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ABSTRACT 

The scalar Higgs boson is the most intriguing, still missing part of the electroweak Standard 
Model. Though its mass is a free parameter of the theory, the consistency of the effective model 
restricts its value. Recent lattice calculations estimate an upper bound for the Higgs mass around 
650GeV. This review summarizes the different techniques leading to this value and discusses some 
of the conceptual problems of the calculations. 

1. Introduction 

The minimal Standard Model of electroweak interactions describes the low and 

medium energy data exceptionally well [1]. While the Standard Model is not expected 

to be valid at arbitrary large energies, experimental data gives no information yet of 

the energy range where the model breaks down and new interactions come into play. 

In fact, with present experimental accuracy and energy range there is no signal for 

the breakdown of the Standard Model at all. Nevertheless, the Standard Model can 

be only a low energy effective theory, a theory with possibly large, but finite cutoff. 

In the infinite cut-off limit the Standard Model describes a non-interacting free field 

theory, it is "trivial" [2]. 

The success of the Standard Model is mainly due to its many perturbative 

properties. The SU(2) gauge coupling and the Yukawa couplings (with the possible 

exception of the yet unknown top-quark-scalar interaction) are small not only at the 

physical scale, but because of asymptotic freedom, at high energies too. Despite the 

perturbative success of the Standard Model, one of its main building element, the 

scalar Higgs particle is still unknown 1. It has not been detected experimentally nor 

1 There are attempts to formulate models without a scalar boson. However, all these 
models give the Standard Model as low energy effective theory with a scalar particle. 
In this review we do not consider these alternative high(er) energy theories but rather 
restrict ourselves to the low energy Standard Model and study its properties as an 
effective theory [3]. 



has its mass been predicted theoretically. The present experimental lower bound on 

the Higgs mass is around 50Ge V. 

The Higgs particle, which is related to the renormalized scalar coupling is a 

free parameter of the theory. The problem we are considering in this review is the 

following: is the Higgs mass completely arbitrary within the Standard Model or is it 

restricted in any way in a physically sensible theory? Alternatively, can the low energy 

effective Standard Model be consistent with arbitrary renormalized scalar coupling 

or is )..R restricted physically? As the scalar coupling is not asymptotically free, even 

if the renormalized coupling )..R is small, the running coupling at high energies can 

be large. The Higgs phenomena is in general non-perturbative. 

Already I-loop perturbation theory suggests that )..R cannot be arbitrary large 

[4]. Consider the scalar sector of the Standard Model and denote the bare coupling at 

the cut-off scale by )..b. Let us assume for a moment that the I-loop renormalization 

group f3 function is valid even outside the perturbative region. Then the running 

coupling at some energy E is 

1
)"(E) = , (1)

l/)..b + c In(Acut/E) 

where c = 12/81r2 for the 4-dimensional 0(4) scalar model without gauge or fermionic 

fields. At the scale of the Higgs mass 

the upper bound corresponding to infinite bare coupling )..b = 00. In a physically 

sensible theory the cut-off should be much larger then the relevant physical energy 

scales. If we require, for example, Acut/mH ~ 31r, we get )..(mH) < 81r2/121n(31r), 

which implies for the ratio of the Higgs mass and vacuum condensate Fa 

R =;: = y'4A(mH):S: 3.4 or 
(3) 

mH :5 850GeV. 

While the above example illustrates why the Higgs particle mass is bounded in 

the effective Standard Model, it should not be considered more than an illustration. 

The obvious shortcomings are 



1) 	The upper bound of the Higgs mass is a non~perturbative problem. It is related 

to how an infini tely strong bare coupling changes from the cut~off scale to 

physical energies. Using the I-loop f3 function is only a crude approximation. 

2) 	 Requiring Acut/mH ~ 31T is an arbitrary constraint. The cut~off is not a well 

defined quantity in an effective theory. A finite cut~off nevertheless has mea­

surable, physical consequences at lower energies. Instead of fixing Acut/m H 

to an arbitrary number, one has to analyze the physical consequences of a 

finite cut~off. One can require that some specific physical quantity shows for 

example less then 1%or 5 % cut-off violation effects at the scale of the Higgs 

mass. 

3) Whenever we are working with effective theories, we have to deal with renor­

malization effects. Regularization schemes can differ by finite inverse cut-off 

corrections and can show finite cut-off violations at different levels. Even if 

we require the same physical cut-off violation effects on physical amplitudes 

at the Higgs mass scale, different regularizations can predict different upper 

bound values for mHo How much the upper bound changes within (reason­

able) regularization schemes determines the universality of the upper bound 

calculations. 

The above problems were extensively studied in recent years. In the following 

we will discuss different non-perturbative calculations for the upper bound problem, 

describe a physical way to characterize cut-off effects and consider the universality 

problem within certain type of regularization schemes [5]. 

2. 	The Model; Definitions and General Considerations 

2.1. The role of the gauge fields 

In the Standard Model the interactions between the scalar sector and the gauge 

fields are weak. The SU(2) and U(l) gauge couplings are small, and the effect of the 

strongly interacting SU(3) sector is indirect, only through the quarks via the Yukawa 

coupling. For light quarks the Yukawa coupling is small, the interaction is weak. 

On the other hand for the upper bound problem we are interested in the 

strongest possible scalar coupling. We start with infinite bare coupling and study how 

the running coupling decreases with decreasing energy. It is expected that the small 



gauge couplings will not influence the running of the scalar coupling. While some 

non-perturbative effect can not be completely excluded, it is a plausible assumption 

that the upper bound problem can be studied within the scalar sector taking the 

gauge fields into account perturbatively. 

Without gauge interaction the lowest value of the renormalized coupling ,\ R = 
0, the Higgs boson can be massless. The gauge field has an important effect for the 

lower bound of the Higgs mass though. This problem has been extensively studied in 

the literature and we do not discuss it in this review [6]. 

2.2. MC study of coupled SU(2) gauge-scalar system 

Monte Carlo studies of the SU(2) gauge-scalar system support the assumption 

that the gauge field is coupled perturbatively to the scalar sector. 

Numerical simulations of the gauge-scalar model are rather difficult [7]. The 

main problem is the existence of two different mass scales, m H ~ lOmw. If the heavy 

particle is light enough in lattice units that it is not distorted by lattice artifacts 

(mHa ~ 1), the light particle is too light and distorted by finite lattice size effects on 

presently accessible lattices. Nevertheless numerical results from gauge-scalar system 

simulations are in agreement with other, better controlled calculations. The relation 

between the W mass and field expectation value follows the perturbative form. The 

predicted upper bound is about 730GeV. 

The most important result from the full gauge-scalar calculations is the strong 

indication that it is indeed sufficient to handle only the scalar part of the model 

non-perturbatively. 

2.9. Connection between the 0(4) model and physical quantities 

We need to express m wand mH in terms of the 0(4) model observables. 

The action of the continuum 0(4) model is 

(4) 

In infinite volume the spectrum contains one massive boson and 3 massless Goldstone 

particles in the broken phase. The basic observables are the vacuum expectation value 



and the propagators 

E = (0') , (¢,c'(p )¢P(-p))c ' (5) 

where we use <pQ = (0',1["1,1["2,1["3). We chose the direction of the symmetry breaking 

to be the first component. The wave function renormalization constant and the scalar 

mass is defined through the propagators 

GGlp2_0 = / 1["i(p)1["i( -p)} = bijZG(p2 + 0(p4»-1,
\ p2_0 

GO'lp2=Jl2 = (O'(p)O'( -p»)p2=Jl2 = ZO'(J-l2 + m~(J-l»-1. 
(6) 

For J-l = O( m H), m H(J-l) is close to m H and the relation can be calculated perturba­

tively. Note that the 0' propagator GO' is divergent at p2 = 0 due to the Goldstone 

contribution. The relation of the 0(4) observables to mw is 

m~ = ~g~F~ + O(g~ln(g~)), (7) 

where FG is the Goldstone decay constant 

l:' _ Z-1/2""
.l:'G- G £..J. (8) 

The derivation of the above formulae can be found in the literature and we 

refer the reader to [8]. 

!.4. The lattice regularized 0(4) model 

Most of the non-perturbative studies used the hypercubic lattice regularized 

version of the 0(4) model. The lattice action is 

S=-Yi. L cp~(cp~+Jl+cp~-Jl)+ LCP~CP~+AL(LCP~CP~-1)2-JLCP~' (9) 
n,Jl,Q n,Q n Q n 

where Yi., A > 0 are the bare hopping and quartic coupling parameters respectively. 

The external source allows the proper definition of spontaneous symmetry breaking. 

Its presence is essential in the use of chiral perturbation theory. The cut-off is pro­

portional to the inverse of the only dimensional parameter, the lattice spacing a. We 

define the cut-off on the hypercubic lattice as Acut = 1["/a. In the following we denote 

the dimensionless lattice mass by m R, mR = amH . 

The continuum normalization is obtained by rescaling 

t/l'a = ...,!2;,cpOt, ja3 = ~. (10) 
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FIGURE 1 

The sketch of the phase diagram of the lattice regularized O(4) model 

The relation between the continuum and lattice parameters are 

m2a2 = 1 - 2A _ 8, 

A 
It (11) 

Ac =:2 
It 

corresponding to the action Eq. (4). 

The phase diagram of the lattice regularized model is sketched in Fig.l. The 

small K, phase is symmetric, separated by a second order phase transition line from 

the large It broken phase. At A = 0 the critical point is Itc = 1/8 or m 2a2 = 0, the 

perturbative fixed point. The infinite cutoff limit corresponds to the second order 

phase transition line where the dimensionless lattice mass m R = 0 therefore a = O. 

Effective theories with large but finite cut-off are described by- the region around the 

phase transition line. The point (A, It) in the phase space where the dimensionless 

lattice mass is m R corresponds to an effective theory with 

7r mH (Acut I"'o.J - =7r-. 12) 
a mR 

Triviality in this language means that no other fixed point but the perturbative 

Gaussian fixed point at A = 0, K, = 1/8 exists. Every point of the second order 

phase transition surface describes the same infinite cut-off theory with AR = O. 



Close to the phase transition line physical observables behave in a universal 

way. If this scaling behavior is governed by the Gaussian fixed point, the critical 

exponents can be calculated perturbatively. The scaling formulae for the O(n) model 

up to two loop level are 

E/a I'V rl/211nlrlln!s 
(13) 

mR I'V rl/211nlrll-2(~t2S) 

where r = K - Kc. As these scaling laws are derived at the perturbative fixed point, 

they are obviously valid for small A. If the theory is trivial, the same scaling formulae 

should be valid everywhere around the phase transition surface including A = 00. 

Scaling behavior can be used to check and understand triviality. 

In the following we will discuss a few of the different methods recently used 

to study the broken phase of the scalar 0(4) model. We consider only the Ab = 00 

case and summarize the results in an "envelope plot" showing the ratio mH / Fa as 

the function of 1/mR = Acut / 7rmH . The symmetric phase of the model has been 

also extensively studied [9,10]. We do not discuss those calculations here unless 

t~ey are directly related to the method used in the broken phase. There are several 

calculations investigating the I-component 4>4 model with similar techniques. The 

reader is referred to the original literature [10,11]. 

3. Non-perturbative Studies of the 0(4) Model; Analytical Calculations 

3.1. Approximate non-perturbative renormalization group equation 

The first non-perturbative analytical estimate for the upper bound of the Higgs 

mass was obtained by solving the exact renormalization group equations in the local 

potential approximation [12]. An arbitrary O(n) potential V(L~=l 4>~) is allowed 

but no derivative couplings are considered. The change in the action after a renor­

malization group transformation Acut -+ e-t Acut is projected back to the subspace 

without derivative couplings 

5 = JcFx [4 t(o!J¢0I)2 +V(t ¢~)] A -+ e-tA 
cr=l cr=l cut cut 

(14) 

---> 5(t) = JcFx [4 E(o!J¢0I)2 + V(E t/>~, t)] . 



No further approximation is necessary to derive the RG equations for the potential 

V(L:~=l 4>~, t). The functi~n 

I(x/n 1/ 2,t) = n-l/2~V(x,t) (15)ax 

satisfies the differential equation 

81 Ad[1 I" n-lxI'-I] ( d) I ( d) (16)at = 2" n 1 + I' + -n-x2+ xl + 1 - 2' xl + 1 + 2' I, 

where prime denotes a/ax, Ad is a constant (1/811"2 for d=4) and n is the number of 

real scalar fields (=4). 

The non-linear partial differential equation (16) can be solved numerically. 

From the renormalization group flow the phase diagram, fixed point structure and the 

critical exponents can be extracted [13]. The method predicts correctly the different 

fixed points in 2 < d < 4 and gives reasonable critical exponents in d = 3 for the 

ferromagnetic fixed point. In 4 dimensions it predicts the existence of only one fixed 

point, the Gaussian one with correct critical exponents. 

For the upper bound envelope calculation the RG equation (16) is used to 

run the system from the strongly coupled region to the vicinity of the Gaussian fixed 

point where perturbation theory can be used to connect mH and Fa. The envelope 

obtained with this method is shown in Fig.2. 

The local potential method cannot be improved systematically and it is not 

possible to estimate the error caused by the approximation. Keeping only one deriva­

tive interaction term forces the wave function renormalization constants Za and ZtT 

to be 1. Other numerical and analytical methods predict that in the 4 dimensional 

O(4) model both Za and ZtT are close to 1, therefore it is not surprising that the 

envelope and upper bound obtained in the local potential approximation agrees well 

with those calculations. 

3.2. Strong coupling expan8ion combined with perturbative R G 

This (semi )-analytic technique covers regions with large correlation length that 

are outside the reach of Me calculations. Together with numerical simulations it gives 

a complete, controlled description of the model. 
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FIGURE 2 

The ratio mH / FG as the function of the scale change Acut /1rmH for 
A = 00 as predicted by the approximate non-perturbative RG method. 

The analysis is performed at a fixed, arbitrary A. Hypercubic lattice regular­

ization is considered. The method combines strong coupling (small K',) expansion with 

weak coupling (perturbative) RG equations (Fig.I.). It has been applied first to the 

I-component model and later has been extended to general O(n) theories [10,14]. 

First consider the symmetric phase. At K', = 0 the model is trivially solvable. 

For small K', a high order K', series (high temperature expansion) is calculated for the 

relevant quantities mR, AR, ZG. For example, for mR one has 

00 

1 '" (II)() IImR = .JK, L...J mR A K', , (17) 
11=0 

where the coefficients m'R have been calculated up to v = 14 for the O(n) model. 

The expansion can be controlled from m R = 00 up to m R ~ 0.5 corresponding to 

the region from K', =0 to approximately K', $ 0.95K',c. 



'.. 

Around the critical region weak coupling perturbative renormalization group 

equations are used. The dependence of the renormalized coupling on the cut-off is 

described by the Callan-Symanzik J3 function 

(18) 

or in lattice units 

mR(aaAR) = J3(mR,AR)' (19)
mR 

If we know the f3 function, the above equation can be integrated from the region 

K ~ 0.95Kc (mR ~ 0.5) up to the critical line where mR = O. The initial values for 

m R and AR are obtained from the high temperature series. 

The Callan-Symanzik J3 function is known up to 3 loops. Assuming that 

the 3-100p perturbative formula is sufficient to describe the region from m R = 0 to 

m R ~ 0.5, the combination of the two procedures will cover the whole symmetric 

phase. 

Around the critical region where mR -+ 0 the renormalized coupling AR goes 

to zero as well. The dependence of m R on the coupling is given by the formula 

(20) 

This functional dependence is valid in both the symmetric and broken phase though 

with different Cs and Cb coefficients. The relation between Cs and Cb can be calcu­

lated. If we define the renormalized coupling in the broken phase as 

(21) 

we get 

(22) 

The constant Cs can be obtained by comparing the integrated Eq (19) and Eq (20). 

Using Cb the RG equation is used to predict m R within the scaling region in the 

broken phase. Assuming the 3-100p renormalization group equation covers the region 

mR :5 0.5 in the broken phase too, the envelope of Fig.3. is obtained for the 0(4) 
model. 
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FIGURE 3 

The ratio mH / F G as the function of the scale change Acut / 1rmH for 
,\ = 00 as predicted by the method of Ref. [10,14]. 

The errors of this analysis come from the truncation of the small K, expansion, 

the truncation of the perturbative expansion and the propagation of those errors 

during the subsequent steps of the calculation. 

4. Non-perturbative Studies of the 0(4) Model; Monte-Carlo calculations 

4.1. Direct measurement.!l 

The first numerical Me calculation for the upper bound problem dates back to 

1985 [15]. Since then several extensive numerical simulations for the 0(4) model on 

hypercubic lattices have been published. The methods used were occasionally quite 

different but the final results are in agreement [16-19]. 

For the upper bound problem one does not have to work at very large correla­

tion length. It is sufficient to make the cut-off only a few times larger than the scalar 



.. 

mass, which makes numerical simulations feasible. That, and the relative simplicity 

of the 0(4) model explain that these calculations are well controlled statistically and 

systematically as well. 

On a finite lattice there is no spontaneous symmetry breaking. While in the 

broken phase on any given configuration the spins are ordered, the direction of the 

symmetry breaking rotates around in the 0(4) space due to tunneling between the 

infinite degenerate ground states. On a finite lattice the spontaneous magnetization 

averages to zero. The infinite volume limit can be mimiced by rotating the orientation 

of the spontaneous symmetry breaking to a given direction, for example the first, in 

every configuration. If we define 

(23) 

the u field operator on any given configuration is approximated as 

(24) 

The vacuum expectation value is E = (o:), while (uoO:n) gives the longitudinal propa­

gator and mH. The transversal components are associated with the Goldstone fields. 

This rotation technique introduces systematical errors in finite volume. The differ­

ence between E and the measured value of the projection (MQ4>~/ IM I) is of order 
1 

V-2' a.nd thus goes to zero as the volume goes to infinity. The volume dependence 

of the projected correlation function is less understood though [20-22]. 

We will discuss results at A= 00 only. 

The field expectation value E and scalar mass m R obtained using the rotation 

technique are plotted in Fig.4. The one loop scaling relation is satisfied within errors 

up to mR '" 0.8. This supports not only the triviality of the scalar model but shows 

that there is a relatively wide scaling region where physical quantities are universal. 

Finally we need the Goldstone boson wave function renormalization constant. 

To calculate ZG we have to investigate the Goldstone propagator. The Goldtsone 

bosons are massless in the infinite volume limit and light though massive in a fi­

nite box. We cannot avoid the problem of light/massless particles associated with 

the spontaneous symmetry breaking of a continuous symmetry any longer. Chiral 
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FIGURE 4 

The field expectation value and the scalar mass at A = 00. The solid 
curves correspond to the 1-loop scaling fonnulae. 

perturbation theory offers a well controlled way to describe the effects of Goldstone 

bosons in finite volume. Its strength is that instead of trying to avoid finite volume 

effects associated with the light Goldstone particles, it uses the strong dependence 

on finite volume and finite external source to extract infinite volume, zero external 

source information. Chiral perturbation theory helps not only in controlling finite 

size effects but it provides a theoretically correct definition for E and ZG. 

4.2. Finite size effects and chiral perturbation theory 

The basic physical assumption behind chiral perturbation theory is easy to 



formulate. The low energy behavior of a system with spontaneously broken continuous 

symmetry is determined by the massless (in finite volume, light) Goldstone particles 

and their symmetry properties. The details of the original system are unimportant 

as long as the massive particles are heavy compared to the Goldstone bosons and the 

volume is large enough so the finite size effects associated with the massive particles 

are negligible. 

The low energy behavior can be described by an effective Lagrangean with 

the same symmetry properties as the original system. The couplings of this effective 

model depend on the low energy infinite volume physical constants of the original 

theory. This Lagrangean has to be simple enough to allow a systematic perturbative 

expansion of finite volume/finite external field quantities. This way chiral pertur­

bation theory connects the low energy infinite volume constants to the numerically 

easier to measure finite volume/finite field quantities. 

This theory was first applied to the finite volume, finite temperature depen­

dence of QCD with light quarks [23]. The application for the 0(4) problem proved to 

be an exceptionally good testing ground for the applicability and accuracy of chiral 

perturbation theory [18]. In recent years the details of chiral perturbation theory up 

to 2 loop level have been worked out for a variety of statistical' mechanics models in 

addition to the applications for QCD and the Higgs upper bound problem [20,22]. 

Here we summarize only the most basic formulae as applied to the 0(4) model. 

In the following we concentrate on the finite volume effects related to the 

Goldstone bosons and assume that the finite size effects caused by the massive particle 

are negligible, mR « I/L. Consider the model with a constant, O(4)-symmetry 

breaking external source j (Eq. (4)). For small values of j, the qualitative properties 

of the system at large volume are controlled by the parameter EjV. If this parameter 

is small then the expectation value of the field is small and the correlation functions 

are approximately O(4)-symmetric. Holding j fixed and letting the volume grow, 

we eventually reach the region EjV » 1 where the expectation value of the field is 

approximately the same as at infinite volume. If the volume is large and the source 

is small, the dependence of the expectation values and correlation functions on V 

and on j are unambiguously determined by the symmetry properties of the model 

in terms of the two constants E and Za (or Fa). In the following, we show that 

numerical data very clearly exhibit the predicted volume dependence. This way the 



extrapolation to V = 00, j = 0 can be performed. 

At infinite volume, the scale of the 0(4) symmetric system is set by the mass 

of the Higgs particle. In the presence of a small symmetry breaking term j, the 

model contains a second, independent scale, which may be identified by the mass of 

the Goldstone bosons, mG' At leading order in j 

2 ZGj
mG=--' (25)

E 

The symmetry properties of the model are controlled by the mass of the Goldstone 

bosons if mG « mH and the box is large compared to the Compton wave length 

mIi1. For a hypercube of size L4 that means 

m 2 E2 
j« H L »m-1 

R · (26)
ZG 

If the conditions (26) are met, the expectation values and correlation functions 

can systematically be expanded in inverse powers of L. The detailed properties of 

the expansion depend on the ratio of L to the Compton wavelength of the Goldstone 

bosons [18,20]. In the following we give formulas corresponding to small external 

source, i.e. for the region 

mGL ::; 1. (27) 

The expectation value of the field is given by a series in 1/L2, with coefficients 

that are non-trivial functions of the product j L4. The first two terms in this series 

may be written in the form 

jL4(<p~) = U 
27](u)(1 + 0(L-4», 

u = EjL4(1 +~), (28)FGL 

_.!.12(U)( )
7] U - U II(U)' 

where II(u) and 12(u) are the standard Bessel functions of imaginary argument. The 

value of r depends on the shape of the box. For a symmetric hypercube, r = 0.2107. 

For illustration Fig.5. shows (<pO) as a function of the external source j for 

several values of It on 84, 104 and 124 lattices [18]. The curves at any given It corre­

spond to a one parameter fit which determines E in the infinite volume, zero external 
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FIGURE 5 

The dependence of the field expectation value on the external source 
on different size lattices. 

field limit. The values for ~ in all cases are in complete agreement with the field 

expectation values obtained using the rotation technique. 

The Goldstone wave function renormalization constant ZG is extracted from 
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The wave function renonnalization constant ZG as a function of K.. 


t~e zero spatial momentum propagator. 

1 "" /. k) 'k (29)L6 L...J \ <Pw,o<Pm,t = GG(t)8
S 

• 

n,m 

Chiral perturbation theory gives the expansion of GG in powers of IIL2 at fixed tIL 
and at fixed j L4 

(30) 


where the coefficient bG is given by 

E2 
bG = -,-(I-7](u)). (31)

FG 
The function h(t) is the spatial integral over the propagator associated with the 

nonzero modes. On the interval 0 < t < L, it is given by 

1 t 1 2 1 
h(t) = 2L2 {( L - 2') - 12}' (32) 

Numerical data both at finite and zero external field follows rather precisely 

the predicted parabolic time dependence. The value obtained for ZG at several K 

values are shown in Fig.6. It is interesting to note that ZG is finite at the critical 

point Kc = O,304( 1), in fact it is very close to one in the whole investigated region. 
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Results on the upper bound on hypercubic lattice. The data points 
are from [16-18], the upper curve is the result of the approximate RG 
work, the lower curve is from Ref [14]. 

4.9. Numerical results on the upper bound 

Let us collect now the different results on the envelope of mH / Fa and deter­

mine the upper bound for mH (Fig. 7). The data points from the two large scale 

collaborations are consistent with each other [16-18]. The analytic results and the 

approximate RG calculation agrees well with the Me data too. That implies that 

both the statistical and numerical errors are under control in these works. 

The scaling curves for (0') and mR indicates that scaling holds up to m Ha ::::= 

0.8. To be on the safe side we will require l/mHa = Acut/7rmH > 3 which gives the 

upper bound 
mH 
FG S 2.6(1), 

(33) 
mH S 8.2(3)mW ::::= 640(25)GeV. 



5. Finite cut-off effects on physical amplitudes 

The cut-off in an effective theory does not have a precise definition. Physically 

it signals the energy scale where the theory loses its meaning or where new interactions 

from some underlying high energy theory become important. Defining the cut-off in 

a lattice model as 7r times the inverse lattice spacing is arbitrary; it would be equally 

correct to set the cut-off twice as large or three times smaller. In a lattice model with 

not only nearest neighbor but extended interaction terms it is even less obvious how 

to define the cut-off. It is equally arbitrary to read off the upper bound for the scalar 

particle in an 0(4) scalar model at rnH / Acut = 37r and not at rnH / Acut = 10 or 3. 

We need a physically controlled way to define the cut-off of an effective theory to fix 

these arbitrariness. 

The finite cut-off in an effective theory has (in principle) calculable effects on 

physical quantities at lower energies. To make more precise meaning to the Higgs 

mass upper bound calculations, we should specify the finite cut-off violation effects 

on definite physical observables instead of fixing the ratio rn H / Acut to some arbitrary 

number. As finite cut-off effects depend on the regularization scheme, this will make 

it possible to compare different actions, regularizations as well. 

In Ref[24] two physically relevant quantities were suggested: the Goldstone­

Goldstone scattering cross section at 90° angle at various center of mass energies and 

the scalar particle width. The finite cut-off effects on these quantities were estimated 

in the perturbative, weakly coupled region for two regularization schemes, the F4 and 

hypercubic nearest neighbor lattice regularizations. 

The F4 lattice can be obtained from the hypercubic lattice by removing all 

sites n = (nt, n2, na, n4) with L:J' nJ' = odd. The F4 lattice has a higher rotational 

symmetry than the hypercubic lattice: in 4 dimensions the lattice propagator has 

no O( k4) Lorentz invariance breaking term. One would expect less violation of the 

O(4) symmetry at low momentum and better scaling properties on the F4 than on 

the hypercubic lattice. 

The details of lattice perturbation theory on F4 lattice and the quite involved 

I-loop calculation of the Goldstone scattering amplitude and Higgs decay width both 

on F4 and hypercubic lattices are discussed in Ref[24,2S]. The result on the Goldstone 

scattering is summarized in Fig.S. (Fig.3. of [24]). From the plot one can read off 
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FIGURE 8 

Cut-off effect on the cross sections. The lines correspond to c.m. 
energies W with W/2mR = 0.5,1,1.5,2. The dotted line is the leading 
tenn in mR' The two horizontal lines delimit regions where the cut-off 
effect is smaller than 10% and 5% respectively. (a) On a hypercubic 
lattice; (b) on an F4 lattice. 

mHIAcut corresponding to given cut-off effects with given value of the center of mass 

energy W. The finite cut-off violation is expressed through the ratio of the lattice 

regularized finite cut-off cross section and the continuum infinite cut-off cross section. 

For example, a 5% cut-off violation with W12mR = 1.0 corresponds to mHIFG :::::: 1. 

on F4 and mHIFG :::::: 0.7 on hypercubic lattice. One can indeed see that on the 

F4 lattice the same finite cut-off effects allow a larger ratio of mH / Acut than on the 

hypercubic lattice, the F4 lattice seems to "behave better". (But see the discussion 

about the definition of Acut in the next chapter.) 

The cut-off effects on the width of the scalar particle can be expressed in terms 

of its mass 

(34) 

where 
He 11 4 6 

g = 1920mR + O(mR)' 
(35) 

gF4 = _1_m4 + O(m6 )
240 R R' 

From the above formula we obtain that one gets the same cut-off effects on the width 



of the scalar particle on the F4 and hypercubic lattices if the masses are related as 

m F4 ....... llmHC (36)
R ........ R' 


In principle similar calculations can be carried out for other regularization schemes 

making it possible to compare the cut-off effects using well defined physical principles. 

The calculation is analytically complex and there is no published results other than 

[24]. 

One has to note in addition, that the calculation described above is one-loop 

perturbative. It should be valid as long as the upper bound corresponds to a weakly 

coupled system, what is the case for both the F4 and hypercubic nearest neighbor 

actions. However, if one comes up with a regularization scheme predicting a bound 

outside the perturbative region, some other, non-perturbative method has to be used 

to compare the scaling violation effects of the new regularization scheme and other 

schemes. 

The finite cut-off effects on the Goldstone-Goldstone scattering or on the width 

of the Higgs particle provides a physically well defined way to compare different regu­

larization schemes. The drawback of this approach is the involved analytic calculation 

required, and more importantly, that it works only in the perturbative, weakly cou­

pled regime. 

A less physical but perhaps more practical way to compare different schemes 

is to match their cut-off and compare their scaling behavior. At large cut-off all 

regularization schemes should show scaling behavior. That means not only a universal 

functional scaling form for the scalar mass, vacuum expectation value, etc. but the 

same universal value for the ratio m H / FG at the same m H / Acut for different schemes 

with infinite bare quartic coupling. Acut is not a well defined physical quantity, 

but the cut-off of different regularization schemes can be related by using the above 

universality. The cut-off scales of different regularizations should be matched in such a 

way that in the scaling region the ratios m H / FG agree. One should see deviation from 

matching when scaling breaks down for at least one of the regularization schemes. 

One can set a limit on the scaling violation and compare where different schemes 

reach that limit. Regularization schemes with "poor" scaling will deviate from the 

universal curve of mH / FG at a smaller mH / Acut value while "good" regularization 

schemes will follow the scaling curve to large ( ....... 0(1)) mH/Acut values. As mH/FG 



is monotonically increasing as the function of m H / Acut, the former, "poor" scaling 

case will predict a lower upper bound for m H than the latter, "good" scaling case. 

It might be possible to construct a regularization scheme which does not violate the 

set scaling behavior even at m H Acut. It is a different question whether we canf"J 

be comfortable with the situation where the physical mass is about the same as the 

cut-off scale where, in a full theory, one expects new interactions to play important 

roles. 

On a hypercubic lattice both m H and the vacuum expectation value show 

scaling consistent within statistical errors with the 2-100p perturbative formulae up 

to mH/Acut 0.8/7r. This indicates that the region mH/Acut 1/31r is well in f"J f"J 

the scaling region and reading off the upper bound there is rather conservative. That 

means that all regularization schemes showing scaling at least up to mH / Acut f"J 1/31r 

should give the same upper bound mH / FG ~ 2.6(1) when the cut-off 31r times larger 

than the scalar mass assuming the same cut-off is used for the different schemes. 

6. Universality 

There is no systematic study yet of the universality of the upper bound problem 

in the 0(4) model though several papers dealt with the problem [26-28]. There is a 

detailed calculation comparing the hypercubic and F4 lattice nearest neighbor action 

regularization [27]. It uses the physical criteria of fixed (3% and 0.3%) cut-off violation 

in the Goldstone-Goldstone scattering amplitude to compare the two schemes. Here 

we just summarize the result, for the details the reader is referred to the original 

publ~cation. 

It turns out that requiring 3% or 0.3% cut-off effects on the scattering ampli­

tude gives a bound for the scalar mass corresponding to a renormalized coupling still 

in the perturbative regime even for the F4 lattice, therefore the perturbative calcu­

lation of Ref[24] as discussed in the previous chapter can be applied. The results for 

the upper bound corresponding to 3% cut-off effects on the scattering amplitude are 

mH/FG < 590(60) forF4, 
(37) 

mH/FG < 640(65) forHC, 

and for 0.3% cut-off effects 

mH/FG < 530(60) forF4, 
(38) 

mH/FG < 510(50) forHC. 



It is somewhat surprising that the F4 lattice bounds are not higher than the hypercu­

bic ones as expected from the better scaling behavior of the F4 scheme. Note however 

that within errors the ratio values are the same not only for the different regulariza­

tions but even for the two different scaling violation limits. One can conclude that 

with the present numerical accuracy it is not possible to distinguish the cut-off effects 

on an F4 and hypercubic lattices with nearest neighbor interactions if these effects 

are required to be less than 3%. Neither it is possible to distinguish, again within 

numerical accuracy less than 3% cut-off effects of a given regularization. 

A more systematic study of the universality was recently presented in Ref[28]. 

There the analytically solvable spherical O(n ~ 00) model is considered on F4lattice 

with actions containing nearest neighbor and next to nearest neighbor terms. In the 

2 dimensional parameter space the action giving the largest ratio m H / FG at fixed 

value of m H / Acut was located. The ratio at this point with m H7r / Acut = 0.5 is about 

30% higher than that of the nearest neighbor action. The authors argue that similar 

change can be expected in the O( 4) model as well. 

While it is well possible to obtain a 30% variation in the upper bound by 

changing the regularization or action, a world of caution is in order here. In Ref[28] 

the different actions were not compared by using the finite cut-off effects on the 

Goldstone scattering amplitude or similar physical criteria. The 30% change was 

obtained by comparing the ratios mH / FG at the same value of m H / Acut for the 

different actions. Here the cut-off is defined as Acut = 7r / a, where a is the nearest 

neighbor lattice spacing. It is not clear that with a large next to nearest neighbor 

interaction term the inverse lattice spacing has the same physical meaning as with 

the original nearest neighbor action. In this case it is essential to use a well defined 

physical criteria to compare the different actions. If one expects an upper bound 

outside the perturbative region, perturbative calculation of the finite cut-off violation 

effects on the Goldstone scattering like in Ref[24] will not be sufficient to compare the 

different actions. Matching their scale and compare scaling behavior is one possibility 

in addition to a non-perturbative determination of the cut-off violation effects of the 

Goldstone scattering or other physical quantity. 

7. Summary 

The Standard Model of electroweak interactions is necessarily an effective the­

ory with a finite cut-off. In an effective theory the Higgs mass, which is a free param­



eter of the model is bounded from above by the requirement that all the low energy 

particles of the cut-off model should be (much) lighter than the cut-off. The upper 

bound problem is non-perturbative as it corresponds to infinite bare scalar coupling 

at the cut-off scale. 

In recent years several analytical and numerical studies considered the upper 

bound problem. The results on nearest neighbor hypercubic lattices are all consistent. 

The numerical calculations are under control especially those using chiral perturbation 

theory. The upper bound value on a hypercubic lattice is 

mH ~ 640(25)GeV (39) 

when mH ~ Acut/3rr or the Goldstone scattering amplitude has less then 3% cut-off 

violation. 

The upper bound of the scalar particle is regularization dependent. There is 

no systematic study considering a whole range of different actions yet. The univer­

sality problem has been investigated in depth only for the nearest neighbor F4 and 

hypercubic lattices in the 0(4) model. In these cases the upper boun.ds turn out to 

be the same on both lattices within numerical accuracy. 

What is the meaning of the Higgs upper bound? First of all it is a bound 

within the Weinberg-Salam model. It says that the effective Standard Model with 

finite cut-off cannot describe a Higgs particle heavier than 640GeV if we require that 

the finite cut-off influence on the Goldstone scattering amplitude is no more than 3%. 

If the Higgs is heavy, this calculation predicts that the Standard Model model breaks 

down at a relatively low energy, new interactions have to show up in the few TeV 

region. 
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