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Abstract: In this paper. symmetries and spectral-dependent so
·lutions of colored Yang-Baxter equation with six-vertex are dis- . 
cussed. It is shown that each six-vertex type solution of colored 
Yang-Baxter equation is equivalent to one of the six basic solu
tions up to five solution transformations and all solutions can be 
classified into two types called Baxter type and Free-Fermion type. 
The unitary condition of the solutions is also discussed. 

§1. Colored Yang-Baxter equation and its symmetries 

It is well known that the Ya.ng-Baxter equati~n 

R12(U)R23(U + 'II)R12(lI) = R23(1I)R12(U +1I)R23(U). (1.1) 

plays an important role in the theory of two-dimensional integral system of quantum 
field theory and quantum statistics on two-dimensionallattice.[l-4J It ensures commu
tativity of the transfer matrices in the systems and models. 

As one of generalization of the Yang-Baxter equation. the colored Yang-Baxter 
equation is defined as:[5J 

R12(U.e. ,.,)R23(U +1I.e•.\)R12(1I. ,.,• .\) =R23(1I.,.,. '\)R12(U + v.e, .\)R23(U.e, ,.,), (1.2) 

where e. ,., and .\ are color parameters, u, 11 and u + 11 are spectral parameters and 

R12(U.e.,.,) =R(u.e. ,.,)® E, R23(U.e.,.,) = E®R(u,e,,.,), 

here E is unit matrix of order 11., ® means the tensor product of two matrices. Recently. 
much attention has been attracted to the colored Yang-Baxter equation (1.2) and its 
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solutions. Some subjects. such as the close relation of the colored Yang-Baxter equation 
with the free fermionic model in magnetic field, the connection between solutions of the 
equation and the multivariable invariants oHinks as well as representations of quantum 
algebras and so on are also discussed.(6-11} 

In thls paper. we will focus on the discussion of the symmetries and non-degenerate 
six-vertex type solutions of the colored Yang-Baxter equation (1.2). The case of the 
eight-vertex type solutions will be discussed in a coming paper. The first section of 
thls paper is applied to introduce the symmetries of six-vertex type solutions of (1.2).

1· In the second section we give the differential equations that solutions of the colored 
Yang-Baxter equation satisfy. In the third section we will construct all six-vertex type 
solutions of Yang-Baxter equation only with colored parameters. Based on the second 
and third sedions we present six basic solutions of the equation (1.2) in sedion four 
and dassify the obtained solutions. into two type: the Baxter type and Free-Permion 
type. These basic solutions. in fad, give all non-degenerate six-vertex type solutions 
of the colored Yang-Baxter equation (1.2) up to five solution transformations. 

The six-vertex type solution of colored Y-B equation is the solution of (1.2) in the 
following form: 

al(U,e,,.,) 0 0 
• 0 a2(U.e.,.,) a5(U,e.'l) oo )

R(u.e.'l) = 0 as(u.e.,.,) a3(U.e.'l) o .
( o O· 0 a4(u, e.,.,) 

If the weights functions tIi(u.e.,.,) =/0 (i 1,2.···.6) are satisfied additionally, the 
solution is called the non-degenerate six-vertex type solution of colored Y·B equation. 
Otherwise. it is called the degenerate six-vertex type solution. In the case of six-vertex 
type solutions, the Free-Fermion condition can be expressed as[6} 

a2(U.e, ,.,)a3(U.e,'l) - al(U.e, '1)a4(U,e,'l) - a5(U,e. ,.,)a6(u. e,,.,) o. ( 1.3) 

For the six-vertex type solutions of Y-B equation, the matrix equation (1.2) is 
equivalent to the following 13 equations: 

Po: c41)a~2)a~3) _ 


PI : .\'>.\')0\3) 

P2 : aP)c42)a~3) 

P3 : a~1)a~2)a~3) _ 


.(').(2).(3) _ _P,,: 442224562-' 
Ps : a(1)a(2)c43) - a(1)12)a(3) a(1)a(2)a(3) - 0 (lAc)42 r 4362-. 

a(l)a(2)a(3) _ a l)a 2)a(3) _ a(1)a(2)a(3) - 0Pa: 245254532-' 

a~1)a~2)a~3) = 0, (1.41.) 

0\').\2).\3) _ <4').\2)0\3) = 0, } 

a~1)a~2)a~3) _ a~1)a~2)a~3) = O. (1.4b) 

a~1)a~2)a~3) a~1)a~2)a~3) =0, 


.(').(2).(3) .(').(2).(3) 0 } 
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P : 4(1)4(2)(1(3) - 4(1)4(2)4(3) _ 4~1)4(2)(I(3) =0,r 
Pa : (11)4t2)4~3) - )1)4&2)(113) - 4(1)(I~2)(I~3) =0, 

Pg : 4tl)4~2)~3) _ 4tl)4~2)4{3) _ 4!1)4~2)4~3) =0, 
( lAd)

PI0: 4~1)4~2)4~3) - 4~1)4~2)4~3) - (I~I)c42)c43) =0, 

Pll : 4~1)i42)4~3) - c41)4~2)4~3) - t41)4~2)c43) =0, 
n • ",(1)",(2)4(3) ",(1)...(2) ...(3) _ 4(1)",(2)4(3) - 0 

.1:"'12 • ""3 "'. 5 - "'3 "'5 "'4 , ""2 3 - , 

where for simplicity we denote 

4~1) = 4i(u,e, 11), 4~2) = 4i(v, 11,..\), 4~3) = 4i(u+v,e,..\), i =1,2"",6. (1.5) 

Assume R(u, e, 11) is a solution of (1.2). Detailed study of the system of equations 
(1.4) shows that there are five symmetries of six·vertex type solutioI1- of Y·B equation 
as follows. 

(A) Symmetry o( exchanging indices. 
The system of equations (1.4) is invariant if we exchange the two sub-indices 2 and 

3 or 1,5 and 4,6 respectively. 
(B) The sealing symmetry. 
I(u,e, l1)R(u,e, 11) is also a solution of Y-B equation (1.2), where l(u,e,l1) is an 

arbitrary function. 
(C) Symmetryo(weights 4s(U,e,11),and (l6(U,e,~) 
IT the weights 45(u, e, 11) and 4&(u, e, 11) are replaced by the new weights a,(u, e, 11) 

,.,.-1 4,(u, e, 11) and ie(u, e, 11) =,.,.as(u, e, 11) respectively, ?lhere jJ. is a non-zero constant, 
the new R(u, e, l1)iS also a solution of(1.2). 

(D) Symmetry of weights 42(U, e, 11), and 43(U,e,11) 

IT the 'weights (12 (u, e, 11) a.nd 43(u, e, 11) are replaced by the new weights a2( u, e, 11) = 


ellU jf$(l2(U,e,l1) and a3(u,e,11) = e-""~(l3(U,e'11) respectively, where I(e) ia an 

arbitrary function and,.,. is a constant, the new R(u,e, 11) is also a solution of (1.2). 
(E) Symmetry of sileetral and color parameters. 
IT we take the new spectral parameter {i = ,.,.U and new color parameters Q I(e), 

(J = 1(11), where I(e) ill an arbitrary function and,.,. is a constant, the new matrix 
R(u',Q,{J) is also a solution of (1.2). 

The five symmetries (A), (B), (C), (D) and (E) are called solution transformations 
A, B, C, D and E of six-vertex type solutions of colored Y-B equation (1.2) respectively. 

§2. Th~ differential equation related to the Colored Yang-Baxter 
equation 

Since we only consider non-degenerate solutions of (1.2), from the equation (1.4a) 
and the assumption of non-degeneration we have 

43 43
-;-(U,e,l1) = -(u +v,{, ~(V'l1'..\)42 42 (I, 
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due to (l2(U, e, 11) ~O. Let e=11 = ..\ in (2.1), we have 

~(u,e,{) = ezp(C(Ou). (2.2)
42 ' 

By letting 11 = ..\ in (2.1), w., find 
43 (13
-(U,e,l1) = -(u +v,e, l1)e:.:p(-C(l1)V). (2.3)
42 42 

Therefore, the combination of (2.1), (2.2) and (2.3) gives 

43 (13 /43-(u,e,l1) = ezp(C().)u) -(O,e,..\) -(0,11,..\). (2.4)
42 (I, 42 

Noticing that left hand aide of (2.4) is independent of ..\ and considering the solution 
transformations Band D, we can assume 42(U,e,11) =43(U,e, 11) = 1 in the following 
discussion of non-degenerate solutions without losing generality. Therefore equations 
(1.4) can be reduced to following six equations: 

41(U, e, 11)41(V, 11,..\) - 41(U + v,e,..\) - (l6(U, e, 11)4,(11, 11,"\) = 0 
4t(u, e, 11)4,(u + v, e,..\) - 411 (u,e, 11)41(U + v, e,..\) - 4S(v, 11,..\) 0 (2:5a) 
41(V, 11, ..\)Gs(u + v,e,).) - 4&(11,11, ..\)41(U +11, e,~) - 4&(u, e, 11) 0 

44(U, e,l1)44(V, 11, ..\) - 44(U +v, e,..\) - 4,(U, e, '17)46(11, '17,).) =0 
44(U, e,l1)41(U +11, e,..\) - 4&( u,~, 11)4.(u + v, e,..\) - 41(11,11,"\) 0 (2.5b) 
44(v, 11,...\)45(U + 11, e,..\) - 45(11,11, ..\)44(U +v, e, ..\).- 4S(u, e,l1) 0 

In order to solve (2.5), we will use 4.( u + 11, e,..\) and 4i(v, 11,..\) (i =1,2," ,,6) to 
represent 4i(u,e,l1) (i 1,2",·,6). from (2.5a) we have 

41(U +tI,e,..\)
41(U,e,l1) = ( ..\) (1- 45(1I,'I7,..\)46(V,l1,..\)) 

. 41 v,l1, 
+411(V, l1,..\)4&(u +v,~,..\), 

45(U +v,e,..\)
4S(U,e, 11) = ( ..\) (1-4,(V,'I7,..\)46(V,11,..\)) (2.6) 

41 v,l1, 
4,(11,11,"\) ( ) (( f..\) 1-4,(U+V,e,,,\ 46 u+v,e,..\)),

41 u+ v, , 
46( u, e, 11) = 41(V, l1,..\)4&(u + v, e,..\) - 41 (u +v, e, A)4s(11 111,..\), 

and from (2.5b) we have 

(l4(U + v,e,..\)
44(U,e, 11) = ( ') (1-45(V,'I7,..\)46(V,l1,..\))

44 11,11,;1\ 
+4S(U +v, e, ..\)46(11,11, ..\), 

4,(U,e, 11) = 44(11,11, ..\)4,(U +1I,e,..\) 44(u +11, e, ..\)4S(v, 11, ..\), (2.7) 
41(U +v,e,..\)

46(U,e, 11) = ( ..\) (1-4,(lI,l1,).)46(V,l1,"\»)
44 v,l1, 

46(V,l1,..\) (' ) ( )( { ..\)(1 - 45 u +v, e,..\ 46 u +V I e •I ..\)44 u+ v, , 
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By comparing the expressions of as(u,~.11} and as(u.~,11) in (2.6) and (2.7). we have 

ale11. + v.~. A)as(u + v,(, A)(l- al(v,11, A)a..(v.11, A) - as(V,11, A)ae(V,11, A» 

al(v.11, A)as(v, 11, A)(l 0.1(11.+ V, (. A}a..(u + v, ~,A) 


-0.5(1£ + v, e. A)ae(u + v.e. A». 

a..(11. + v. e, A)ae(U + v. e. A)(l- al(v,11, A)a..(v.11. A) - as(V,11. A)ae(V,11. A)) 

a..(v, 1']. A)ae(V, 11. A)(l- 0.1(11. + v.(. A)a..(u + v,e, A) 

-0.5(11. + v.e. A}ae(u + V.(.A». 


i.e. 

(1- 0.1(11. + v.e. A)a..(u + v.(. A) - as(u + v.e. A)ae(U + v.e, A)) = C (A). 
0.1(11. + v,e. A)as(u + v.e, A) 1

(2.8)
(1 0.1(1£ + v, e. A}a..(u + v.e. A) - 0.5(11. + v.e, A)ae(u + v, e, A» ::.; Cl(A). 

0... (11. + v,e. A)ae(u + v. e. A) 

where C1(A}. Cl(A) are functions of A. Therefore. from the combination of (2.6). (2.7) 
and (2.8), the expressions of a,(u,e, 1']) (i == 1.4,5,6) by 0... (11. + V.e.A),ai(v,11.A) (i = 
1.4,5,6) are as follows 

0.1(11., e.11) == al( 11. + v, e, A)(a..(lI.11. A} + C1(A)as( V,11, A» 
,... +45(V,11. A)as(u + v.e. A), 

a,,(U,e.11) = 0...(11. + V.e,A}(al(V,1J, A) + C2(A)as(v.11. A» 
(2.9)+a5(u + v,e, A)ae(V,1J, A). 

a5(U,e,11) a..(V,11, A)as(u + v.e. A) - 0... (1£ + v, e, A)as(V.11, A). 

o.e(u.e.1J)== at(v,1J,A)ae(u+V,e,A) 0.1(11. + v. e. A)a6(v.11. A). 

From the expression of 0.5(11., e. 11) and o.e(U.e.11} in (2.6) and (2.7). it is easy to 
show that 

a5(u,e,11) =-a5(-u.11.(), ae(u.e.1J) = -a6(-u.11,e). (2.10) 

Letting 11. = O. 1J e in (2.5) and then solving the equation with respect to 
{al(O.e,e). 0...(0. e. e).as(O. e, e), as(O.e, en we obtain 

0.1(0. e.e) = a..(O.e.e) = 1, as(O,e.e) o.e(O.e.e) = o. (2.11) 

(2.11) can be regarded as initial condition of Y-B equation (1.2). 
In following context. the differential equations of 4i(u. e. 11) is developed and we will 
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use the following notations for simplicity: 

X - ( e A) X, - 8al(u.e. A) X" = 82al(u,e. A) 
- 0.1 11.., • - 811. • 81£2 


W - ( e A) W' _ 8a..(u,e.A} W" =82a4(U,e.A) 

~ a.. 1£.. • - 81£ • 81£2 

yl Y" = 82as(u,e,A)
Y = as(u.e.A}. 81£2 (2.12) 

ZII = 82ae(u,e.A)
Z =.4e(U.(.A). 81&2 

8ai (u. e.A}1 ' i= 1,4,5,6.c,ce) 81£ u:O,A=( 

If we differentiate the system of equations (2.5) with respect to the variable 1£ and 
then letting 11. =O. 11 e. We. can obtain following group of differential equations with 
appropriate arrangement of the arguments 

X' = X Clce) - y Csce), Y' == -YC1(e) +Xcs«(). 

W' = Wc..(e) - Zcs(e), z' = -Zc"ce) +WC6(e). (2.13) 

cs({) = _(X'Z) +X ZI. cs(e) =-W'Y +WY'. 


Differentiating once more (2.13) with respeCt to the spectral variable u. we have four 
differential equations in the same form. 

X" == (Cl(e)2 - cs(e)cs(e»X, Y" = (Cl(e)2 - C5({)C6(e»y. 
(2.14)w" =(C.. «()2 - cs«()ce(e»W. z" = (c..ce)2 CS(e)C6ce»Z. 

With the similar process. doing the differential with respect to the variable 'V. we 
can also have 

X' == XC1(A) - ZC5(A), Z' = -ZC1(A)+XCS(A), 

W' =WC..(A} - YC6(A), Y' =-YC..(A) +WCS(A), (2.15) 

C5(A) -(X'Y) +XY', CeCA) = -W'Z +WZ'. 


and 

X" = (Cl(A)2 - CS(A)CS(A»X, Y" = (c..(A)2 - Cs(A)CS(A»Y. 
(2.16)

W" (C4(A)2 - Cs(A)CS(A})W. Z" ;;;:; (Cl(A)2 - Cs(A)C6(A)Z. 

From the equations (2.15), we can obtain a system of compatibility relations for the 
Y-B equation (1.4) as follows: 

XY(Ct(A} + C.. (A» = CS(A)( -1 + WX + YZ). 
(2.17) 

WZ(Cl(A} +c..(A» Ce(A}( -1 +WX +YZ). 

Comparing (2.17) with (2.8). we have 

C (A) = Cl(A) + C..(A), C (A) Cl(A) + C..(A) (2.18)1 CS(A) 2 CeCA) 
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Hence by comparing (2.14) with (2.16) we see 

Cl(e}2 - Cs(e)C6(e) = Cl(A)2 - C5(A)C6(A) 

is a constant independent of colored parameters ( and A and 

Cl(e)2=C4(e)2. 
I. 

(2.19) 

So What 'we only need to do is to solve the differential equations of degree 2 . 

U"(1£,e,,,) = k2U(1£,(,,,), (2.20) 

where k2 =(Ct(e)2 - CS(e)C6(e». If k:f: 0, by solution transformation E to the spectral 
parameter 1£, we can assume k = 1. Therefore the general solutions of the equation are 

a;(1£, e,,,) = Ai(e,,,) cosh(1£) + B.{e,,,) sinh(1£), (2.21a) 

for the casek :f: 0 and 

a;(1£,(,,,)= Ai«(,") + Bi(e,,,)1£, (i = 1,2,5,6) (2.21b) 

for the case k =0, where 

Ai(e,,,) = ai(O,e,,,), B.(e,,,)= da'(1£. e.,,)/ ' (i =1,2,5,6) (2.21c)
d1£ ,,=0 

§3 The solutions of the Y-B equation only with colored parameters 

In this section, we consider the Yang-Baxter equation only with colored parameters 
as foJIows. 

R12{(, ,,)R23«(, A)R12(", A) =R23(", A)Ru«(, A)R23«(, ,,), (3.1) 

This equation can be reduced from the Yang-Baxter equation of colored parameters 
(1.2) if we take the spectral parameter u = 11 ~ O. Clearly, if R(u, (,,,) is solution of 
(1.2), then R(O,e,,,) is a solution of (3.1). So in roughly speaking, a solution of (3.1) 
gives the initial values of a solutions of (1.2). This implies A.«(,,,),(i = 1,2,5,6) in 
(2~21a) and (2.21b) must be a solution of the Y-B equation only with colored param
eters. For the Y-B equation only with colored parameter definition of non-degenerate 
and degenerate six-vertex type solutions are similar to that of (1.2). Generally, five 
solution transformations and the formulas given in the first section are also true for 
the six-vertex solutions of Y-B equation (3.1) except for the spectral parameters being 
repla.ced by O. 

We first consider the non-degenerate solutions. Similarly, by considering with so
lution transformation Band D, we can assume 42((,") a3((, '11) = 1 in the following 

i 

discussion ofnon-degenera.te solutions without losing generality. Therefore 13 equations 
in (1.4) for spectral pa.rameters 1£ =11 = 0 are equivalent to following six equations up 
to solution transformations Band D: 

al(e,,,)al(", A) - al(e,A) - a6({,,,)as(,,, A) = 0 } 

alee, ,,)as(e, A) as«(. ,,)at(e, A) - as(",~) =0 (3.2a) 

al(", A)as(e, A) - as(", ~)at(e, A) - as(e,,,) = 0 


a4(e, ,,)a4(", A) - a4(e,~) - as(e, ")as(,,, A) = 0 } 
. a4(e, ,,)as(e, A) - as(e. ,,)a4(e, A) - as(", A) = 0 (3.2b) 
a4(", A)as(e, A) - a5(", ~)a4(ei A) - as(e,,,) = 0 

Similar to the discussion in section 2, from equations (3.2) we have the expressions 
of a.«(,,,) (i = 1,2,···,6) in forms of a;(e. A) and a;(", A)(i = 1,2", ·,6) as follows 

at(e, A)
al(e,,,) =-(\)(1 - as(",A)aa(",A» + as(", A)a6«(jA),

at ",A 

44(e, A). ) »
a4«(,") -(\)(1- as(",A)as{",A. )+ as«(,A a6{", A , (3.3)44 ",A 

4S«(,") =a4(", A)as(e, A) 

as(e,,,) al (", A)aa(e, A) 

And we also have the algebraic relations 

(1 - alee, A)a4«(' A) 

a4(e, A)as(", A), 

al (e, A)as{", A). 

as(e, A)as(e, A» =C1(A), 
al(e, A)as{e, A) . (3.4)

(1 - al«(, A)44(e, A) - as«(, A)as({, A» = C {A), 
a4«(, A)as«(, A) 

2 

where Clt G2 are functions of A. Now we fix A to a value and take 0 as the fixed 
value without losing gerality. If we denote I.«() = ai{(,A) (i = 1,4,5;6), then li{e) 
(i =1,4,5,6) satisfy 

1 - 1t(()/4(e) 15(e)/6(e) = Gtlt«(}/5{e), 
(3.5) 

1 - It(e)f4(() - Is(e)/s(e) =G2/4(e)/6{e), 

where Gl I G2 are constants. Therefore, from the combination of (3.3) and (3,5), we can 
write 4,«(,,,) (i =1,4,5,6) by 1.(e),I.(,,)(i =1,4,5,6) as 

a1«(,") =It (e)(J4('r1) +Cd5("» +15(,,)/s(e), 

a4«(,") =14(e)(1t{,,) +C2/s("» + 15(e)/s("), 
(3.6) 

as(e,,,) = 1.(,,)/5«() 14(e)/s('1), 

ae((,,,) It (,,)/6«() It«()/s(,,). 
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Since we consider non-degenerate solutions, there are only two cases for Cl and C2 , 

one is C1 =C2 = 0, the other is C1 'I- 0 and C2 'I- O. And by solution transformation 
C, we can assume C1 C2 = -2 cos(C). 

1. 	The case Cl = C2 = 0 
For this case, we have 

1 - fl(e)f,,({) - fs(e)f6(e) =O. 

Equivalently, fie{) (i 1,4,5,6) can be parameterized as 

h(e) = (F(e) + l)G(e), 
f.({) = (-F(e) + l)/G(e), (3.1)
fs(e) = F(e)H(e), 
faCe) = F(e)/ H(e), 

where Fi G, H are arb,tary functions of one variable. And corresponding expressions 
of ",,(e, 11) (i =1,2"",6) are 

G(e) H(l1)
4l(e,11) = (F(e) + 1)(-F(11) + 1) G(11) + F( e)F( 11) H(e)' 


42(e,l1) = 43(e,11) = 1, 


G(l1) H(e)

a,,(e,l1) = (F(l1) + 1)(-F(e) + 1) G(e) + F(e)F(.,,) H(l1)' (3.8) 

H(e) H(l1)
4S(e, 11) =F(e)( -F(l1) + 1) G(.,,) - F(l1)( -F(e) + 1) G(e) , 


G(l1) G(e)

as({,l1) =F(e)(F(l1) +1) H(e) - F(l1)(F(e) +1) H(l1)' 

!
This solution is ca.lled Free-Fermion type solution because it satisfies the Free-Fermion 
condition (1.3). 

I· 
2. 	The case C1 'I- 0 and C2 'I- 0 

For this case. by solution transformation C. we can assume Cl = C2 -2 cos(C) 1: 
0, 

1- h(e)f.(e) - fs(e)fa({) -2cos(C)h(e)fs(e) = -2cos(C)f.({)fa({). (3.9) 

Since -2cos(C) 1: 0, 
fl(e)fs(e) = f,,(e)fa(e). (3.10) 

By fi(e) (i = can expressed as follows 

h(e) =H(e)/G({), f,,(e) =H(e)G(e), 
(3.11)

fs({) =F(e)G({), fa({) = F(e)/G({). 

Then we can rewrite (3.9) as 

H2(e) - 2cos(C)H({)F({) +F2U) - 1 = O. (3.12) 

Considering (3.12) as a second order equation of H(e), we have the solutions as 

H({) =cos(C)F(e) ± VI - sin2(C)F2(e)· (3.13) 

So we have following two sub-cases. 
Subcase 1. IT cos(C) = ±1, then =0, 

H({) = ±F(e) ± 1. 

After considering fi(e) (i = 1,4,5,6) and H(e),F(e) with the influence of solution 
transformations B,C,E and other equivalent conditions, we find that we need only 
assume 

cos(C) = I, H(e) =F(e) +1. 

Thus 
h(e) (F(e) + l)/G(e), !see) F(e)G(e), (3.14)
f.(e) = (F(e) + l)G(e), faCe) F(e)/G(e) , 

The solution of (3.1) is 

G(l1)
4l(e,l1) =(F({) - F(l1) + 1) G(e)' 

42({,11) =43({,11) = I, 

G({) (3.15)4,,(e .11) =(F(e) - F(l1) +1) G(l1) , 

4s({,l1) = (F({) - F(l1))G(e)G(l1), 

1 
aa(e, l1) =(F(e) - F(l1»··· ... 

Subcase 2. IT cos(C) 'I- ±1. then sin(C) 'I- O. Up to solution transformation E, we 
can replace F(e) by sin(F({))/ sin(C). Thus 

H(e) COS(~~:~~;(e)) ± cos(e) = sin(F({) ± C)/ sin(C). 

After considering the influence of solution transformations B,C,E and other equivalent 
conditions, we find that we need only assume 

H({) sin(F({) +C)/sin(C). 

Therefore 

h({) = sin(F(e) + C) fs(e) = sine F({) )G({) 
.sin(C)G(e) • (3.16)sin(C) 

f.(e) sm(F(e) + C)G(e) faU) = sin(F(e» 
sin(C) sineC)G({) I 
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The solution of (3.1) for this case is 

t ) _ sin(F(e) - F("I) + 'e) G("I) 
0.1 

( 
\, "I -sinCe) G(e)' 

a2(e, "I) = a3(e, "I) = 1, 

t ) _ sin(F(e) - F("I) +e) G(e) 
0.4 (\."1 - since) G("I)' (3.17) 

(
t ) _ sin(F(e) F("I»G(~)G() 

as \, "I - since) \ "I, 

sin(F(e) - F("I» .1 
a6(e,"I) = _._,"\ ",;\", __ \' 

where C is arbitrary constant. 
Therefore, up·to solution transformations A,B,C,D,E, any non-degenerate six-vertex 

type solution of YBE (3.1) with color parameters is equivalent to one of the three sets 
of basic solutions: (3.8), (3.15) and (3.17). 

Remark 1. If we take F(e) = e, G(e) = H(e) = 1 in (3.8), solution (3.8) becomes 

0.1(e, "I) =e - "I +1, 

a2(e,"I) = a3(e, "I) = 1, 

a4(e,"I) = "I - e +1, (3.18) 

a5(e,"I) = e -- "I, 

a6(e, "I} e - "I. 


If we take F(e) = sin(e)/ sin(C), G(e.) =since +C)/(sin(xi)+sin(e» and H(e) =1 
in (3.8), solution (3.8) becomes 

t )_sin(e-lI+C)
(0.1 \,"1 - sin(C) , 

a:t(e,"I) = a3(e, "I) = 1,. 
l )_ sin("I-e+C)

0.4 ( \,"1 - sin(C) , (3.19) 
sinCe "I)

as(e,"I)= sin(C) , . 

a6(e,"I) sin(e.-."I). 

If we take F(e) = e, G(e) =1 in (3.15), solution (3.15) becomes 

ala, 11) = e "1+ 1, 

a:l(e, lI) = a3(e, "I) =1, 

a..t(e,lI) = e - "1+ I, (3.20) .' 

as(e, lI) = e - "I, 

a6(eI 11) = e - 11· 


If we take F(e) = e, G(e) = 1 in (3.17), solution (3.17) becomes 

t )_ sin(e-"I+ e )
(0.1 \,"1 - sinCe) , 

a:t(e,"I) = a3(e, "I) = 1, 

t ) _ sinCe - "I + C)
0.4 (\,"1 - sin(C) , (3.21) 

sinCe - "I)
as(e, "I) = sineC) , 

sinCe - "I)
a6(e,"I)= since) . 

In (3.18), (3.19), (3.20) and (3.21), 4i(e,"I} (i = 1,2,···,6) are in forms of functions 
of two variables, but they can also be regarded as one-variable functions of e- "I. 
Therefore from three basic solutions (3.8), (3.15) and (3.17) of (3.1), we obtain the four 
basic solutions of (1.1). In fact, (3.20) is the solution giv. by Yang[l], (3.21) is just 
the trigonometric one for ice model [2], (3.21) and (3.19) arl'just the type-I and type-II 
six-vertex solutions given by Sogo et &1[121, (3.18) ca.n be obtained by taking limit in 
(3.19). 

Now that we have discussed the non-degenerate solution, we come to the degenerate 
six-vertex type solutions of Y-B equation (3.1). 

Case 1. If a,(e, 11) =a3(e,"I) 5: 0, then al(e, 11), a4(e, "I),a5(e, "I),a6(e,"I) can be 
arbitrary functions. 

Case 2. If a2(e, 11) == 0 or a3(e, "I) 0, then up to solution transformation A, we 
assume a:t(e, "I) :¢O, a3(e, 11) == 0 without losing generality, equation (2) is equivalent to 
following six equations: 

al(e, 11)0.1("1, A) - al(e, A) - ae(e, 11)0.5("1, A) =0, 
al(e, "I)as(e, A) - as(e, "I)al(e, A) =0, 
0.1("1, A)a.e(e, A) - 0.6("1, A)al(e, A) =0, (3.22)
a4(e, "I)a4(11, A) - a4(e, A) - as(e, 11)0.6(11. A) =0, 
a4(e.1I)a6(e. A) - a.e(e, "I)a4(e, A) = O. 
0.4("1, A)aS(e, A) - 0.5("1, A)a4(e, A) O. 

Subcase 2.1 If we have as(e, lI) =a.e(e, "I) == 0 additionally, then up to solution 
transformations, the basic solutions for this case are 

al(e,"I) £lII(e)/II("I), . 
a:l(e, lI) =1, (3.23)
a4(e, 11) =£4/4(e)f14("1), 

a3(e,"I) =a5(e, "I) =a6(e, 11) = 0, 


{ 

where II, 14 are arbitrary functions, El, £4 are 1 or O. 
Subcase 2.2 If we have as(e, lI) 5: 0 or a6(e, "I} 5: 0 additionally, then up to solu- . 

tion transformation A, we assume as(e, lI) =/. 0, ae(e, lI) 5: 0 without losing generality, 
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therefore for this case there are four sets of basic: solutions up to the solution transfor
mations: 

i) 41(~,11):: 43(e,11) =4.(e.11) = 46(e,11) == 0, 42(e, 11), 45(e, 11) are arbitrary func
tions, 

ii) 41({, 11) :: 43(e, 11) = as(e, 11) == 0, 4.({, 1I) = I.(e)f1.(11), 42({,11) = 1, 45(e. 11) = 
1.({)/5(1I). 

ill) 43(e,1I) =4.(e,1I) = as({, 11) == 0, 41({, 11) = ft({)/ ft(1I). 42(e, 11) = 1, 4s(e, 11) :: 
15({)f11(11), 

iv) 43(e,11):: 46(e, 11) == 0, 41({, 1I) = ft(O/ ft(1I), 4.(e, 11) 1.({)/I.(11),. 
42(e, 11) = 1, 45({. 11) =1.(0/11(11), 

where 11. I., Is are arbitrary functions. 
Subcase 2.3. IT we have 4S({, 1I) =/.0 and 46({, 11) =/.0 additionally, up to solution 

transformations, the basic solutions for this Case are 

la(e)
41(e.1I):: 16(11)(9({,11) + 1/2), 

42(e,1I) = 1. 

43(e, 11):: 0, 

15(e) (3.24)
4.(e,11) = 15(1I)(-g(e·1I) +1/2),./ 

Is(e)
4S(e, 11) = Cla(1I)(g(e, 11) +1/2), 

Cla({)
4a(e,1I)=- 15(11) (-9({,1I) +1/2), 

and 
CIC,. la({) , 

41(e.1I) = 1+ClC. 16(11) 

42(e, 11) = 1, 

43({.1I) = 0, 

CIC. 15(e) (3.25)
)4.(e.1I = 1 +C1C. 15(11)' 

c" Is({)()45 (.1I = 1 + CIC. 16(11)' 
C1 la({)

)4a(e,1I :: 1 +CIC" 15(11)' 

where 11, I., /5 are arbitrary one-variable functions. 9 is arbitrary two-variable function. 
CltC" are non-zero c~nstants. And solution (31) satisfies Free-Fermion condition (1.3). 

Case 3. If 42({. 11),0 and 43(e, 11) ,0, we also have following cases, 
Subcase 3.1 If we have 45(e,71) 46({,1I) == 0 additionally, then up to solution 

13 

transformations, the basic solution for this case is 

41(e, 11) = Il(e)/11(11), 
42(e, 11) :: 43(e, 11):: 1, 

(3.26)
4.({,11) = 1.({)/I.(1I),{ 
4S(e, 11) = as(e,1I):: 0, 

where 11, I. are arbitrary functions. 
Subcase 3.2 If we have 4,(e,11) == 0 or 4&(e,1I) == 0 additionally, then up to solu~ 

tion transformation A, we assume 4s(e, 11) =/. 0, 4&({,11) == 0 without losing generality, 
equation (2) is equivalent to following six equations: 

41({,1I)41(11,'\) - 41(e,'\):: 0, 

41({, 1I)4s(e,,\) - 45(e, 1I)41(e,,\) - 45(11,'\):;:: O. 

4.({. 11)4.(11.'\) - 4.({,'\) = 0, 

4.(11. '\)45(e,'\) - 45(11. '\)4,,(e,'\) - 4see.11):: O. 


Then up to solution transformations. the basic: solutions fot: this case are 

II(e)
41({, 11):: 11(11)' 

42(e.11) = 43(e.1I):: 1. 

II (11)' (3.27)
4.({.11) = l1(er 

15(e) 15(11) 
45(e.11) = 11(11) - Il(e)' 

4&({, 11):: 0, 

and 

( 
I: ). !tee)

41 fI.,1I :: 11(11)' 

42({,11) = 43ee, 11) = 1, 

I,,({) 
4,,({, 11) = 1.(11)' 

(3.28) 

( 
I: ) _ 

45 fI.,1I -
1,.(11)(1 - !t({)/,,(e)) 

Cft({) -
1,,(e)(1- ft('1)!4(1I» 

Cft(1I) • 

4&({,1I) == 0, 

where II, I,., Is are arbitrary functions, C is non-zero constant. And solution (3.27) 
satisfied Free-Fermion condition (1.3). 

Subcase 3.3 Ii we have 45({,11) =/0 and as(e,1I) =/0 additionally, there is no 
degenerate solution for this case. Otherwise, let 4. == 0 for example, then from equations 
(lAc) one can see at least one of 42({,1I),43({,11),45({,1I),46«(,1I) must be zero, that 
gives the contradiction, i.e. there are only non-degenerate solutions for this case. 
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In fact, from above discussion, we give a.ll the six-vertex type degenerate solution 
only with color parameters up to solution transformations A,B,C,D,E. 

Remark 2. In both references [8,9], a solution of equations (2) is mentioned and 
can be expressed in the notations of this paper as: 

p(e) 0 0 0 

p'(e) - 1
0 0

p('7)R=I I, (3.29)pee)
0 o . 0 

P('7) 
o __1_0 0 

P('7) 

If we let 

p'('7) + 1 1 pee) 
gee, '7) = 2(p2('7) -1)' fs(e) = r(O _ l' fs(e) C(p2(O 1)' 

in the degenerate basic solution (3.24) discussed in this paper, the above solution (3.29) 
is obtained. 

§4. Solutions of colored Yang-Baxter equation 

Based on the results of first three sections, we are going to give a.ll non-degenerate 
six-vertex type solutions of colored Yang-Baxter equation( 1.2). In section 2, we have 
already obtained the general form of solutions for the Yang-Baxter equation (1.2) in 
(2.2la) and (2.21b), Il,(u, e, '7) =113( u, e, '7) = 1. And in section 3, we present A.(e, '7) in 
(2.2180) and (2.21b) as solutions ofY·B equation only with colored parameters (3.1). So 
in order to construct a non-degenerate six-vertex type solutions of colored Yang-Baxter 
equation, what we remain to do is to find B.(z,y)(i 1,4,5,6). 

Based on the discussion in section 2, from (2.9) and (2.18), we have the expressions , 
of 4,(u,e,'7)(i = 1,2,,,,,6) as 

41(U,e,'7)= 

44(U,e,'7)= 

4S(u, e, '7)::: 

46(u, {, 71) = 

Cl(>')+C4(>') )
1l1(U+V,e,>.~ ( 44(V,'7,>')+ C5(>') 45(V, '7,>') 

+4S(V, '7, >.)46(u + v, e, >'), 

. ( Cl(>') + C4(>') )
44(U+V,e,>.) 41(V,'7,>')+ C6(>') a.s(v,'7,>') (4.1) 


+4S(U + V, {, >')46(V, '7, >'), 


44(V, '7, >')Ils(U + V, {, >.) - 44(U + V, e, >')4S(V, '7, 


4t(V, '7, >')as(u + V, {, >.) - a1(u + v, e, >')a.s(v, '7, >'), 


Since A,(e, '7) = as(O,e, '7) (i =1,4,5,6), from the initial values of as(u,e, '7), we 
have . 

A1(e,e) =A4(e,e) =1, As(e,O Ae(e,e) =O. 

Of a.ll the solutions, only solutions (3.8), (3.15), (3.17), (3.26), (3.27) and (3.28) satisfy 
these conditions. And A,(e,'7) should also satisfy (4.1) with u = V = 0 and 4i(O,e,'7) 
replaced by A.(e,'7) (i =1,4,5,6). Therefore, only four basic solutions (3.8), (3.15), 
(3.17) and (3.27) are suitable to be chose as A.(e, '7) (i::: 1.,4,5,6). 

Next, we are going to give Bi(e,.,,) (i::: 1,4,5,6). Firstly, from the differential equa
tions (2.15) and the general form of solutions (2.2180), (2.21b), B,(e, '1) (i ='1,4,5,6) 
can be expressed as . 

• 

B1(e,'7) = cl(.,,)At(e,'7)- cs('1).4e(e,'7), 

B4(e, '7) =C"('7)A4(e,'7) ee('1)As(e,'1), (4.2)
Bs(e, '7) = -c4('7)As(e,'7) + cs('1)A4(e,'7), 
Bs(e, '7) = -c1('7)As(e, '7) + cs( .,,).At(e, ~). 

Secondly, by letting v::: 0 in (4.1) and from the general form ofsolutions, we have 

C1(>') + C4(>') )
B1(e,'7)=B1(e,>.) ( A4('7,>')+ cs(>') As('7,>') + Bs(e,>')As('7,>'), 

Cl(>') +c,,(>.) )
B4(e,'7)=B4(e,>') ( A1('7,>')+ ce(>') As('7,>') + Bs(e,>')As('7,>'). (4.3) 

Bs(e, '7) = Bs(e. >')A4('7, >.) - B4(e, >'lAs('7, >'), 

B6(e, '7) = B6 (e, >')A1('7, >.) - B1(e, >')Ae('7, >'), 

We will first use (4.2) to obtain B.(e,O) from A.(e,O), then use (4.3) to obtain 
B.(e, '7) from A.(e,O) and B.(e,O) (i ::: 1,4,5,6). For simplicity, we denote c, for c,(O) 
(i = 1,4,5,6). All the solutions can be classified into two type. Solutions satisfying 
Free·Fermion condition (1.3) are called the Free-Fermion type solutions, and others are 
called thE! Baxter type solutions. 

Free-Fermion type solutions 

. From (3.8) and (3.27), we can obtain four basic solutions satisfying (1.3). Since 
A,(e, '7) of (3.8) and (3.27) satisfy the Free-Fermion condition, Cl -C4' By solution 
transformation C, we can assume Cs = Ca. If the solutions are in the form as (2.2180), 
i.e. 


II,(U, e, '7) =a3(u, {, '7) =1, 
 (4.4)
as(u, (, '7) =A,(e, '7) cosh(u) + B,«(, '7) sinh( u), i = 1,4,5,6, 

c~ c~ 1, we denote 

Cl = Col = - cosh(C), C5 = (6 = (4.5) 

If the solutions are in the form as (2.21b). i.e. 

4,(U,e, '7) aJ(u,e, '7) =1, as(u,e, '7) = Ai(e,'7)+B.(e,71)u,i 1,4,5,6, (4.6) 
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,~ - ,~ ::;; 0, by solution transformations we can assume 

'I = '5 ='& = 1, C4::;;-1. (4.7) 

For solution (3.8), 

Al(e.O) = (F(e) + l)G(e). A4(e, O) =(FU) + l)/G(O. (4.8)
AsU. 0) = FU)B(e), As(e, O) =F(e)!HU), 

and 
GU) B(l1)

AI U,l1) (FU) +1)(-F(l1) + I)G(l1) +F«)F(l1) Bur 

G(l1) H(e)
A4(e,l1) = (F(l1) +1)(-FU) +1) G(e) +FU)F(l1) H(l1)' 

(4.9)
H(e) H(l1)

As(e,l1) = F(e)( -F(l1) +1) G(l1) - F(l1)( -Fa) +1) GU)' 

G(l1) GU)
A&(e, 11) = FU)(F(l1) + 1) H(e) - F(l1)(FU) + 1) B(l1)' 

From (4.8) and (4.9), we ha.ve two basic solutions up to solution transformations. One 
is in the form (4.4) with A.(e,l1) (i::;; 1,4,5,6) expressed by (4.9) and B,(e,l1)(i 
1,4,5,6) by 

,.-/ 

Bl(e, 11) = 	 (1 +F(e))(l ... F(l1)) ~~~~ +F(OF(l1) !~;D cosh(C) 

+(-Fa)(I- F(l1» G(l1{H(e) +(1 +F(O)F(l1)G(OH(l1») sinh(C). 

B4(e, 11) = 	 (-(1 -F(e»(1 +F(l1» ~~;~+ Fa)F(l1) !~!D cosh(C) 

+ (-F(el(1 +F(l1»G(l1)H(e) +(1- F(e»F(l1) G(e)I (l1») sinh(C),H

B5U,11) = (FU)(1 F(l1))~~~'" F(l1)(I- F(e»~~;n cosh(C) 

+ (1 F(e»{I- F(l1» G(e{G(l1) + FU)F(l1)B{e)H(l1») sinh(C), 

Be(e, 11) = 	 (-FU)(1 +F(l1» ~~~~ ... F(11)(1 +F(e» ;~~D coah(C) 

+ (;~!~i~~) +(1 +F(e»(l +F(l1»GU)G(l1») sinh(C). 

(4.10) 
The other is in the form (4.6) with AiU,l1) (i ::;; 1,4,5,6) expressed by (4.9) and 

17 

B'«,l1) (i = 1.4.5,6) by 

G(O B(l1)
B1(e, l1) = (1 +F(e))(I- F(l1» G(l1) +F(e)F(l1) B(O 


1

+- FU)(l - F(l1» G(l1)BU) +(1 +F(O)F(l1)G(e)H(l1), 

G(l1) HU)
B4(e.11) = -(1 - F(e»(1 + F(l1» Ga) +Fa)F(l1) B(l1) 


. 1

+- F(O(1 +F(T7»G(l1)Ha) + (1 - F(e»F(l1b:;7J:'\YrI ..\J 

(4.11)
B(e) H(l1

B5(e.• 11) = FU)(I- F(l1» G(l1) - F(l1)(I- Fa» Gce) 


1 

+(1 ... FU»(1- F(l1» Gce)G('l) +F(e)F(l1)B(e)H(l1), 

B6 (e.11) = 	 -F(e)(1 +F(l1» ;~~~ - (1 +Fa»F(l1) ;~~ 

F(e)F(l1) 


+ HU)H(l1) +(1 +F(e»(1 +F(l1»G(e)G(l1). 

where F(e), GU) and H(e) are arbitrary functions with F(O) =0, G(O) = 1. 
For solution (3.27) 

1 . 
AIU,O)::;; F(e), A4U,0) = F(el' AsU,O) =GU), Aa(e, O) = 0, (4.12) 

and 
F{e) 

A1(e, 11) = F(l1)' 

F(l1)
A4(e, 11) = FU)' (4.13) 

Ga) G(l1) 
A5(e, l1) = F(l1) Fa)' 

AsU,l1)::;; 0, 

From (4.12) and (4.13), we have two basic solutions up to solution transforma.tions. 
One is in the form (4.4) with A.(e,l1) (i = 1,4,5,6) expressed by (4.13) and B,(e,l1) 
(i = 1,4,5,6) by 

B1(e,11) :~~~ cosh(C) +F(e)G(l1) sinh(C), 


F(l1) .

B4 «(.l1) 	 F(e) coah(C) - F(l1)G(e) smh(C), (4.14) 

( 
GU) G(l1») (1 ) . B5(e,l1) = F(l1) + F(e) cosh(C) + FU)F(l1) +G(e)G(l1) smh(C), 


B6a,l1) = F(e)F(l1)sinh(C). 
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The other is in the form '(4.6) w,ith Ai(e,1J) (i = 1,4,5,6) exp~essed by (4.13) and 
Bi(e,1J) (i =1,4,5,6) by 

B1(e,1J) = ~i!~+ F(e)G(1J), 


F(1J)

B,,(e,1J) = - F(e) - F(1J)G(e), 

(4.15) 
G(e) G(1J) 1 

Bs(e,1J) = F(1J) + F(e) + PU'\ p/_\ + G(e)G(1J). 

B,(e,1J) = F(e}F(1J). 

where F(e) and G(e) are arbitrary functions with F(O) = I, G(O) =O. 
The above four basic solutions satisfy the Free-Fermion condition (1.3). 

Baxter type solutions 

From (3.15) and (3.17), we can obtain two basic solutions. Since Ai(e ,1J) of (3.15) 
and (3.17) do not satisfy the Free-Fermion condition and c~ = C~, Cl + C4 :f:. 0 and 
therefore Cl = c". By solution transformation C, we can assume Cs =Ce. 

For solution (3.15), (Cl +c,,)/es =2 cos(C) =2, cf-c~ =0, therefore the six-vertex 
type solution corresponding to (3.15) must be in the form of (4.4). And 

F(e) +,1
A1(e,O)'= ~. A..(e,O) =(F(e> + l)G(O, 

i: F(e) (4.16) 
As(e,O) = F(e}G(~), Ae(e,O) = G(e)' 

and 
G(1J)

A1(e,1J) =(F(e) - F(1J) + 1)G(e)' 

, G(e)
A,,(e,1J) = (F(e) - F(1J) + 1)G(1J) , 

(4.17) 
As(e,1J) = (F(e) F(1J»GU)G(1J), 

1 
Ae(e,1J) = (F(e) - F(1J» G(e)G(1Jr 

From (4.16) and (4.17), we have one basic solutions up to solution transformations as 

G(1J)
IIt(U,e,1J) = (1 +~ + F(e) - F(1J» G(O' 

112(U,e,1J) 113(U,e,1J)= I, 

G(e)
1I,,(U,e,1J) =(1 +u + F(e) - F(1J» G(1J) , (4.18) 

IIs(U,e,1J) =.(u + Fee) - F(1J»G(e)G(1J), 

1
Be(u,e,1J) =(u + F(e) F(1J»~...." " 
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where F(e) andG(e) are arbitrary functions with F(O) =0, G(O) =1. 
For solution (3.17), (C1 + c,,)/cs = 2cos(C) :f:. ±2, c~ - c~ :f:. 0, therefore the six· 

vertex type solution corresponding to (3.17) must be in the form of (4.6). And 

AI(e. 0) = sin(F(e) + C) A..(e.O) =sin(F(e) +C)G(e) 
sin(C)G(e) , sin(C} , 

(4.19)
As(e. O} = sin(F(e»G(e) Ae(e, 0) = sin(F(e)) 


sin(C) • sin(C)G(e)' 


and 
A (t ) =sin(F(e) - F(1J) +C) G(1J) 

1 'O,1J sineC) G(e> I 

A (t ) _ sin(F(e) - F(1J) + C) G(e) 
4 'O,1J - sin(C) G(1J) , 

(4.20)
A (t ) = sin(F(e) - F(1J» G(t)G( )

s 'O,.1J sin(C) '0 1J I 

. sin(F(e) - F(1J» 1 
A,(e,1J) = sin(C) G(e)G(~)' 

where C satisfy (Cl +c4)/eS =2cos(0):f:. ±2. 
From.( 4.19) and (4.20), we have one basic solutions up to solution transformations 

as 
t )_ sin(u+F(e)-F(1J}+C}G(1J)(lit U,'O,1J - sin(C) G(e)' 

112(U,e,1J) =113(U,e,1J} =I, 

t ) _ sin(u +F(e) - F(1J) +0) G(e)(114 u,,,,,1J - sin(O) G(1J) , (4.21) 

( t ) _ sin(y +F(e) - F(1J»G(t)G'( )
115 u,,,,,1J - since) '" 1J I 

( e ) - sin(u +Fee) - F(1J» 1 

ae u, ,1J - sin(C) G(e}G(1J) 


where F(e}, Gee) are arbitrary functions with F(O) = 0, G(O) = 1. 
If we let F(e> =e, GU} = I, '11 = e-1J'in (4.18) and (4.21), (4.18) and (4.21) become 

the solutions with two spectral parameters u and 11. These solutions are essentially same 
as the solution in ice model. They are called Baxter type solutions. 

Therefore, up to solution transformations A,B,C,D,E, any non-degenerate six-vertex 
type solution of colored YB E (1.2) is equivalent to one of the six sets of basic solutions: 
four free-fermion type solutions by (4.4), (4.6), (4.9), (4.10), (4.11), (4.13), (4.14) and 
(4.15) and two Baxter type solutions by (4.18) and (4.21). 

Remark 3. In [81, a solution of colored Yang-Baxter equation is mentioned and 
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can be written in the notation of this paper as 

'lrU. • 'lrU 
at(u, e,7J) = cosh{e - 7J) cos(2K) + smh({ + 7J) sm(2K)' 

a2(U,e,7J)= a3(U,e,7J)= 1, 

'lrU • 'lrU 
a4{ '1£, e, 7J) = cosh(e 7J) cos(2K) - sinh{e + 7J) sm( 2K)' (4.22) 

as{u, e,7J) = sinh(e - 7J) cos(;;) + cosh({ + 7J) sine;;), 

as( '1£, e, 7J) - sinh(e 7J) cos(;;) + cosh(e + 7J) sin( ;;), 

By taking solution transformation E to the coefficient of spectral parameter '1£ and 
changing cos, sin to cosh, sinh, (4.22) is equivalent to 

at(u,e,7J) cosh({ 7J)cosh{u) isinh(e+7J)sinh(u), 

a2(U,e,7J)=a3(u,{,7J) I, 

a4( u, e, 7J) =cosh(e - 7J) cosh( '1£) + i sinh(e + 7J) sinh{ '1£), ( 4.23) 

as(u,e,7J)=sinh{e 7J)cosh(u) icosh(e+7J)sinh(u), 

as(u,e,7J) = sinh(e -7J)cos(;;) icosh(e + 7J)sinh(u), 

By letting 

1 - isinh{e)G(e) = cosh(e)F(e) = i sinh(e), H(e) = -i,
cosh(e)

sinh(C) =_1/ isinh(e)
cosh(C) = 0, 

we can derive (4.23) from (4.4), (4.9) and (4.10). 
Remark 4. In [lll Yang-Baxteriution of colored R-matrix was discussed and 

some six-vertex type solutions were presented as examples. One of the solution can be 
expressed as foUows in the notations of this paper with some correction to the misprints: 

at(u,e,7J) f{e,7J)(q q-1eu 
), 


a2(U,e, 7J) = f(e,7J)eU wg- t {e)g(7J)a(e)a- t {7J), 

a3( u,e, 7J) f(e,7J)wg(e)g-I(7J), 


(4.24)
a4(U,e,7J) = f{e,7J)a(e)a- 1(7J)(q q-1eu 

), 

as(u,e,7J)= f(e,7J)a{e){l eU 
), 

Uas(u,e,7J) f{e,7J)a- 1(7J)(I- e ), 

where w = q q-l. By taking solution transformation 0 with J.L -1/2 and fee) 
g(e)a- I 

/ 2{e) ,solution transformation B with 

2 2feu, e, 7J) rl(e, 7J)w- te-u / a -t/2({)a1 / ( 71), 

21 

and solution transfomration E with p. = -2, fee) =e. solution (4.24) is equivalent to 

sinh(u+ C) la(7J) 
at(u,e,7J)= sinh(C) a(e)' 

a2(u, e,7J) =a3(u, e, 7J) = 1, 

sinh(u + C) ja(e) 
a4(U,e,7J)= sinh(C) a(7J)' (4.25) 

sinh(u) J (C)a( ) 
as(u,e,7J)=sinh(C) a .. 7J, 

sinh(u) J 1 
as(u,e, 7J) = sinh(C) a(e)a(7J)' 

where q = eC . By letting 

F({) = I, G{e) = /a{e), 

we can derive (4.25) from (4.21). Similarly, other six-vertex type solutions in can 
also be derived from six basic solutions. 
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