
BIHEP-EP-A9-1 


Analytical Approximation of 

Radiatively Corrected Resonant Cross section 


Feng-zhi Chen, Ping Wang, Ji-min Wu 


Institute of High Energy Physics, P.O. Box 918, Beijing, China 

and China Center for Advanced Science and Technology, World Lab 


Yong-sheng 

Institute of High Energy Physics, 

Zhu 

P.O. Box 918, Beijing, China 

li'Ei\lliILAB 
MAR 12 1990 

LIllI{Al': Y 

Abstract 

An analytical approximation of the radiati~ely corrected 

cross section for the resonances in e e collision has been 

derived with the accuracy at the order of 0.1% for Z boson as 

well as J/ Y' and ~ family particles within the experi­

mentally scanned energy range. It is recommended using this 

analytical expression to treat the resonances which have to be 

folded with the accelerator beam energy spread in the expe­

rimental data analysis. This provides an alternative to the 

previous method of Jackson and Sharere~ It gets much higher 

accuracy. 
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1 INTRODUCTION 

Precise determination of the masses and widths of resonant 

states in e+e­ annihilation requires proper treatment of initial 

state radiation. The structure function approach introduced by 

Kuraev and Fadin [1,2] provides a systematical method to calcu­

late this correction to 0.1% accuracy. Their result is expressed
(., 

in the integral form that the radiatively corrected cross section 

( 1) 

where,jS is the C.M. energy of the colliding beam, dB (5) is the 

cross section of Born order approximation, and 

1 
F(:c.,S) =	PX P- [ /+~ ~ - ! (-t tnt;, +.2.,,/- ¥)J. (K fador) 

-p (1- :)+; p% [4 (2-X) '"i - /+)~-.x}'.fn(t-,r)- {, +X] (2) 

where 

{3= ;;; (~ !: -I ) 
()l. n% I 	 cln 

and (K factor) = 1 +-:;r(-S-X) for vector coupling and 1 + ~ for 

axial vector coupling [3]. 

In the expression of F(X,s) given in (2), the first term is 

called the soft photon contribution; while the second and third 

terms are called hard photon contributions and they are trun­

cated to p. square order. 

In this paper we are only concerned with the resonant states, 

so aaCS)is Breit-Wigner cross section. We take the standard form 
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(3 ) 

where M and r are the mass and total width of the resonance. lee 

a~d rt are the partial width to e+e- channel and to the final 

states resp~ctively. If the resonance is coupled with photon, 

like J/q; and r particles, then r•• is defined as ,ree)exp to absorb 

the vaccum polarization [4]. 

If (2) and (3) are substituted into (1), then the first and 

the second term i-n F (x, s) can be integrated analytically, as 

demonstrated in reference [5,6], while the third term cannot. But 

if this third term is dropped, the accuracy gets worse substan­

tially, as compared with the second term, the third term does 

not decrease as the power of ~, because there is such singular 

function lnJ in it. 

In this paper, we present an analytical approxin.ation to the 

cross section of resonant states, with the accuracy of 0.1% order 

for J/ '1', T and Z boson in the energy range which is scanned 

in the experimental situation. The material is organized as 

following: in section 2 we redrive F(x,s) and express it in a 

different form; then in section 3, with this new form of F(x,s) 

the approximation for the cross section (1) is made; in section 4 

we disscuss the radiative correction treatment to J/~ and Jr 

states and demonstrate that our formulae can get much higher 

accurary than the previous method used up to now [7]. 

2 THE NEW FORM OF F(X,S) 


In this section, we redrive F(x,s) within the scheme of 
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structure function approach. Our calculation is parallel to the 

one in reference [1] but with a somewhat different mathematical 

technique. 

The cross section of e+e- annihilation is 

(4) 

where D(x,s) Is the distribution function which satisfies the 

Lipatov equation [8] 

with 
Ol

d. ( 5'):::: --01..---5-'­
,- - .in-=r 


37'1:
and 

"'e 
P(l)= ,-tZ - 6 (I-Z)l' It-X dx 

}-z 
,l 

() 1-"
2 

· 
The way to solve this equation is through Mellin transformation. 

After the inverse transformation, 

where C is Euler constant, B2e Bernoulli number, and 

with the help of the formula 
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We get 

Then expand 

4 [ . 2. 3 1'"(lnt) = (I-xJ+ i (I-X) +:r(r-x}-t- ... 

=	(/-:x/. { I+ ~ ( ,-x) + r;: .,. f ) (1-X y" + 

+(~ ~ 5""42, + as). (1_ x.)3 + ... ~ 
8 4e 48 J · 

Also following the prescription of reference [1], make the subs­

titution 

---+) ~(ln 1- -I) =!!.­
),71: 111; 4 

and add 	the contribution of vitual ete- pairs 

It f.. _ I [pI. .s ]
..1::2 (I_X)2 -- (2in ---y -I~)

28'S . 	 Wl8 

We have 

exp(- lie + 3(3 ) (~ ~ I [ faa 	 ]D~-C1"(XJ'S)= 7" 8 _(/_X)2- 1--(2b, S z-I5') + 
~ 	 r (I+l) 2 2f1B 1ne 

here the actual valu~ of Bernoulli number has been put into. 

Finally substitute D(x,s) into Eq. (4), we obtain the expre­
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ssion of F(x,s) in terms of a series expansion of x 

(5) 

(Jf-2 2
Notice that the terms we omitted start from X p, while the 

three terms which we kept all have p term in their coffiecients. 

Our first term is identical to the soft photon term of Eq.(2), 

while the hard photon terms of Eq.(2) are equivalent to our 

second and third terms in the expansion of small x. This can be 
tt • .,., 

easily verified if one' rewrites x"" = 1 + {!J lnx, x" = x + f3 xlnx 

and In (l-x):::::r ~(x + ~2..,. ... ). The advant-age of our expression for 

F(x,s) lies on the fact that 0 ~ X" 1 and in Eq. (1) if 6 (s(l-x»8 

is Breit-Wigner form as in (3), it peaks at Xtmp = 1 - M2jS. 

In the actual experimental s:.tuation, the .resonance is scanned 

near its mass, so Ximp is alNays small. This makes the expression 

of F(x,s) by Eq.(5) very useful to treat the radiative correc­

tions to resonanes. 

3 THE APPROXIMATION OF THE CROSS SECTION 

with our expression of F(x,s), the 'radiatively corrected 

cross section of a resonant state is 

1 (6)( x P- P. [10/- ~ P- 1:. (ft.. ~: +:27t~-¥-)] ·{K fM,/t;r} 

(S f3~' (3rl (J .3 L) j
..,.:( (-[!> - 4* ) + :£, (-.2 - g (!> + ... 



Page 7 

Here the up limit of the integration is put to 1, corresponding 

that all the energy of the electron (or positron) can be lost to 

photon emission. The first term of the integration can be done 

analytically, as demonstrated in reference (5], with the help of 

the formula 

(X) p-I 


[31 x~2 axCD.$ ~ +a.:l d.:x:. 


To apply it to the integration in (6), the part of the integra­

tion from 1 to infinity should be ,subtracted. This can be done 

by a series expansion 

I 

Here we keep only three terms which are good enough; 

where 

CO.5'&=­-­I (fiIIl 
. a s I ') 

(7) 

'...h(' 11, )
'1' C05 Il -"I 

.) 

= -n::'# 51#, [ .9 ( I ­ .., ) 1---=---.----­
S /n {; .. S",77.'J' • 

The second term in the braces of Eq.(6) can be integrated simi­
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larly 

The third term in Eq.(6) is the last term we consider. Since fi is 
" ~+, 

small, we suggest to approximate:t. =X 'so that 

_ cf'q f) ( 1'/1-I It a. c()S9 _ 3 lJ)].
(/ q a. Sill tJ .;z + '17 

Put together the three terms, the cross section is expressed in 

terms of series expansion 

(8) 

with 
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Eq.(8) is our analytical approximation of the radiatively cor­

rected resonant cross section. To test its accuracy, we have cal­

culated its deviation from the exact cross section for Z boson, 

1r, J/~ and ~". Here by the exact cross section we mean the 

F(x,s) of Kuraev and Fadin in Eq.(2) convoluted numerically with 

Breit-Wigner cross section of Eq.(3) 

{p:x;~-I [1+ ! ~ -ii (tflt ~: t 27T~- ~)]. (K f~cfcr) 

- ~ (1_ ~) t :l[4 (2-x)fll~ .,. I t 3~-X)~1l /~ -t tX1 J (10) 

The integration (10) has been evaluated by Gaussian method with a 

CERN library subroutine DGAUSS. For the first term in the braces 

of (10), a partial integration was done to eliminate the singula­

rity of x~-l before Gaussian method was applied. For illustration 

and comparision, we also include three other approximations of 

the radiatively corrected cross section of resonances. The first 

is the soft photon approximation which is commonly used in the 

experimental data annalysis of J/cp and T states 

(J - J1277: ree- rt dx • 

:;off - [S (I-.X)-M 'j,i..,. 1\I1~ r ~ 


( 11) . {fX~_1 [I.,.~-g;(; 1"~f2.-rra- ~)]. (Kfaclor)} 

Compared with Eq. (10), it only keeps the first term in the inte­

grand. The second approximation we consider' here is suggested by 
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Cahn [5] 

I /271" reerf dx 
Jo - [.s C/-X)- 1'1.2.] 2.+ JV1.1 r2 • 

(12J 

Compared with Eq.(10), it drops the fo2 
term in the hard photon 

contribution, so that the remaining terms can be integrated ana­

lytically if the upper limit of the integration is extended to 

infinity for the soft photon contributio~. But here we took the 

upper limit to be 1 and use the numerical evaluation as we did 

for the exact cross section (10). The third approximation Which 

we include is a simplified version of Eq.(8) 

2 
\)$";", = 1.2 7T~~.e rf f(I +d)a,P- <t> (CDS..9. /3) + 

(13) 

of (-(3 +lrr/) l-'</>(CDN. pt I) J 
This expression can already achieve high precision in the appli­

cation to some resonances like J/"" • 

«'ITIn the calculation, we -put the K factor = 1 +-:;- for Z boson, 

corresponding sin~Bw= O. 25, so 1ihe cbupl ing is purely axial vec­
cI. ...,...z , 

tor, and K factor = 1 +:;r (.:; - 2") for~ J 1'1', IP.~ aRd. T . Also we put 

= 92. 4GeV, rz = 2. 6GeV; rT.tI'l' = O. 068MeV; <MZ 

Mr =9460.3MeV, r1'= O.052MeV; M~,,,II= -3769.9MeV, rtpl~= 25MeV. The devi­

ation of our approximation (8) from the exact cross section (10), 

as well as three other' 'approximations (11), (12), (13) , are 

expressed in terms of foUr' "e'rrors 'which ared-efined as 
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(Jca.I,,,\J;"Jtti=- ,- Ez= 1­

o'KF <JH'F 
(14) 

(jsim (')SE
E3= 1- elf. , 1­c::f kF ()IfF 

Here , (Jsoft , (')C~I"'t and c(sim.are defined by Eq.(8), (10) ,
°SE' C5KF 

(11), (12) and (13). The calculated results of these four errors 

are depicted by the four curves in Fig.(la), (lb) (lC) and (ld) 

for Z boson, r, J/'P and l/'" states respeQtively. 

In the figures (la) to (ld), all four curves have a mimimum 

at the energy of the resonance mass. This is due to that near the 

resonance mass, the soft'photon contribution dominates, while the 

hard photon emission is negligible. The approximations (11) and 

(12) include the same form of soft photon term as Eq.(10) does; 

while in the approximation (8) and (13), the analytical expres­
, . 

sion tor the integratioh or the soft photon term achieves very 

high precision. Furthermore, the narrower the resonance is, the 

more prominent of the soft photon domination at the energy of 

the resonance ,mass. So for very narrow resonances I ike J / lIJ and 

~ , the minimum is a very sharp dip; while for wide resonances 

like Z boson and ~u, it varies smoothly. In Fig.(la), the error 

of our approximation (8), i.e. the curve 4 has a dip down to 0 

at the energy above the resonance mass, this is due to that the 

error changes its sign at that point. 

The figures (la) to (ld) demonstrate the excellence of our 

approximation (8). For Z boson and ~", within the energy range 

(M - 4 r, M + 4 r ), the error is within 0.1%. For J/I/J the error 

is also less than 0.1%, and for r, it is slightly larger, within 

the appropriate energy interval. Here in the experiments of these 

very narrow resonances I ike J / l#J and 1', the scanned energy in­

terval depends on the collider beam energy spread. Usually it is 

~.~,--.-,--.- -~---------------
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no more than (M - 10 A, M + 20 A ), with l:l is the stanard devia­

tion of the beam resolution function. In Fig. (lb) and (lc), the 

energy interval in which we did the calculation was taken from 

the planned experiments on Beijing Electron Positron Collider 

(A = o. 88MeV) for J/ 'P and from'the experiments on DORIS at DESY 

( ll. =8MeV) for T [9]. 

In this paper, the soft photon terms which we consid~r are 

identical to the ones in the original work of reference [1]. In 

the literature, additional terms have been calculated for Z boson 

[2]. These results can be straightforwardly incorporated into our 

expression (8). Also we only considered standard Breit-Wigner 

formula (3), some authors suggested the energy-dependent resonant 

width in the Breit-wigner formula [5,6]. The mathematical tech­

nique in this paper can be easily extended to such considera­

tions. 

4 TREATMENT TO THE OBSREVED NARROW RESONANCES 

In this section, we discuss the radiative correction treatment 

to the experimentally observed resonances of J/~ and r 
families. Many experiments have been done on them ,with e+e- col­

lider. The main feature of these experiments is that those reson­

nat states below the charmed meson or beauty meson production 

threshold have widths which are narrower than the beam energy 

resolution of the e+e- collider. So the measured cross section is 

the cross section (1) folded with the beam energy resolution 

function G(W,W') where W equals to the C.M. energy of the e+ e­
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collider. 

(JD 

C5g !JCp(W) =J CT(W,W') (5' (W'j dw' 
o (15) 

G(W,W') is usually taken as a Gaussion function. 

with the expression (8) for C1(W'), Eq. (15) contains a one-

dimensional integration which can be performed numerically. 

Actually, the sim~lified approximation for dlw') given by 

Eq. (13) already gets accurary of 0.1% for J/~ and 0.2% for ~ 

So in the following, we take the simplified expression of the 

observed cross section, although the complete formula (8) can be 

(16) 
p Il(Ito) a. ~-2 4> (Ct)s.9. ts )+(:} f.>2- p) a - ¢ (ct)s9. t3 +,)J 

with 

, ( [ (tll-W 
I )21

G(W, W ) == J:m L1 eXf - .2,L:,.I. 

here a, cos...9 and cP (cosJ,x) are defined in Eq. (7) with rs = W' , 

and d in Eq. (9) . 

Up to now, all the experimental data are analyzed with a 

method developed by Jackson and Scharre [7). Their original work 

mistreated the radiative correction contribution, but here we 

have made the neccesary modifications based on Kuraev and Fadin's 

work [1) and present it in the following: 

The experimentally observed cross section expressed by Jackson 

and Sharre is 

(17) 
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where GR(W,'WI) is the so-called radiatively· corrected' resolution 

function 

in which ..4 is the standard deviation of the beam energy reso­

lution function. If G(W,W') is in the form of Gaussian, then 

F(Z,~) can be expressed in terms of Weber's parabolic cylinder 

function D_u(x): 

At this step, most of the experimental data annalysis based on 

Eq.(17) make an additional approximation on the Breit-Wigner 

formula: 

so that with this delta function approximation, the observed 

cross ,section is 

(18) 

To get an idea about the accuracy of this method, we have 

calculated the cross section by (17) with the integration eva­

luated numerically as well as, (18), then compared them with the 

outcome by Eq.(16) which is also integrated numerically for J/~ 

and ~. In the calculation, the same values of mass and width 
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were used as in section 3. Also we took the standard deviation of 

the collider energy resolution function 6 = 0.88 Mev for J/~ and 

A= 8Mev for r. The results are depicted in Fig. 2a, 2b for 

J/tp and Fig. 2c, 2d for T respectively. It can be seen from 

these figures that the approximation (18) deviates from the 

correct value very badly at the energy (6,..., 8) Ll below the 

resonance peak, in the way that it dips too sharply. Besides, 

(18) also deviates from the correct value at the resonance peak. 

To show this more clearly, as well as the discripency of (17) 

with (16), we calculated the errors of (18) and (17) which are 

defined as 

efTS 
1- Ey.s== 1--­ (19)

(jobs 

where (jobs and d 1S are calculted from Eq. (16) and (17) with the 

integration evaluated numerically, .and erG is from Eq. (18). The 

resul ts are depicted in Fig. (3a) and (3b) for J/ t.p and r respec­

tively. They show that the drror of Eq. 17) is at the order of 

1% for J/~ and r . In the figures, the dips down to 0 are due to 

the changing of the sign. 

For future experiments when the accuracy needs to be better 

than 1% level, we recommend that the Eq. (16) to be used as the 

theoretical curve to fit the measured data, with the integration 

in it done numerically. Thus in the determination of the mass, 

width and leptonic partial width, the systematic uncertainty due 

to the treatment of radiative correction is pushed down to 0.2%. 

(The complete formula of Eq. (8) can be put into (15) to achieve 

the accuracy of 0.1%.) Besides the improved precision, an addi­

tional advantage of this method is that it does not depend on the 
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condition r«~ as Eq.(18) does, so it can be used for what­

ever values of r and ~ One more advantage of it is that 

with the integration done numerically, one can fit rand ree 

simultaneously, if the statistics of the data is good enough, and 

sufficient number of points are scanned in the appropriate energy 

range; whereas with the Eq.(18), one can only obtain the product 

ree1tlr , as most of the previous experiments so far have done. 

CONCLUTION 

We have derived an analytical approximation for 

radiatively corrected resonant cross section presented in Eq.(8) 

which gets accuracy at the order of 0.1% for all the interested 

resonant states within the appropriate experimentally scanned 

energy range. For the experiments in which the collider beam 

energy resolution has to be taken into account, we recommend the 

use of the numerically integrated Eq. (15) as the theoretical 

curve to fit the data of the measured cross section. By this 

way, the mass, total width and leptonic partial width can be 

fitted simultaneously. The precision of the radiative correction 

treatment is at the order of 0.1%. 
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Figure captions 

Fig. 	1. The errors of approximations (11), (12), (13) and (8), 

which are shown by curve 1, 2, 3 and 4 respectively, ·(a) is 

for Z boson, (b) is for T, (c) is for JI 'P and (d) is 

for ~n. The errors are defined in Eg.(14). Here the parame­

ters used are: 

M:;r = 92.4GeV, fz = 2.6GeVi Mr = 9.4603GeV, f r = O.052MeV; 

M1/'1' = 3. 0969GEV, r 1/,/,= O. 068MeV i M.",,= 3. 7699GeV, r If" = 25MeV. 

Fig. 	2. The experimentallY observed cross section calculated by 

Eg.(18), (17) and (16), they are shown by curve 1, 2 and.3 

respectively. (a) and (b) are for r (c) and (d) are for 

J/~ • The parameters used are: 

Mr= 9.4603GeV, rr= O.052MeV, Ll = 8MeVi 

M1/f/I = 3. 0969GeV, r"'1' = O. 068MeV, .l1 = O. 88MeV. 

Fig. 	 3. The errors of approximations (18) and (17), which are 

shown by curve 1 and 2 respectively. (a) is for r , and (b) 

is forO/ll'. The errors are defined in ':Eg. (19). The parame-
I 

I· 	 •• : 

ters 	used are the same as 1n F1g. 2. 
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