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Abstract 

Two kinds of vacuum wormhole solutions are found in Brans-Dicke (80) 
theory with a negative-definite coupling constant w. One kind of the solution 

is a usual wormhole with two asymptotically euclidean regions, and another 
is a new type wormhole which has three asymptotically euclidean regions. We 

compare the results to the re-scaled BD theory in which no vacuum wormholes 

exist for -~ < w $ O. 
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Wormholes are Riemannian manifolds which have two or more asymptotically 

Euclidean regions. It is believed that wormholes have some important consequences 

such as quantum decoherence [I} and making the cosmological constant vaoishi.ng 

Recently the Brans-Dicke (BD) theory [3] has attracted some attention in the 

inflationary universe (4). It is known that vacuum wormhole solutions do not exist 

in BD theory with a positive coupling constant w. If the Brans-Dicke scalar field is 

extended as a complex scalar field, one may construct vacuum wormholes [51. More 

recently, Ref. [101 shows the possibility of constructing vacuum wormhole solutions 

in the BD theory with a negative w. In this paper we construct vacuum wormhole 

solutions in BD theory with a negative-definite coupling constant, and compare with 

the re-scaled BD theory or the generalized Brans-Dicke (GBD) theory {7]. The re

sult of this paper is just a powerful example to show that the GBD theory with the 

Pauli metric do differ from the original BD theory with the Jordan metric: Vacuum 

wormholes exist in the BD theory, but not in the GBD theory for - ~ < w ~ O. 

The Brans-Dicke Lagrangian' (3J in the absence of matter is 

£=-h +w,"" {}/J~{}"~l 
~ , 

where, = deh,.v, ',... is called the Jordan metric, ~ is the Brans-Dicke scalar field, 

and w is the Brans-Dicke coupling constant. 

Let us consider a dosed Robertson-Walker. uni verse. After euclidization the 

metric for such an universe is given by 

. [ dr'lds 2 = dr2 + R2(r) -- + r2d8 2 + 1'2 sin2 

1 r2 

Field equations are followed from Eqs. (1) and (2) 

RI?· R: ~' 1 W ~t2 
R2 + Ii. ~:::: R2 + '6 ~2 ' 

~" +3~~1 ::::0, (4) 

where the prime denotes dl dr, the scale factor R and the scalar field ~ are functions 

of the euclidean time r. Integrating Eq. (4), one arrives at 

q/(r)lf(r) = a, (5) 
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where a#-O is a integration constant (note that a = 0 would lead to <I>(r) = 
constant, or R(r) = 0, and hence no wormholes exist). Eq. (5) indicates that <I>'(r) 
is positive-definite (or negative-definite), and hence <1>( r) is a monotonic function of 

r. Furthermore (4) implies 

<I>"(ro) = 0, for R'(ro) = 0 or R(ro) -+ 00 (<I>'(ro) = 0), (6) 

i.e. <1>"( r) would change its sign as r acrosses ro. 

Let y = R2<1>, Eq. (3) becomes 

d_y_= 2d<l> 
y/y2 + ,\:l ±~¢ 	 (7) 

with A == 1 + ~w, where Eq. (5) is used . .;Solutions to Eq. (7) a.re given by 

~2 = Q (1<I>1 1 
-
fi -I<I>II+fi), A>O(W>-~)'for 	 (8) 

1 
R2 = -,8I<1>l1n 1<1>1, for A= 0 (w = -~) , (9) 

~2 = 71<1>1 sin ( ~ In 1<1>1) , for A< 0 (w < -~) , (10) 

where <I> is re-scaled by some consta.nts under which Eqs. (3) a.nd (4) are invariant, 

and 0 1/ (a2A), ,82 = 4/a2, 72 = 4/ (a2IA!). In principle, <I>(r) and hence R(r)2 = 
ma.y be explicitly expressed a.s functions of r by making use of Eqs. (8)-(10) a.nd 

(5). In fa.ct, integra.ting Eq. (5) a. rela.tionship between r and <I> ca.n be expressed as 

r = ~JR: d<l> + const 	 (11) 

where R(<I» is given by Eqs. (8)-(10). 

Our purpose is to sea.rch for wormhole solutions of R( r), which ha.ve a.t lea.st one 

non-zero minimum (throat) for a. finite value of r. Setting R'(rj) = 0 in Eq. (3), 

one a.rrives a.t 
1 _':!. <1>'2 (rj) 

(12)R2(r;) 6 <l>2(rj) . 

Using Eq. (5), Eq. (12) is reduced to 

Jlf( rj)<I>2(rj) = -wa2/6. 	 (13) 
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That the left-hand side of (13) is not negative implies the following requirement: 

w:S O. 	 (14) 

Taking derivative of Eq. (3), and then using R'(rj) = 0 and Eq. (5), we obtain 

2 > O. (15)R"(rj) = R(r;) 

This implies that all finite values of R(r;) are the minima. of R(r). Consider next 

asymptotic beha.vior of R, <1>, aJid r using Eqs. (8)-(11). 

Ca.se (A): -~ < w :s 0 (0 < A :s 1). Solutions to (7) a.re given by (8). If 0 < 0, 

(8) shows 1<1>1 ~ 1. We can get from (11) and (8) tha.t r -+ -00 as 1<1>1 -+ 1. However, 

as 1<1>1 -+ 00 or a. finite value, r -+ a. finite constant. Therefore 0 in (8) should be a. 

positive a.nd non-zero consta.nt, and hence 1<1>1 :s 1. 

(i) w = 0 (A = 1). R -+ 00 as.<I> -+ ±1. Putting (8) with ..\ = 1 in (11), we ha.ve 

"1
R2 = -(1 +br2

), 
br2 	

(16) 
o <1>2 = 1 +br2 

with b== a 20 3. This gives R2(r) I"V r2 -+ 00,<1> -+ ±1, a.s r -+ ±oo. This is a. Tolma.n 

wormhole [6]. 

(ii) -~ < w < 0 (0 < A < 1). It is easy known from (8) with 0 > 0 tha.t R -+ 00 

a.s 	<I> -+ 0, ±l. In order to consider beha.vior of r, substituting (8) into (11) we ha.ve 

23r = 0- /2J[I<I>1 1-
fi -I<I>Il+firJ

/ d<l> + const. (17) 

Consider the following limits: (a.) <I> -+ ±1. Setting <I> = ±(I-c:) with c: « 1 in (17), 

one a.rrives a.t r ±CI/2 -+ ±oo a.nd R2(r) I"V r2 -+ 00 a.s c: -+ OJ (b) <I> -+ O. PuttingI"V 

<I> = ±c: with c:« 1 in (17), we get r =Fc:(3fi-I)/2 and R2 I"V r 2(fi-I)/(3fi-l) forI"V 

A #- 1/9 (w #- -4/3). Then ma.king the limit c: -+ 0, we ha.ve the results: r -+ 0 

and R -+ 00 for -4/3 < w < 0 (1/9 < ..\ < 1)j r -+ =Foo a.nd R -+ 00 

for -2/3 < w < -4/3 (0 < A < 1/9). In ca.se of ..\ = 1/9 (w = -4/3)' Eq. (17) 

gives r '" ± In c: -+ =Foo a.nd R2 I"V "exp(2IrI/3) -+ 00 a.s c: -+ O. The r-dependences 

of R and <I> a.re drown in Figs. 1 a.nd 2, where the consta.nt a is chosen to be positive, 

i.e. <I>'(r) > O. 
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Case (B): w == (A = 0). Eq. (9) is a limit case of (8) as A -+ O. The 

r'-:dependences of R(r) and <p(r) are similar with those as shown in Fig. 2. 

Case (C): w < -~ (A < 0). Analysis performed for the case is just as it does for 

case (A). However since the right-hand side of Eq. (10) is a sin function, two zero 

values of 1/R2 correspond to two non-zero values of <p. With some calculation, we 

find from Eqs. (11) and (10) r -+ ±oo as R -+ 00. The r-dependences of R(r) and 

<p( r) are similar to those as shown in Fig. 2. 

In short, when w = 0 and w $. -~, the scale factor R(r) has its minimum at 
a finite value of r, and goes to infinity as r -+ ±oo. Thus these are wormholes 
with two asymptotically euclidean regions corresponding to r -+ ±oo (see Fig. 2). 
However in case of -~ < w < 0, the R(r) has its two minima at two finite values 
of r, and goes to infinity as r -+ 0, ±oo. Therefore this is a new kind of wormhole 
with three asymptotically euclidean regions corresponding to r == 0, ±oo (see Fig. 1). 

Table 1. Comparison of existence of wormholes 

in the SD and GBD theories. 

w <-j -J<w:::;O O<w 
SD theory yes yes no 

GSD theory yes no no 

In the above, we find two kinds of vacuum wormholes in the BD theory with a 

negative-definite coupling constant w. It is well-known that the BD theory with a 

negative coupling constant would lead to a negative kinetic energy for the dilaton 

field. One reason of considering this ty~e theory is responsible for a relationship 

to the re-scaled BD theory (the generalized BD theory). An example of a negative 

w is the Kaluza-Klein unification. It has been claimed that the BD theory' can 

be derived from such an unification theory in which the Jordan metric couples to 

the Kaluza-Klein scalar field with a negative w. A conformal transformation of the 

metric would restore the positive kinetic energy of dilaton [7/. In fact, introducing 

a dilaton field 0- and a conformal transformation of the Jordan metric by definitions 

<p 2!1 eao and gjJ" = eao "'(jJ", the BD Lagrangian (1) is transformed into 

£ [- 2:2 R - ~gl'''01'0-0,,0-] . (18) 
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This is called the re-scaled BD theory or the generalized BD (GBD) theory in the 

absence of matter (i.e. vacuum) where a 2 = 2K,2/('tJ..J +3), 91''' is referred as the 

Pauli metric, the dilaton field 0- is real if w > -~. but pure imaginary if w < _~. 
The Lagrangian (18) is just a Einstein's Lagrangian with a massless scalar field. 

Field equation for a closed universe is obtained from a euclidean metric and (I8) 

K,2 
j(2 =1 +-R20-12. (19)6 

It is easy to know from Eq. (19) that no wormholes.exist for w > -~ (in this case, 0

is real) (8/, but wormhole solutions may be constructed for w < - ~ (in this case, 0- is 

pure imaginary) (9J. Therefore it is strongly shown from the above results that the 

GBD theory with the Pauli metric do differ from the original BD theory with the 

Jordan metric when the coupling constant w takes a value in the domain (_ ~) 
the GBD theory has no vacuum wormholes, but the BD theory exists two kinds of 

vacuum wormholes (comparison between the BD and GBD theories is given in Table 
1) 
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Fig. 1. Wormhole solutions for -4./3 < w < O. There three a.symptotically euclidean regions corre
sponding to T -- 0, ±oo. 

r 

Fig. 2. Wormhole solutions for -3/2 < w S -4/3 (rt is similar for w ::: 0 and w :s -3/2). There are 

two asymptotically euclidean regions corresponding to T -- ±oo. 




