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Abstract 

A quark ...antiqu&fk potential is calculated byinvollfing Y8.CUu~ condensates 

up to dimension-6 in QeD in the background fields. The underlying assumption 

is that a gluon (quark) propagates, not in the empty space, but through the 

physics Vacuum, filled with the background fields. The interactions of the gluon 

with the background fields manifest themselves as the corrections or vacuum con

densates to the {reegluon propa.gator. It is shown that these corrections extend 

the potential {rom the short di8t~nces to t,he intermediate range. Indeed, with 

some reasonable parameters, the resulting potential is similar to those 'popular 

phenomenological potentials in shape in the region 0.1 < t < Ilm. 
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I. Introduction 

It is well known that a critical feature of QCD is asymptotic freedonl. Hence the 

strong interaction becomes weak, and even perturbatively calculable wit~. decreasing 

of distances(l]. At very short distances all perturbative r.alculations become extremely 

simple and one glnon exchange diagram dominates the hard processes. Experiments 

at large momentum transfer, both inclusive and exclusive processes, are consistent 

with the perturbative QCD. 

Based on the one gluon exchange, it is easy to find the Coulomb potential is 

responsible for the quark interaction at short distan~es, i.e. 

(1) 

where a,(Q2) is the running coupling constant, 

I) 411"' 
a,(Q-) = 5& . (2) 

p log A 

However we are still far from being able to Teach tlte interaction structure at large 

distances from QeD. Richardson suggested[2J an interplated potential which was a 

simple interpolation between the asymptotic freedom and confining r::;gions by making 

a replacement 

2) 41r( (3)
CIt, Q --> fJ log(l + ~) 

It is similar to the Coulomb-plus-linear potential proposed by Cornell group[3J. Ob

viously, one can not expect to get the equation (3) from tile perturbative QeD, sip,ce 

it is a consequence of non-perturbative effects. 

In order to consider non-pertlJrbative effects we assume that the physical vacuum 

in QeD is greatly different from the perturbative vacuum[4]. The physical vacuum can 

be considered as a classical average effect and described by means of background field 

interactions[51. Therefore, the quarks (gluons) propagate, of course, not in an empty 
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space, but. through the physical vacuum, filled with the noa....p'ertu'rba.dYe <[11&1'1 and 

giuon fi.elds. These non-perturbative corre.:tions are expressed tluongh th,e vacuum 

expection val.ues of riorentz invariant composite operators, such as the quark conden

sate <Sl I ijJ't/J I 0 > a.nd the ginon condensate < Sl I G;",lfi >. One .can use the 

background fields to account for all those nonvanishing expectadon values. The per

turbative eft'ectscan be described by the quantum fluctuations. In previous papers 

we have built a framework for a quantum chromodynamics theory in the background 

fields[5]. The corresponding qu&.ntum fields are quantized in the Furry representation 

and the physical s~ates are defined on the physical vacuum. We hope it can provide 

a way to extend the pure penurbative QeD theory to the nonperturbative range. 

Also we have discussed the quark and gIuon propagators and the Bethe- Salpeter 

equation[6J by introducing the 'perturbative and the non-perturbative contributions 

in this framework. 

In pa.rticular, the B-S equation and the Salpeter equation for the pseadOicaiar 

mesons in the zero-order and the first-order approximation, where only the lowest... 

dimension gluon and quark condensate corrections are taken into account in the 

gluon propagator as the kernel, are' solved(T,8]. The spectrum and decay constants 

. for the pseudoscalar mesons are obtained. l.'he predic~ions from these solutions ~re 

quite reasonable. It has been shown that there are three ~erms in the interaction 

kernel[8,9}. The first term is the Coulomb potential which is from' the one gluon 

exchange diagram. The second term is mainly the linear potential which is induced 

by the correction of the quark condensate. The third term is a higher power potential 

r3 which is induced by the correction of the gluon condensate. However the r3 term 

has an oppbsite sign to the linea.r confinement term, and the resulting potential will 

fall down at the large distances. In fact, the potential is consistent with the Corriell 

model as r < O.6fm and it provides a good agreement with data {or the ground 

states ot the pseudoscalar mesons .. 
I 
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It should be noted that this approach is valid when the interacting distance is still 

small. The higher dimension vacuum condensates have to be taken into account if 

one wants to extend this approach to the larger range. However, the higher dimension 

condensates, such as < n 11iJ't/J'if;Tf; In>, < n I G G GI n >, ... will contribute 

the higher-power tenn, like r3, r~, ..•. It is interesting for us to calculate the quark

anti quark potential in Q CD in the background fields involving higher- dimension' 

operators. In this paper we will calculate it involving vacuum condensates up to 

dimension-6 as r goes to 1 lm. 

The reminder of this paper is organized as follows. In Sec. II we give the kernel 

of the Bethe-Salpeter equation which is determined by the one gluon exchange and 

vacuum condensates up to dimension-4 in the first order approximation. In Sec. III 

the quark-antiquark potential, which involves vacuum condensates up to dimension ..6, 

is analyzed in tbe background field QCD. The final section is reserved for a summary 

and discussion. 

II. The B-S Kernel and the Potential 

In the previous papers we have derived the Bethe- Salpeter equation from the QeD 

in the background fields[6J. The equation can still be written into the homogeneoQs 

integral form, 

XpO(Zl, Z2) = - f d.y1d·Y2d.y3d'y.SF($1 -:- Yl)SF(Z2 - Y2) 

X G(Yb Y2; Y4, Y3)Xpo(Y3, Y4) , (4) 

as long as we appropriately define the complete quark propagator Sp(z- y) and the 

kernel G(Yl' Y2; y", Y3), which is determined by the QCD theory in the background 

fields. The kernel can be divided into two parts: 

(5) 
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where G, is usually the perturbative contribution which represents the sum of all 

the irreducible perturbative graphs; and Gn represents the sum of all the irreducible 

4gntphs with vacuum co~densates contributing to the four-point Green's function. 

The efl'ective QeD Lagrangian Lel/ in backgrollndfields can be divided into two 

parts: 

(6) 

with 

and 

L. 	 - g(ifnli'TtI'1 + FJt/l'Ttlt/J) .:... g2 ftld/ ftJ6cA~4>i4>~cp~ 

_gf4IC(8 ,l..tJ)dJJl.A.lI _ !g2 f4ie J A.Jl.A.'" ,1.4 d/ + gtfjA,.... 1'·,;,.,
pY'" .• Y'( 4 tJd! Y'6 Y'~ '+'p. " '1'1" 1/, 

where A:(:r) and t/J(x) denote gluon and quark background fields, and 4>:(x),'1(x) are 

quantum fluctuations around their classical solutions, respectively. Tbe background 

fields ACI(:r) and f/;(x) satisfy the equation of motion. TtJ(a= 1, ... , 8) and Dp in 

Eq.(1)-(8) are Gell-Mann matrices and the covariant derivatives, respectively. 

The background field A:(x) has been fixed by means of the Schwinger gauge or 

"the fixed-point gauge"[lO} 

(9) 


The "background gauge" for the gluon quantum field tP~(:r) is chosen as 

(10) 


It can be seen from Eqs.(6)-(1) that there exists a gluon background field A!(x) in 


Lo and there are no free quark or gluon states in the eigenmodes of Lo. L~/I contains 
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n01 only the interactions between quantum fields and quantum fields but also the 

couplings between quantum fields and background fields. 

Thus the B-S kernel should be determined by the QeD Lett in the background 

fields. As an example we turn on the zero and the first-order approximation in the 

Li. Thus the quark ~ondensa1e and gluon condensate diagrams will contribute to the 

kernel Gn and the one gluon exchange diagram will contribute to the kernel Gp too. 

For simplicity, we make the following three assumptions: i) We do not try to 

solve Schwinger-Dyson equation for quark self-energy instead of the constituent quark 

mass as parameters in the quark propagators; il) Only three light quark condensates 

are involved in the kernel G; iii) Only the lower condensate diagrams in the gluon 

propagator are tak~n into acco~nt and all of higher orders and higher dimension 

condensates are neglected. For the leading terms we have 

and 

Now the B-S kernel can be determined by the gluon propagator in this framework 

D:~(q) - f d'zei,.z < nIT(<p:(z)<p~(O»ln > 

_ -igpII D(q3)~(J1 (12) 

in the Feynnlan gauge. D(q2) is defhied as, 

D(q') = ~ +q'J 

(13) 

< n I t/JrlP/ In> and < nl G2 In> in Eq.(13) denote the qua.rk condensate with 

flavor f and the gluon condensate. They a.re parameters which have been determined 
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phenomenologically[,,11] 

a 
< n I -'a2 In >- [(360 ± 20)MeV]' ,

7r 

< .a I dJ In >=< n I uti In >= .(225 ± 25).t\'feV]3 , 


< n , " In >= 0.8 < n I uii In> . (14) 


It was pointed out[8,9] that the first term in Eq..(13) is the Coulomb potential in 

the coordinate space and the second term is mainly the linear potential, which is 

induced by the correction of the quark condensates. The third term is induced by 

the correction of the gluon condensate which gives a higher power tern} r3. However, 

the r3 term has an opposite sign to the linear term. Thus, the resulting potential in 

the coordinate space becomes 

which can compare with the phenomenological potentials[3,12,131 in the region r < 

O.6fm. It is the reason why this B-S kernel can give a reasonable pseudoscalar 

spectrum and decay constants of 'the ground states. 

However, U(r) ~ll :£all down as r > 0.8/m since the r3 makes a cancellation of the 

linear confinement potential. By carefully studying the potential U(r), it can be easily 

found that the potential will rise up if higher dimensional condensates are involved. 

Thus we should calculate all higher condensates and all loop contributions to get the 

full gluon propagator. In fact it is impossible to sum over all such contributions at 

present. In principle, it is conjectured that the D(q') may be written as 

( ' CLAm. +,E 'B2n (16)Dq)=-;;+ 
q" m,a q2m(q2 - m,)A ,,:2 q,,,+2 

where the coefficients C, Am. and B,. can be determined by the Q.CD theory in the 

background fields which includes the contribution from ·the perturbative and non· 

perturbative condensate diagrams. In this paper we are not going to obtain the full 

gluon propagator and we only consider the next higher dimensional condensates, up 
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to dimension-6, to see what's happen with the potential behavior since we can not 

really go to the large distances in this way. Also we ignore all loop contributions. Thus 

Amn and B 2n are determined simply by the vacuunl condensates up to dimension-6, 

they are 

ot - m < nl~'fln > quark condensate, 

o¥ - a , < nIG:"G:Vlfl > gluon condensate, 

0: = < n I fijr\ 1j;fijrIJ't/J In> four quark condensate. 


O~ = g!.,u: < nlG:"G.,p,.G:,ln > triple gluon condensate, 


O~.p = mg < nlt,bO'r,,; G:"..pIn> Dli.xed condensate. 


Here t/; denotes u, d or s quark. The corresponding Feynman diagranls of the gluon 

propagator at tree level are shown in Fig.I. 

If Eq.(14) and the following assumption about vacuum condensate parameters are 

employed[4,U] 

(17) 


(19) 

D(q2) can be determined by the Fig.l. 

III. Vacuum Condensate Corrections to the Poten

tial 

As the first step we calculate the vacuum condensate corrections to the potential 

(up to dimension-6) at tree level. 

8 



From Fig.l it may be seen that the vacuum expectation values of the -background 

fields are the multiple-point {unctions of the positions. They can be expanded in , . 
terms of vacuum condensates, such as those in eq.(11). For our aim, the relevant 

formulas, in the fixed-point gauge[lO], are 

- 1. < n I "piOt(X)'tfJjfJ(O) I n >~ 126Ot,,{(6;j + 4mxP(I'P)ji] < n 1'tfJ"p In> 

_2-;:c2[O" + ~mxP("Y ) '0] g < n Itt7.O' GJW Ad ttl. I fi >16 'I 6 ,II I' 'f' II" d 2 'f' 

i 2 P( ) 2 1"7. 1\ d ttl. ~ - J ,\d J I }+288 x x I'll jig < n 'Y/"YP2''f' L.., f/J 'YP2''''' n > , (20) 
f 

(22) 

< nl~ia(X)G:"(y),,pj/Jlfi > ~ < nl"bi/JG:""pialn > 


- 1!2(~ )~..[U",,]ji < fll¢urKGr""'lfl > (23) 


(24) 

and 

< nIG:,,(x)G'''p(y)GcP.\(j)IO > ~ < SlIG:"GlvpGc'.\lfi > 

2..g !d6c!tle/ < filGd Ge"r GJ In > (25)- 96 pl 1''' r P 
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'1 he method of deriving these formulas were given in Re{~[15]. 

Using these formulas, through a straightforward and long calculation, we obtain 

the glnon propaga.tor i~ the momentuln spa.ce, 

(26) 


with 

gf. < Sll'¢t,p/ln >21i.[ gjJII 

216 q. (q2 _ m})2 

2q2 g,.11 ] 
3(q'l .- m<~.)3 
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./ 

(27) 

Here, the vacuum condensates are the fixed parameters showed in eqs.{15, 17, 18); 

the three light quark masses and the strong coupling constant are free parameters. 

Ttansforming eq.(25) (rom nlonlentum space into coordinate space in the instan

taneous approximation, we get the quark ..antiqnark potential, 

4 q2/ 	d3 
,- V(r) - 3" 9 (211')3 e'f" doo(q)l.a=O 

_!g2_1_ + LAle-m/ ' + LBI(! _ !e-m/')
3 4~r I 	 I r r 

+ 	 L Clre- m/' + Dr + LEle-m/r'J + Frl + Gr') 
I I 

with 

4 2[g2 < nl'¢llflj,lfl > 55g2 < nl,ji/O'r"GGrlC~tPln > 
39 48nn' 	 46081rm,I 

_ 313g~ < n I "'/~/ln >'] 
103861rm' 

4 2( 13g2 < nlfljIO'r"Gtlr"A; '¢II In > 10g4 < fihbl"b,ln >2] 
-g -	 +
3 2881rm5 	 . 811rm6 

I 	 J 

~ 2( 5g
2 < fllfljIO'r"Gtlr"~'I/I/ln > _ 594 < nl'l/llfljllfl >2]

93 460S1rm' 34561rm" 

E ~g,[g2 < fll1fltP/lfl > 1993 < flltPlqr"GdrtCf1f/lfl >
D 

I 3 .f8i1'm l 	 7681rm' 

+ 1819~ < flltPlfljlln >'] 
51961rm' 

~ 2[_ g3 < nl,]jIO'r"GGr"~'I/I/ln > gft < nl'l/lJ'lbl In >2] 
39 1152~m2 	 77761rm3 

I 	 I 

F -
! 2[_g2 < fllG2 1fl > E(g3 < flltPlqr"G·r"~1f/lfl > 

g
3 256 I 7681rm/ . 
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_ 5g· < nl'ifJ,V",ln >2)] 
103681l"m} 

~ 2[2: _g4 < nltb,~,ln >
G g

3 , 518401l" 

The potential (28) is the combination of the short, intermediate and large range 

interactions. However it is not reliable -in the large range for lack of the contributions 

frt)m higher vacuum condensates. In particular, the coeflicents D > 0, F < 0 and 

G > 0 are found after putting (14) and (11- 19) into Eq.(29). 

The short range interaction is essentially a coulomb-type one, a little corrected by 

t he exponential decreasing terms which decay fast than the former with increasing of 

the quark-antiquark separation. Among the vacuum condensates, the two and 'three 

gluon condensates only give the contributions to the large range interaction, the rest 

give the contributions to all the kinds of interactions. The quark masses, as mentioned 

in Sec.II, are necessary to produc'e the intermediate distance interaction. With the 

various parameter sets, the potential is shown in Fig.2 in the region 0.1 < r < 1fm 

where the phenontenological potentials are well fixed by the data. We take the 

constituent quark masses as input parameters, because our interest is mainly in 

the meson spectra. In order to show the tendency for our potential to vary with 

increasing of the vacuum condensate dimension, we compare it with Cornell and a 

QeD motivated potential[13]. Their comparison is drawn hi F'ig.2. 

IV. Summary and Discussion 

Up to now, we ha~e calculated the quark-antiquark potential by involving vacuum 

condensates (up to dimension-6) at tree level in QeD theory in the background field 

framework. It has been shown that this approach give a. way to reach the quark

antiquark potential in QCD. 

As well known, it is a Coulomb potential if we only consider the one gluon ex
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change i. the perturbative QCD theory. It is impossible to fit the Jaadroaic speetn. 

since the hadronic structure is mainly determined by the QeD theory at the large 

distaaces. It is believed that the QCD vacUUID, wlaich diJren creail, from th.e per

turbati'f'e QCD Tacaum, should be Rated to real physical .tates.. Therefore could. 

lose JOme very importaat physia if baaed on the peliarbatiye qaam oae. However 

there i. DO aD explicit soJUtioD to non-perturbatiye QCD at pre.eni. In this paper, we 

have made a try to approach the quark-a.tiquark potential by iaYolria, the vacuum 

condeDSate eft'ect. 

Ii .as foud i. the preriou papenl8,1j that the hear poteatial, appeared ia tile 

quark-a.tiquan potential, wu induced by the correction of 'he quark eo.deDtak 

< qq >. However the lowest s1uoa coadeDJate < G' > Pyes the r' term which has 

aD opposite sip 10 the liaear coninemea' term.. AlthousJa the resuliia, potential 

is co.si,tent whh the CorneD form .. r < O,,6/m, it will faD down at the large eli.. 

tance... The reason is tbat the iDteracUng disiaDce iI.tm .mall aDd ODe h.. to take 

into account for the higher dimension vuuum conde.sate. to extend to the Jailer 

range.~ndeed we .how th.t tlae yaeuum condeuate. with dimeD8oD-6 contribute 

to tla. higlaer power term, ,', whic" .... an opposite sip to the ,3 term and make. 

the potential rising up again. Thus it can be conjectured that t"e hisher dimen.. 

•ion c~nden.ates will give the hilher power term whh the ahemative ,iln for la1'ler 

distances, 
co 

V(r) = -~ + E(-)" C2A+1 ,:".+1 (30) 
, n=O 

and eventually V (r) will rise up. Now it is rather hard to answer a question how 

doel V(r) like at la1'le distancel? We will study it in the future and try to let a real 

potential in the QeD theory-
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Figur~ Captions 

Fig ·1 .. Gluon propagat<tI involvIng the vacuum condensate corrections at t~e tree 

level. 't/; is the quark background field: AI' is the glllon background field; G11" is 

the gluon background field strength. 

Fig 2. Comparision with the phenotllenological potentials. Solid line represents the 

Cornell potential. Dashed line represents potential which was given by Ref.[13]. 

Dotted line U(r) and V(r) is calculated by Eq.(15) and (28) res.pectively. (with 

Q s=0.54 ,mu =md =0.35 GeV and m. =0.53 GeV ). 
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