~¢f|ﬂ>
= 37 256 : 7687my;
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_5g* < QluyysiQ >? y
103687m3

4 —g* < QU0 >
!

3
g a drpves
518407 t Gaop o <UCHLETGIIR>] (29)
The potential (28) is the combination of the short, intermediate and large range
interactions. However it is not reliable in the large range for lack of the contributions
from higher vacuum condensates. In particular, the coefficents D > 0, F < 0 and

G > 0 are found after putting (14) and (17 - 19) into Eq.(29).

The short range interaction is essentially a coulomb-type one, a little corrected by
the exponential decreasing terms which decay fast than the former with increasing of
the quark-antiquark separation. Among the vacuum condensates, the two and three
gluon condensates only give the contributions to the large range interaction, the rest
give the contributions to all the kinds of interactions. The quark masses, as mentioned
in Sec.Il, are necessary to produce the intermediate distance interaction. With the
various parameter sets, the potential is shown in Fig.2 in the region 0.1 < r < 1fm
where the phenomenological potentials are well fixed by the data. We take the
constituent quark masses as input parameters, because our interest is mainly in
the meson spectra. In order to show the tendency for our potential to vary with
increasing of the vacuum condensate dimenéion, we compare it with Cornell and a

QCD motivated potentiall’®. Their comparison is drawn in Fig.2.

IV. Summary and Discussion

Up to now, we have calculated the quark-antiquark potential by involving vacuum
condensates (up to dimension-6) at tree level in QCD theory in the backgrouhd field
framework. It has been shown that this approach give a way to reach the quark-

antiquark potential in QCD.

As well known, it is a Coulomb potential if we only consider the one gluon ex-
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change in the perturbative QCD theory. It is impossible to fit the hadronic spectra
since the hadronic structure is mainly determined by the QCD theory at the large
distances. It is believed that the QCD vacuum, which differs greatly from the per-
turbative QCD 7acuum, should be related to real physical states. Therefore could
lose some very important physics if based on the perturbative vacuum one. However
there is no an explicit solution to non-perturbative QCD at present. In thﬁ paper, we
have made a try to approach thé quark-antiquark potential by involving the vacuum

‘condensate effect.

It was found in the previous papers® that the linear potential, appeared in the
quark-antiquark potential, was induced by the correction of the quark condensate
< g >. However the lowest gluon condensate < G? > gives the r? term which has
an opposite sign to the linear confinement term. Although the resulting potential
is consistent with the Cornell form as r < 0.6fm, it will fall down at the large dis-
tances. The reason is that the interacting distance is still small and one has to take
into account for the higher dimension vacuum condensates to extend to the larger
range. Ipdeed we show that the vacuum condensates with dimension-6 contribute
to the higher power term, %, which has an opposite sign to the r® term and makes
the potential rising up again. Thus it can be conjectured that the higher dimen-
sion condensates will give the higher power term with the alternative sign for larger
distances,

V()= =24 3 G 1™ (30)

n=0
and eventually V(r) will rise up. Now it is rather hard to answer a question how
does V(r) like at large distances? We will study it in the future and try to get a real

potential in the QCD theory,
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Figure Captions

Fig 1. Gluon propagatqr involving the vacuum condensate corrections at the tree
level. ¥ is the quark background field: A, is the gluon background field; G,,, is
“the gluon background field strength.

Fig 2. Compa.risibn with the phenomenological potentials. Solid line represents the
Cornell potential. Dashed line represents potential which was given by Ref.[13].
Dotted line U(r) and V(r) is calculated by Eq.(15) and (28) respectively. (with
a, = 0.54 , mu = mg = 0.35GeV and m, = 0.53 GeV ).
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