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The generators of braid group BN are 6., 6.- 1 and b1 , bi I, 

6.=b1b,···bH _ I , (8) 

such tbat all elements are erpressed by these rour generators, 

II.. = 6...- 11116.-..+1 • (9) 

1.4 Yang-Baxter Equation 

In an N-body quantum system with particle labelled by i = 1,2,·, ',N, R("\) is an operator defined 

on every pair of particles, say, Rtj is defined on the i-th and i-th particles, and·..\ E C is called 

spectral parameter. Tbe following equation about Rti(..\) is called Yang-Baxter equation, 

Rl:1,).)R1i). +P)Rlip) = R2ip)Rl:/.). +p)R2i..\) . (10) 

Such equations exist for every two particles. -The simplest solution of Yang-Baxter equation was 

found by C. N. Yang[2}. There is another form of Yang-Baxter equation, different from (10), 

RI:/.l)R2il + p)Rt:/.p) =RI:/.p)R2il +p)RI:/.l) , (ll) 

where 

RI, = <Tn 0 IR 12 , RI3 = 0"13 0 R13 , R23 0"23 0 R23 • (12) 

Here O"ii is an element rrom permutation group. The action of O";i is interchanging particle indices i 
and i, and 0" 0 Rii = R-(i) -eil 00". 

From a constant solution Rof Yang-Baxter equation 

R12R23Rt2 = R23R12R23 , (13) 

we have the monodromy construction of braid group representation (usually reducible), 

b.. = k....+l • (14) 

In this paper, however, we use another definition of braid group relations, as follows, 

Bi;B"" = B,.,B.;, (i,i 1: k,l) , 
(15) 

BiiBJJ:Bi; =B;"BiiBjlt I 

and it is apparent that bIJ = Ba..+l. 

2 Hopping-Symmetric Normal Braid Group Representations 

We give the representations of braid group realized through fermi creation and annihilation operators 

cf (with i = 1,2,···. N runs over all rermions), and clasSify them according to their character 

equations. 

The general solution B'i to braid group relation (15) is 

Bii =-1+Ni+Nj+%ocTcj+Ztcict+%2NiNj, (16) 

where Nt = c;ei and ZOo ZI and %, are arbitrary complex numbers. We will limit ourselves· to 

hopping-symmetric solutions, i.e., 

Hij = Bii , (17) 

or equivalently %1 = -%0 in this section. This consideration is from the fad that the hopping of 

fermions to left and right should have the same ~ossibility. 
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The general solution in equation (16) can be parameterized (baxterized[13)) by the trigonometric 

baxterization theories (and we will closely follow the theory developed in [14, 15, 161, because the 

authors are familiar to the work of the Nankai-Lanzhou gToup), The baxterization depends on 

the character equations of these braid group representations. Therefore it is useful to classify the 

solutions according to their numbers of eigenvalues or their character equations. 

2.1 The Case of Two Eigenvalues 

The solution should satisfy the character equation 

Bli +CIBij +Co =0 , (18) 

and we have three solutions. 

2.1.1 Permutator Solution: %1 =-Zo =1 , %2 =0 
,~ 

so that 

(Bii - l)(B;1 + 1) = 0 . (19) 

explicitly 

(20) 

This solution will be remembered as Pi;, whiCh is t.he permutator (or pure hopping hamiltonian) of 

this system. It can be verified that . 

Pi; = Pi" Pi}:= 1 , (21)
Pii PjJ: = PI"Pi): = PiJ:Pij , 

and 
PiiPi/ = Pi/Pi; " (i,i 1: k,l) 

(22)
PiJP;I:Pij = Pi" . 

An important property of Pi; is that it inierchanges the fermi operators at sites i and i: 
Pijet Pi! = ej . (23) , 

2.1.2 %1 = -%0 = ±1 , Z2 =-2 

Explicitly 

Bii =-I+Ni+Nj±(-eicj+cien-2NiNj, (24) 

which are nonlinear solutions. These two solutions are special cases of a more general solution with 

three eigenvalues, as can be seen in the following, and so will not be discused in detail. 

2.2 The Case of Three Eigenvalues 

The solutions that satisfy the following character equation have three eigenvalues 

B~ +c,Bfi +GlBij +Go = 0 . (25) 

We have three of such solutions when 

GI ::::: Co =-%~ , G, =1 • (26) 



and 

z, = -2 or 1 ± Zo . (27) 

That is, we may have a rree parameter zoo The eigenvalues. denoted Ai (i =1.2,3). are -1, zo. -zo 
respectively. The character equation (25) may be rewritten as 

(Bij + 1)(B;/ - zo)(B;; + zo) = 0 . (28) 

When Z2 -2 and Zo = ±1, the above solution identifies with (24). 

2.3 The Case of Four Eigenvalues 

The solution to the character equation 

B~ +C3B~ +C,B~ +CtB,; +Co = 0 (29) 

gives 

Co = z~(l +z,), C1 = z~z,. C, = -z~ :.. 1 - Z2 - 1, C3 = -z, . (30) 

The four eigenvalues are -1,1 + z" ±zo. This is a general solution where there are two free param

eters, zo, z,. Note that here 2:, t:- 0, -2 or the character equation (29) reduces to (28) or (19). 

3 Trigonometric Baxterization 

First, we give a brief review of the parameterization theory of the braid group representations to get 

solutions of the Yang-Baxter equation with spectral parameter: 

RI2(z)R23(xy)R12(JI) = R23(y)R12(zy)R,3(Z) , (31) 

where Rn(:) = R(z) ® 1 and R'3(Z) = 1 ® R(x). 

Given that a braid group representations with m distinct eigenvalues Ai with i = 1,2", ',"m and 

obeys a charader equation (reduction relation) 

II (B - A,) =0, (32) 
;=1 

then the braid group representation can be expanded via the projectors 

II (B-AJ) 
Pi (33)= (\'-A') ' 

;;1.{ Ai , 

i.e., 
1ft 

B=L,\;Pi. (34) 
;-=1 


T~e trigonometric baxterization gives the solution of Yang-Baxter equation as follows 

1ft 

R(x) = 'E Ai(X)P. , (35) 
1=1 

where A.(x) are m runctions to be determined, upon the requirement called standard initial condition 

R(l) IX 1 . (36) 
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Explicitly 

i-I (
Ai(z) =IT 1+ z-:r-L

l) ...II-1 ( 
z + '..-l-I) , (31) 

j::::l Aj+t j=i Ai+t 

note that Ii with i =1,2, ... ,,,,,' take distinct values in set {AI. AI.'··, Am}. 

It is easy to see that when z = 1 

m-l ( l)
AI(I) = A,(l) =... =Am(l) =II 1+..,...L , (38) 

i-=l Ai+t 

and 

R(1) =A1(1) ·1 . (39) 

Therefore when there is a pair of eigenvalues in the set {A 1, AI •.•• , Am}, say, At and 'At that have 

opposite values (Le., At = -A.), then it is possible that (35) and (31) gives a solution of Yang-Baxter 

equation (31) but R(I) = 0, iIwe happen to have l,. =At and l"+t =>'. and so i,. +l.+t = O. We 
call such results of baxterization reduced. Of course we can rescale the A;(2:) function (by a factor 

0'£ (z _1)-1) to prevent the zero result of R(l), but doing so does not necessarily recover the initial 

condition. See the specific examples of three eigenvalues, given in next section in which we give in 

detail the process of baxterization of all the above braid group solutions. 

3.1 The Case with Two Eigenvalues 

We treat the permutator solution only, in that other two solutions will be special cases of the so,lution 

with three eigenvalues. The baxterization to the permutator solution is rational, and the result reads 

R.j(%) % + Pij • (40) 

3.2 The Case with Three Eigenvalues 

The undetermined functions are 

Al(:) = ~z+~) (z+l;) 

A,(:) 1+ z hA, z + !1) (41)


'\3 

A,(.) = 1+ 'l!~~1+.~) 
where Ai with (i =1,2,3) take distinct values in the set {-I, Zo, -xo}. 

3.2.1 Xl = -zo\ :2 = -2 

Solutio~s are found when Al = -1, A, =Zo and A3 = -ro, or ~I = -1, A, = -Zo and ~3 = %0. 
respectively 

R.i(Z) == (ct ci - eien (z - zo) + (-2N.Nj + Ni + Ni - 1) (no - 1) , (42) 

and 

R.j(Z) =(etci cien (x + %0) + (-2NfNi + N. + Ni) (no + 1) (xxo + 1) . (43) 

It should be Doted that the ba.xterizations of these two solutions are red.ueed, in that they do not 

satisfy the initial condition (we have rescaled the solution to prevent zero result). This situation 
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often happellll in trigonometric baxterization. when there are a pair of eigenvalues of braid group 

solution with opposite values. 

Another solution which satisfies initial condition is found when ~t Xo. ~2 = -1 and ~3 = -xo. 
namely 

R.i(X) = (ctcj - cicn 2:0 (1 - x') +(-2HiHJ +N; + NJ)(l- x)(u~ + 1) + (x3x~ - 1) , (44) 

and in the following. we will refer it the XXZ-solution of braid group. this solution. as can be seen in 

the fonowing, gives rise to an integrable fermion model which is turned into the spin-t XXZ model, 

under lordan-Wigner transformation. 

3.2.2 :1 = -2:0, X2 = -1 + %0 

We have DOW two reduced results 

• When Al = -1. ~2 = :0 and ~3 = -2:0. we have solution 

R.j(x) = {ctcj ci cn (2: - ~o) + (Ni + HI - l)(uo - 1) + NiNj(1 :0)(% + 1). (45) 

• 	 When At =-1. ~2 = -Xo and ~3 = %0. we have 

RtJ(2:) = {ctcj - ci cn (2: +xo) + (H; +Hj - l)(x~o + 1) + NINj (1 - 2:o)(x 1). (46) 

3\2.3 %t = -2:0, X2 -1- 2:0 

We have now two reduced results 

• When ~1 = -I, ~2 2:0 and ~3 =-%0, we have solution. 

R.j(%) = (ctcj - cicn (% - %0)+ (N; +Hi - l)(uo ~ 1) + Ni NJ(1 t %0)(1 %l', (47) 

It is worth noticing that this solution has another simple initial value, namely 

Rtj = -Pij , 	 (48) 

and so 

Roj ex 1 . 	 (49) 

Actually 

Roj(2:) = (%0 - %) + (N. + Hi - NiN; - 1)(% - 1)(xo + 1) . (50) 

• When ~1 = -I, ~2 -Xo and ~3 == %0, we have 

RtJ(%) = (ctcj -cicn (2: +%0) +(N; +Hj 1)(%%0 + 1) - NiNj(1 + %0)(2: + 1) (51) 

The solution with rour eigenvalues resists the trigonometric baxterization. We get only some 

reduced results, and we will give their asymmetric counterparts in the next section. The authors 

believe the parameterized form of this solution with standard initial condition should involve elliptic 
runction. 
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4 	 Hopping-Asymmetric Normal Solutions and Baxterization 

In this section, we will extend the above obtained solutions by eliminating the artificial constraint 

of hopping-symmetry (17). When 2:0 -%1 the results in th~ following will reproduce the results in 

the previous sections. We separa:te the discussions into two subsectiollll regarding to the numbers of 
eigenvalues. ' 

4.1 The Case of Three Eigenvalues 

The set of eigenvalues is {-I, J-%02:1o -J-2:1XO}, and there are two free parameters in the solution 

of braid grouP. namely 

2:, =-2 or %2 =':"1 ± J-2:12:0 . (52) 

• %2 = -2 and ~1 =. J-X12:0. ~2 = -1 and ~3 = -v'-%1XO then the result of baxterizati.on 

reads 

Rtj(%) (xoctcj + xlcicn (1- x2) 


(53)
+ (Ni + NJ - 2N;Nj)(: -1)(X02:12: -1) - (1 + x2Xl:0) , 

which satisfies the initial condition (49). When 2:1 -xo we arrive at the so'lution in (44). 
And we will refer it as the ~xtended XXz.-solution of braid group. This solution is important in 

this work, because we will analyse in detail its corresponding integrable model by the method 

or quantum inverse scattering method in a later section. Above baxterization allow a glJUge 

transformation, e.g., under which we may arrive at 

Rtj(x) = 	 (2:!:octcj +x-!2:1cicn (1 -x') : 
(54)

+ (N; + Ni - 2NINi) (2: -1)(X02:12: -1) - (1 + 2:22:12:0) , 


. where J: E C is an arbitrary compl.ex number, or in another rorm, 


R;j(%) 	 '= (-%!ct cj +%-!ci ct)(%O%l + 1) 

+N,Nj(:-%-l)(-%l +%0) 
(55)

+Ni [2:':0(%1 - 1) + %-1(1 + %0)1 


+Nj [%%1(2:0 + 1) + %-1(1_ %1)1- (%0%1: + %-1) . 


• %2 = -2 and ~1 == -I, ~, =V-%l%O and ~3 -J-Xl%O then the result of baxterization 

reads 

Rtj(%) = (2:octcj +%lcicn (v'-%0%1 -x) 


(56)
+ (N; +Ni - 2N,Nj - 1) (v'-XO%l +%%oxt) , 

which is reduced. Another solution with ~1 = -I, ~2 =-v'-2:1Ztj and ~s = v'-%1%0 identifies 

with (56) under the transformation % -+ -% - 1. 

• %2 =-1 ± V-%I%O and ~t = -I, ~l =V-.2:12:0 and ~3 = -V-%I%O we get solutions 

Rti(X) = 	 (%octcj +%l ci ct) (-% + v'-%ozd + (Ni + Ni -lHV-%O%l + %%0%1) (57.) 
-NiNJ (v'-%IXO ± X1%0) (1 ± %) . 

Another solution with ~I = -1, ~, = -J-%I%O and ..\3 = V-2:12:0 ideatifies with (57) under 
the transformation 2: - -x. Both are reduced. 
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As R.J f:. Ri; we have to specify that the solution R;j(%) = R.jPiJ and Rei(%) = P'jR.J tha.t 

satisfy the following equations 

R;j(%)R;.(%y)Rii(Y) =RjJ:(y)R;,(%y)R;j(%) •Rj~%)R~~%y)R.J{Y} =R.ly).R.~%y)Ri~%)' (58) 

provided i < j when B'i satisfies (15). 

4.2 The Case of Four Eigenvalues 

The'set of eigenvalues is P•.2.3... } and 

'\1 y'-%I%O,'\' = -1, '\3= (1 + %,), '\" = -v'-%1%0 . (59) 

We obtain four independent nduced solutions. 

1. 	When II = ,\., l, = ).", l3 '\3 and l4 ='\2. we get 


R.;(%) = (%oct cj + Zl ci en [v'-ZI%O - %(%2 + 1)1(% -- %2 -1) 

+ (Ni + NJ - 1) [y'-%1%0(Z2 + 1) + %IZ0%1 [%(%2 + 1) - I] (60) 

-%2NiNj [y'-%1%0(%2 + 1) + %IZOZ)(% + 1) . 

2. II =)." l, = ).4. l3 = ).1 and l". =).3, we get 


R.j(x) = (%octcj + %Ic/cn [v'-%1%0(X2 + 2) + (%2 + 1)%2 - ZI%01 


+ (Ni + NI- 1) [y'-ZI%O(%I%O - Z2 -1) + %2(X2 + 1)%1%0 +ZIZ0] (61) 

-Z2Z1ZoN,Nj (z2 - 1) . 

3. When II = '\2, l, =)."', X, =..\3 and l4 =..\1. we get 


.R,j(%) = (%octej + %IC/ cj)[v'-%IZO + %(Z2 + 1)1(% %, - 1) 


+(N, + NJ -1)[v'-ZIZ0(%2 + 1) - %12:0%][%(%' + 1) I] (62) 

-%2N,Nj [y'-%IZ0(%2 + 1) - %1%0%) (% + 1) , 

4', When l\ = ..\3. l, ::: ).,. l3 =..\1 and l" =..\•. we get 

.R,j(%) = (%octcj + zlci cn (v'-ZIZ0':" z)[z(%, + 1) - I) 
+(NI + Ni -1)(y'-%1%0 + ZI%O%)(% + 1) (63) 

-%2N,Nj (y'-ZI%O + ZI%OZ)(%,% + Z - 1) . 

5, When ~l = ).3, l, = ..\"', l3 = ..\1 and l" = ..\,. we get a solution identified with solution 

(61) under redefinition of spectral parameter Z - -%. When II =..\3. l, ..\b la = ..\, and 

l" = ..\", we get identical solution with (62). 

5 Anomalous Solutions and Baxt-erization 

We assume the solution is of the following general form 

B,; =1 + 2.'0 (et cj - eien + %,NiNj + %3(Ni + Ni) + %4(et ej - elcn ' (64) 

which involves upto two-body interactions of fermions. When Z; take the values in the following 

table, Bii are braid group representations. 
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# of Sol. %0 %, , %3 %" 
(i) 1 %2 -%2/2 (%2 - 2)/2 

(i) 1 %, -%2/2 -(%2 - 2)/2 

(i) -1 %2 -%2/2 (%,  2)/2 

(iv) -1 %2 -%,/2 -(%,  2)/2 
(v) %0 0 (y'2:r:l- 1- 1)/2 (.y'2%1- 1 + 1)/2 

SolutiollS (i)-(iv) have the same set of eigenvalues, which is {--(:r:" -4)/2, ±%,/2}. 

1. 	We ta.ke '\1 =%,/2, A2 =-(%4 4)/2 and '\3 = -%,/2, then according to (41). we get the 

results of baxterization given explicitly in the following, 

Rei (x) = 0(%) (Ni + Nj -.2NiHj) 
+b(x) (Signlctej +sign:zcicn 

(65)
+e(x) (signactet + sign"clcj) 

+d(:r:) , 


where functions a(x), b(x), c(z) and d(z) read 


0(%) = (%' -1)(%2 - 4)Z2 , 


b(%) = 2(%2% - %2 + 4)(% - 1) , 

(66)

e(%) = (%, - 2)(% - 1)(%,z + z, 4). 


d(%) =2(% + 1)(%%2 + Z2 - 4) , 


and the sign; with i = 1,2,3,4 are given in the following table. 


# of Sol. sign 1 sign, signa sign4 

(i) + - + 
(i) + - + -
Ci) - + + 
(iv) - + + -

2. We take ..\1 = -(%4 - 4)/2, ..\, = %,/2 and ..\3 =-%,/2, then we have reJ:lced solutions 

.R,j(%) = 	+2signa (ct cj - ciej + 1) (z + sign,,) 

-sign, (4cj cien (x sign.){Z2 - 2) (67) 

+(N;+Nj -2N;Nj}[:r:(:r:,' 4)+signl:r:,I, 

where sign; with i = 1,2,3,4 are given in the following table. 

'# of Sol. sign! sign, sign3 sign.... 

(i) - + + + 
(i) - - + + 
(i) + - + 
(iv) - - - +

_I....-- ' 

3, 	We take ..\1 =-(Z4 - 4)/2, ..\2 =-%2/2 and ..\3 =%,/2, then we have reduced solutions in the 
same form as in (67) but with sign; with i =1,2,3,4 redefined in tbe following table. 
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# of Sol. 

(i) 

sign1 

+ 
sign, 

+ 
signl 

+ 
sign. 

-
(i) + - + -
(i) + + - -
(iv) + - - -

Solution (v) has two eigenvaJues which are. 

~ ( J2z~ - 1± 2zo + 1) , (6S) 

and the result of baxterization is 

. R.J(z) = [2zo(ctci-cicn+(ctct-cicn(v'2Z~-1+1) 
(69)

+(Ni+Nj -lHv'2zg-1-1)1(z 1) 2(v'2z~-1z+1) 
And it is worth-noticing that this solution is linear. 

6 Quantum Algebras 

6.1 Yang-Baxter Algebra 

A Yang-Baner algebra T(R) i, an a"oclative ,alge6ra generated by 

{I,t;{.:\) , i,;= 1,2, ... ,n} 

that ,ati,fy the following algebraic relation 

R(.:\p-l)1(.:\)®1(p) 1{p)®1{:\)R(.:\p-l), (70) 

1I1/aere T= (t;P»un' Following the convention of quantum inverse scattering method, we call the 

space V ® V the auxiliary space and the representation space of T(R) the quantum space. 

The representation of Yang-Baxter algebra 1{R) in linear space W is a linear map p: T-+ 

Enc{W) in W, where p is algebra homomorphism and satisfies 

R(.:\p-I) p7(.:\) ® p7(p) =p7(p) ® p7(':\)R (:\p-l) (71)I 

where pT(.:\) = (pt;P». 
A solution ofYang-Buter equation (10) naturally gives a representation of Yang-Baxter algebra 

T{1l): Suppose that {~i}~=l is a set of basis of space V, the action of R(.:\) on space V ® V is 

R(':\) ei 0 eJ = ~J(.:\) e. ® e, • (72) 

and the action oft~(~) V -.. V reads 

t~(.:\)ej = ~J(.:\) e, . (i3) 

Then it is obvious from equation (11) that RP) itself is a representation of Yang-Baxter algebra. 
As (11) ca.n be rewritten into 

R(~p-I) Fd.~) ® Fd.p) =Fd.p) ® Fd.:\)R (.:\p-I) , (74) 

where the index 3 of the original R-operator belongs to the quantum space, and FR(;'\) = R(;'\) will 
be called the fundamental ~presentation of T(n). 

6.2 Algebras F" and F" Crom Extended XXZ-Solution or Braid Group 

Consider the solution in (55) with k =1 in -limits of :r: -+ 00 ana z -+ 0, respectively 

nt; =-etc, (zo +~) + N. (zo -;:.) + Ni(1 +zo) + NiNJ i;:. -l~ Zo, 

R:-. =c7"ct (ZI + l) + Ni (1+ l) + Ni (l - £.1..) + NiN}· !I. - 1 - l , (75) 
'J '} so. so. "0"0 1:, so. 

which we call the upper and lower triangular R-operators, respectively. It is easy to see 

R~(z) = (Rj;)-I , (76) 

and the following decomposition applies 

R;J(z) = _l_nt; + zozR~ = _l_R~ + ZoZ (Rj;)-' (77)
ZOZ ZOZ 

The corresponding Yang-Baxter algebra has an apparent fundamental representation, namely, 

FRP) = R(':\). Talcing z,'y - 0,00 in(74), we have 

Rt,FtFf = FfFt Ri2 , 

R1,FiFf = F;FiR12 , 

Ri,FrF; = F; FrRt2 ' 

(78) 


R1,FrFt =FtFt-Ru . 

We assume that the Lax-operator (in lingle particle picture) has the same decomposition relation, 

1 _ 
L(z) =-L+ + zozL ,_ . (79)

ZoZ " 
and 

L+=c+r+Na+(l-N)P, L-=c-t++Nl+(l N)o, (SO) 

where L* are well-defined (this decomposition is similar to the contraction operation in the theory 

of the classical Lie algebra). Then we should have 

Ri2Li Lt = Lt Lt Rt" Ri2Li L'2 = L'2 L. Ri2 I 

Rt2LtLi = L'2 Lt Rt2' Ri2L! Lt = Lf L, R12 , (Sl) 

Rt2Li L'2 =L'2 Li Rt2' RuLt Lt Lf Lf Ru , 
which reads equivalently 

ZI1+1- - zol- t+ = (1 +zo:" [6a - jPl • 
Fa = -:r:'fat:*, t:*p =-ztpt:* , 
l*l = ztll* , 1.*0 =zfol* , . 

(S2)
ap = pa , al = ja I 

ao = oa, Pl =lP I 

Qo = op • .,6 = 0., . 
This is a Yang-Baxter algebra and will be denoted :Ft , as it is obtained from fermi operator valued 
Yang-Baxter solutions. 

The fundamental representation gives a representation for the above algebra, as we pointed out, 
which reads explicitly 

r = -c- (zo +~), t+ = c+ (fo +ZI) , 
a= (zo + :!) N _ :! ., =~~ - 1) N + 1 , (83) 

ZI Zl I Zo 

P= (1 + zo) N - Zo , 6 = ~ -.!!) N - 2.. .
Zo Zo Zo 

12
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Another realization of the above algebra is 

( 
1 )-1 )-1

e - ro+~ r, c+ = ( ;;
1 + %1 t+ , 
-il (84)

o=ro(-%l)iI-I, "1 =(ro) , 
1 ( )l-MP= (-ro)M , 6:-- rl , 

ro 
and 

tV-M ()it-li' []:+_ %0 __ :+ Hr l - -ro - -_ 
c c --c c =(-) ()-I' [N,C±] =±c%, M,c% -=Fc%. (85)

%1 %1- -%0 

The fermi operator algebra is recovered if we identify that If = Nand M= 1 - N and N2 = N 
when the realization in equations (83) is recovered. This is a generalization of the. fermi operator 

algebra, and therefore we denote it F, algebra, spanned by the generators C=, iI and if. 

6.3 ' F" and F, as Quantum Super Bialgebras 

The algebra homomorphism (coproduct) that gives a consistent map from ilingle particle picture to 

mu/tiporticie picture, or 

6.i;: A --+ 6.iJ(A) = AlA; , 
(86)

6.'J: L:l: - 6.iJ(L:l:) IX ttL; , 
explicitly 

6.IJ.: l+ --+ 6.'i (t+) = tt6; + ritj , 
6.iJ: l- - 6.iJ (l-) = l'jPi + odj , 
6../: 0 --+ 6.ij (a) aiOj, 

(87)
6.iJ: P - 6.iJ (P) = PIPj , 
6.iJ : r-6.ij(r)=ri1J, 

6.iJ: 5 -- 6.ij (5) = 5;6/ ' 

The coproduct operation should satisfy 6.(1) b 1 ® 1. 

Thill algebra bears a grading property. If we give each of the generators a grading factor, namely 

deg (t*) = 1, deg(a) = deg(p) =deg(;)= deg(6) == 0, (88) 

and 
(A ® B) (C ® D) = (-)de&(B)des(C)AC ® BD , (89) 

then the algebra homomorphism gives the tensor representation of :Ft. Due to this grading property, 

this ill a lIuper bialgebra. 

We write explicitly the coproduct of :Ff in realization (84), Le., F f algebra, It should be noted 

that this representation gives a consistent quantum bi-algebra structure only when %1 -%0. The 

relations read 

{c+,c-} (_)tV [il-ML, ' [N,c:J:] =±C± I [M,c:J:] ==Fc*, (90) 

and 
6.(N) = iI ® 1 +1 ® ii, 
6.( M) =M® 1 +1 ® Ai , 

(91)
6.(2+) c+ ® (-ro)-M + roN ® c+ I 

6.(c-) = c- ® (-%o)M +%~ ®c- , 

which is a super bialgebra, and the grading property is charaterized by commutation relation (89) 

with 

deg (c*) = I, deg (N) = deg (l\f) = 0 . (92) 

Now we take a homomorphism such that M = 1 - ii, hence the above relations reduce into 

{et-,e} = (_)H [2i1-1],.1 ' [iI"C±] = ±c* , (93) 

When %1 - 1 the ordinary fermion algebra is recovered (up to a scalar factor) 

{C+,c-} =-1, [N,C±] = ±c± . (94) 

When %1 =ro we have 
' _ M-N ()2(N-M) ii-it ,

\ . {:+ --} M %0 - - %0 [- "'*] "'* [-~] -I- (95)" C ,c (-) -1' N, c =±c 1M, e- ==Fe- , 
%0 -%0 

Now we take a homomorphism such that if = 1 N, hence the above relations reduce into 

• %M-N _ (:...)'(2H-l)%2N-l _ [ _ 
. {2+,c-} = (_)M 0 '-I 0 ,[N,C±] =±C±, M,C±J ==Fc* . (96)

• %0-%0 

and the ordinary fermion algebra is recovered when %0 -" 1: 

{C+,c-} = -1, [iI,C±] = ±c± . (97) 

7 XXZ Model and Algebraic Bethe Arisatz 

7.1 Monodromy Operator 

For Lj, a representation of 1{R) on quantu~ spa.ce Vj, with i = 1,2", " N, we have 

R(~p-l) Lj(~) ® Li(P) = L,{p) ® L,{~)R(~p-l) . (98) 

Let 1£ denote V1 ® V2 ® •.. ® VI'I and Vo the auxiliary space, then Li(~) E End(Vo ® Vj) can be 

embedded into End;Vo ®1£) in a trivial way, and the embedded operator will also be remembered as 

L,{~). Let monodromyoperator be 

7P) =L1(~)Li~)'" L~l) , (99) 

we have 

R(~p-l) 1{~) ® 1{p) =1{p) ® 1{l)R(~p;'l) (100) 

Hence 1{~) is obviously a representation of T fR.). As 1{~) is a.ctually analogous to the multiportic/e 

repruentdtion of universal enveloping Lie algebras, we will call1{l) a multiparticie representation of 

1(~), This multiporticle repreilenldtion is al~ called monodromyoperator, while L,(~) will be called 

L- (Lax-) operator I according to the convention in the theory of quantum invel'lU! scattering method. 

Let 
t(~) = TroT(~) , (101) 

where Tro denotes the trace taken in auxiliary space, i.e., 

TroTP) =(OoITP)IOo) + (loITP)/lo) . (102) 

Therefore froin equation (100) (we have assumed that R(l) is invertible), we have immediately 

[(l) , (p)] = 0 . (103) 
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This relation is very important in proving the integrability in the theory of quantum inverse scattering 

method. 

For solution (55) with k = 0, the monodromyoperator T is taken as 

Ti(:r) =c.-ct B(:r) +ciC(z) + Ni~(:r) + (1- Ni)D(%) , (104) 

then from yang-Ba..'tter relation 

R12(:ry-I)T1(%)T,(y) = T,(y)T1 (%)R12(:ry-l) , (105) 

we get algebraic relations for A, B, C and D with spectral parameters % and y. We list all the 

relations in Appendix and in the following we apply only a few of them. 

7.2 Conserved Currents 

From (B.9) or (B.ll) we have 

[A(y), D(z)l = [A(%) ,D(y)1 , (106) 

therefore 

t(z) =TroT(z) A(z) + D(:r) , (107) 

with % E C constitute a family of commuting quantities, i.e., 

[t(:r), t(y)] = [A(:r), D(y)] - [A(y), D(z)1 o. (108) 

7.3 Reference States 
\ 

There are two candidates of the reference ,tide, 

10lt 0"" " ON), or lit. 1,.···. IN) , (109) 

on-which the monodromy operator acts as a tri4ngutar operator. We will select the second state in 

(109) as our reference state. 

It is important to observe the actions of A, B, G and D on reference ,tate and for this end, let 

us give expUeiUy the action of Ro;(z) (where 0 indicates the auxiliary particle, and i the oi1!erTJed 
,ariiete on the reference state. 

Ro,(:r)II1' h,,' ·,IN) = aicd + PiNo + 7i (1- Ni) , (110) 

where 

ai =(1 + ZIZ0) 10i} , Pi = (1 + :r'ZIZ0) , 7. =%1(1- %')11;) , (Ill) . 

Therefore 

Roi(z)11i)Roi(::)11J) = (am + Piaj) C6 + PiPjNo+ 7ilj(1 - No) • (112) 

Furthermore 
N N N 

T(z)lref) = II [Ro.(z)!l.)1 = (*)4 + II p"No + II 7.1:(1 - No) • (113) 
.=1 .1:=1 1:=1 

where * is some nonzero operator-valued coefficient. 

Compare (113) and (104) we see that 

A(%)lref} ~+(%)Iref) , 
D(z)lref} ~_(%)lref) , (114) 
G(::)lref) = 0, 
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and 
N~+(z) =[- (1 +%2%I%O)I , ~_(%) =[%1 (1- %')1 N 

, (115) 

Hence G(%) acts on the reference state as an annihilator, but 'B(%) and C(z) as eigen-operator. As 

we will show in the following, B(%) acts in the role of a creation operator. 

7'.4 Bethe Ansatz State 

The Bethe wats state is defined as 

1~1~" As,"', ~n) B (AI) B P,) B P3)'" B (~n) Ire£) . (116) 

Noticing that B(ld and B(l,) are commuting, therefore it can be seen that the spectral param

eters in the Bethe ansatz states are in equal positions, i.e., the states are independent or the order 

of the spectral parameters. This observation is very important. In the standard way (making use of 

equations (B2), (B6) and (BI4», we obtain the action of t(A) on the Bethe ansats states; 

A(~)I~I"'" ~n) '( (~; ~IA" .. "An) I~lt ~""" ~i"", ~n) 
n 

+ EMj(l;~I.~,.·",~n)l~;~lt· .. ,li'''·'·''~n)' 
i=1 

and 
D(~)I~lo "', ~n) i(~i Al~2., .. ,~n)lAI' ,\,,·'·,,\i, .. ',An) 

where 

:, 
! 

we have 

(117) 

(118) 

(119) 

t (Mi(~;AIA', ... ,An)+ Mj(~;'\1~2 ... "~n») 1~;~I, .. ·,xi'" '," '~n) , 
j=1 

(120) 
with e(*) = (*) + i(*). 

The algebraic Dethe ansatz requires that the Dethe ansatz states serve as the eigenstates ort(~). 

i.e., ~e must have (for each j = 1,2, ,·"n) 

Mi(*) + Mi<*} =0, (121) 

or explicitly, 
~+(~j) _ n CPA;I) G(~A;I) n d(~~;l) 

(122)~_(A') - (-) C(~-lA'} TI CI(~-l~ ... ) II d(A-l~t) , 
1 1 .I:=I • .I:~j "=1 
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n 

+EMi P;~I,A,.,··,~n)I~;~I"··,l;,,,·,···~n) , 
;=1 

n G(A-l~i»)
(~;~IA2'''''~n) = ~+(~) ( II dp-I~t) , 

.1:=1 
n G(~~;l»)

i(li~lA2"··,~n)=(_)n~_(~) ( 11 d(U;I) 

c(l-I~i) (IIn G(A_I~I:»)
Mj(~;~I~""'.~n)=-~+(~j)d(~-IAJ) ,d(~-I~I:)' 

.I:=I • .I:~l 

_ . n-l c(~~Jl) ( ap~;I»)n 
Mj p; Al~2" .. ,~n) = (-) ~-(~J) d(~A:-l) II. d(l~;l) 

1 "=1.... ~1 

t(l)I'\lt ~""" '\n) = e('\; ~1~' ... " ~n) 1~1. ~2" .. ,An)+ 



equivalently 

e".-'11 cosh(~J + '10 + 171)]N = II cosh('1O + '11 + ~ - ~J) , (123)[ sinh(~i) t:l.I:;I!J cosh ( '10 + '11 - ~ + ~J ) 

by the reparameterization 

Zo e'''·, Zl =e2Q
" ~ - e~, ~.I: - e~' . (124) 

7.5 Expression of Hamiltonian 

Consider the following monodromy operator 

To(~) = Ll(~)L2(~)···LN(~) , (125) 

where Li(~) = Ro,P) and the transfer operator t(~) reads 

t(~) =TtoTP) =Tt(Ll(~)L2(~)'" LN(~» , (126) 

and so 

tel) =Tt(P01P02 ",PON) =P1,Pl3 "'PlIl • (127) 

and 

[t(1)r 1 =PNN-l" ,PN2PNl . (128) 

Because 
d N 
d~TP) =LT.P) , 	 (129) 

, t=l 
where 

TtP) =Ll(~)L2(~)'" L~(~)··· LN(~) , (130) 

we have 
d N 

. d~ t(~) =L t.l:(~) , (131) 
.1:=1 

with tiP) =TroTlP) and so 

d· NId~ teA) =2:).(1) . 	 (132) 
A:l l=1 

Therefore 

1. 	When k = 1, tl(I) = LNI (I)PN"" P13P 12• 


1 • d. 
 I[t(lJr tl(l) = g.,(I) = d~ R12P) A={ (133) 

2. When 2::; k ::; N 1 we have 

tt(I) = P12 ••• Pll-lL~l(l)·· ,P1HIPlfl , (134) 

and so 

[t(l)r 1 tt(l) = KU +1(I) . (135) 

3. When k =N we have 

[t(l)r 1 tN(l) = KN1 (1) . (136) 

Under the periodic boundary condition, RNI = RNN+1' 
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The definition of Hamiltonian is 
N 

H= Lhu +1. (137) 
t=l 

where 
hUH R~t+1(l) =-2 (zoctel+1 + zle1e;+1) - 2ZOZ1 (138) 

, + (Nt + N.l:H - 2NlN.I:+1)(ZOZI - 1) . 
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Appendix Bethe Ansatz Algebra 

(B.l) [A(z),A(y)] = 0 • 
(B.2) [B(z), B(y)] =0, 
(B.3) [C(z),C(y)] = 0, 

(BA) [D(z), D(y)] = 0., 

(B.S) A(z)B(y)a(zy-l) - A(y)B(z)c(zy-l) - B(y)A(%)6(~y-l) = 0, 

(B.6) A(y)B(z)d(zy-l) - B(z)A(y)a(zy-l) + B(y)A(z)e(zy-l) = 0, 

(B.7) A(z)C(y)e(zy-l) - A(y)C(z)a(zy-l) + C(z)A(y)d(zy-l) = 0, 
(B.8) A(z)C(y)6(zy-l) +C(z)A(y)e(zy-l) -C(y)A(z)a(zy-l) =0 I 

(B.9) [A(y), D(z)] d(zy-I) + [B(z)C(y) - B(y)C(z)] e(zy-l) = 0, 
(B.IO) [A(z)D(y) - A(y)D(z)] e(zy-l) + B(y)C(z)6(zy-l) + C(z)B(y)d(zy-l) = 0 , 
(B.ll) [A(z), D(y)] 6(zy-l) + [C(z)B(y) - C(y)B(z)1 e(zy-l) =0, 
(B.12) [D(y)A(z) - D(z)A(y)] e(zy-l) + C(y)B(z)d(zy-l) + B(z)C(y)6(zy-l) = 0 , 
(B.13) B(z)D(y)6(zy-l) - D(z)B(y)e(zy-l) + D(y)B(z)a(zy-l) =0 , 
(B.14) B(z)D(y)e(zy-l) - B(y)D(z)a(zy-l) - D(z)B(y)d(zy-l) =0 • 

(B.lS) C(z)D(y)a(zy-t) - C(y)D(z)c(zy-t) + D(y)C(z)6(zy-l) = 0 " 

(B.16) C(y)D(z)d(zy-l) + D(z)C(y)a(zy-l) - D(y)C(z)c(zy-l) = 0 , 

where 
a(z) '- (Z'ZIZ0 + 1) , 
6(z) (z2 - 1) zo , 

(139) . 
e(z) - (ZI%O + 1) z , 
d(z) = -(z2-1)ZI' 
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