2 Dimensional Cyclic Representation of
$U_q \hat{s}l_2$ and 8 Vertex Ising Model

H. Yan and J. Zhang

P.O.Box 2735, Beijing 100080, The People's Republic of China

Telefax : (86)-1-2562537
Telex : 22040 BAOAS CN

Telephone : 2568348
Cable : 6158
2 Dimensional Cyclic Representation of $U_q(\hat{sl}_2)$ and 8 Vertex Ising Model

H. Yan and J. Zhang
Institute of Theoretical Physics
P. O. Box 2735
Beijing 100080, P. R. China
November 14, 1994

Abstract

We explicitly construct a two dimensional cyclic representation of $U_q(\hat{sl}_2)$ and its intertwiner. The representation is not evaluation representation. The intertwiner turns out to be R-matrix for eight vertex Ising model.

Much attentions is being paid to the search for a quantum group like structure whose intertwiner R-matrix for different irreducible representations corresponds to the elliptic 8-vertex solutions of the Yang-Baxter equation[1]. Recently such a quantum group interpretation has been found for the free fermion 8-vertex model in magnetic field, introduced in[2]. Its Boltzmann weights matrix[3, 4] acts as an intertwiner for the affinization of a quantum Hopf deformation of the Clifford algebra in 2 dimensions, $CH_2(2)$.[5]. In this paper, we will be concerned with the 2-dimensional cyclic representations of $U_q(\hat{sl}_2)$, i.e., the representations when $q = i$. We show that the intertwiner turns out to be the R-matrix for 8-vertex Ising model.

1 The Algebra $U_q(\hat{sl}_2)$

First let's agree upon the notations. The Cartan matrix for affine $U_q(\hat{sl}_2)$ is

\[
\begin{pmatrix}
2 & -2 \\
-2 & 2
\end{pmatrix}
\]

which is generated by $\{e_i, f_i, K_i^+, K_i^-, z_i\}$, with the algebraic relations

\[
\begin{align*}
[(e_i, e_j)] & = 0, \quad \forall e_i \in U_q(\hat{sl}_2), \\
K_i K_j^+ & = K_j^+ K_i, \quad K_i = 1, \\
K_i K_j^{+q} & = K_j^{+q} K_i, \quad \forall i, j, \\
K_i e_j & = q^{\alpha_{ij}} e_j K_i, \\
K_i f_j & = q^{-\alpha_{ij}} f_j K_i, \\
[e_i, f_j] & = \delta_{ij} K_i - K_i^{-1}, \\
\sum_{\nu} (-1)^{\nu} \left[\begin{array}{c} \nu \\ \nu + 1 \end{array} \right] q_{\nu} & = 0, \\
\sum_{\nu} (-1)^{\nu} \left[\begin{array}{c} \nu \\ \nu + 1 \end{array} \right] q_{\nu}^{i} & = 0
\end{align*}
\]

where the central elements z_is due to quantum double construction. The co-multiplication as a Hopf structure map is defined as follows

\[
\Delta(e_i) = e_i \otimes 1 + z_i K_i \otimes e_i, \\
\Delta(f_i) = f_i \otimes K_i^{-1} + z_i^+ \otimes f_i, \\
\Delta(K_i) = K_i^{\pm q} \otimes K_i, \\
\Delta(z_i) = z_i^{\pm q} \otimes z_i.
\]

The above definition gives a family of algebras with different value of q.

1.1 Algebra $U_q(\hat{sl}_2)$ at $q = i$

In the rest of this paper, we will be concerned with a special member of this family, i.e., the one with $q = i$. For convenience we make an isomorphic transformation of generator f_i, and we introduce new central elements ϕ_i and
Cl, just for the convenience of intertwiner construction, so that the algebraic relations read

\[
[z_i, z_j] = [z_i, z_k] = 0, \quad \forall z_i, z_j, z_k \in U_q, \quad E_i K_j = K_j E_i, \quad K_i K_j = K_j K_i, \\
K_i^p K_j^q = K_j^q K_i^p, \quad \forall i, j, \quad K_i^0 = K_i, \quad K_i^1 = K_i, \quad K_i^{p+1} = K_i K_i^p, \quad \forall i, j.
\]

It can be seen that \(E_i\) and \(E_j\) do not commute, nor do \(F_i\) and \(F_j\). The relations in (2) imply

\[
\begin{align*}
[E_i^m, E_j] &= (-1)^m E_i^{m-1}[E_i, E_j] E_i^{m-1}, & (i \neq j, m \geq 1), \\
[F_i^m, F_j] &= (-1)^{-m} E^m [F_i, F_j] E^{-m}, & (i \neq j, m \geq 1), \\
[F_i^m, E_j] &= (-1)^{-m} E^m [F_i, E_j] E^{-m}, \quad \forall i, j, \quad m \geq 1.
\end{align*}
\]

with Serre relations changed into

\[
[E_i^m, E_i] = [F_i^m, F_i] = 0, \quad (i \neq j).
\]

1.2 The Quotient Algebra \(U_q\)

However in the following we will take a quotient such that

\[
[E_i, z] = [F_i, z] = 0, \quad \forall z \in U_q.
\]

This gives us a new algebra \(U_q\) with central subalgebra

\[
Z = \text{gen} \{1, z_i, c_i E_i^1, F_i^1, K_i^1, i = 0, 1\}.
\]

It can be seen that at bialgebra level, \(Z\) remains to be central subalgebra.

2 \(U_q\) and Its Cyclic Representations

To construct the 2-dimensional cyclic representation, we introduce the Weyl algebra generated by two operators \(X\) and \(Z\), with the following relations

\[
X^2 = Z^2 = 1, \quad ZX = -XZ.
\]

The matrix representation we are to apply is

\[
Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.
\]

The Weyl realization of the algebra after the change of the parameters is given as follows

\[
\begin{align*}
F_i &= (i - XZ_{ij})/(2a_0 a_1 a_2), \\
F_0 &= (iX_{ij} - Z_{ij} X_{ij})/(2a_0 a_1 a_2), \\
E_i &= i(X_{ij} - Z_{ij} X_{ij})/2, \\
E_0 &= i(X_{ij} - Z_{ij} X_{ij})/2, \\
K_1 &= a_1 Z_{ij}, \\
K_0 &= -i a_2 Z_{ij}, \\
E_{ij} &= a_1 (a_2 (a_0 a_1 X_{ij} + a_1 a_2 X_{ij}))(a_0 a_1 a_2), \\
E_{ij} &= a_0 (a_1 (a_2 (a_0 a_1 X_{ij} + a_1 a_2 X_{ij}))(a_0 a_1 a_2)), \\
K_1 &= a_1 Z_{ij}, \\
K_0 &= -i a_2 Z_{ij}, \\
K_{ij} &= a_1 (a_2 (a_0 a_1 X_{ij} + a_1 a_2 X_{ij}))(a_0 a_1 a_2), \\
K_{ij} &= a_0 (a_1 (a_2 (a_0 a_1 X_{ij} + a_1 a_2 X_{ij}))(a_0 a_1 a_2)), \\
\end{align*}
\]

where

\[
a_0 = \sqrt{a_0 a_1 a_2}, \quad a_1 = \sqrt{a_0 a_1 a_2}.
\]

We stress that this representation is evaluation representation in that \(K_0 K_1 = 1\), and

\[
E_{ij} = (k_0 a_0 a_1 a_2 X_{ij}) E_{ij}, \quad F_{ij} = \frac{k_0}{a_1 a_2} E_{ij}.
\]

3 Coproducts

The coproduct map on each generator is defined as follows

\[
\begin{align*}
\Delta(E_i) &= E_i \otimes 1 + z_i K_i \otimes E_i, \\
\Delta(F_i) &= F_i \otimes 1 + z_i^2 K_i \otimes F_i, \\
\Delta(K_i) &= K_i \otimes K_i, \\
\Delta(z_i) &= z_i \otimes z_i, \\
\Delta(c_i) &= c_i K_i \otimes 1 - c_i 1 \otimes K_i, \\
\Delta(c_i) &= \frac{K_i^2 \otimes c_i - K_i \otimes K_i^2}{K_i \otimes K_i - 1 \otimes 1}.
\end{align*}
\]
Coproducts of generators are given explicitly in the following, where we neglect global coefficients that are not concerned with our construction of intertwiner,

$$\Delta E_1 = X_1y_1 + Z_1X_1y_1\mu_{11,10} - Z_1X_1y_1\mu_{11,11} - Z_2X_1y_1\mu_{11,12} - Z_2X_1y_1\mu_{11,13}$$
$$\Delta E_2 = X_1y_1\mu_{11,11} + Z_1X_1y_1\mu_{11,11} - Z_1X_1y_1\mu_{11,12} + Z_2X_1y_1\mu_{11,12} + Z_2X_1y_1\mu_{11,13}$$
$$\Delta E_3 = X_1y_1\mu_{11,12} + Z_1X_1y_1\mu_{11,12} - Z_1X_1y_1\mu_{11,13} + Z_2X_1y_1\mu_{11,13}$$

where $Z_1 = Z \otimes 1$, $Z_2 = 1 \otimes Z$ and similar for X_1 and X_2.

4 Intertwiner

- The curve C_{10} is described by x_{10}, y_{10}, μ_{10}.
- The curve C_{11} is described by x_{11}, y_{11}, μ_{11}.
- The curve C_{20} is described by x_{20}, y_{20}, μ_{20}.
- The curve C_{21} is described by x_{21}, y_{21}, μ_{21}.

A coproduct representation is on product curve $V = V_{10,11} \times V_{20,21}$ where $V_{10,11} = C_{10} \times C_{11}$ and $V_{20,21} = C_{20} \times C_{21}$. Therefore $V = (C_{10} \times C_{11}) \times (C_{20} \times C_{21})$.

1. Curve conditions

$$\rho_2^2 = \frac{x_{22}^2 - k}{2x_{22}^3 - 1}, \quad \rho_1^{'2} = \frac{k'}{1 - k x_{22}^3},$$

where $k^2 = 1 - k^2$ and k, k' are conjugate elliptic norms.

2. Local intertwiner (I): 1, 0 \leftrightarrow 2, 1

$$S_{10,21} = 1 + x_1X_2, \quad s_1 = \frac{\mu_{21,10} + \mu_{12,10}}{\mu_{12,10} - \mu_{12,10}}$$

3. Local intertwiner (II): 1, 0 \leftrightarrow 2, 0

$$T_{10,20} = 1 + z_2Z_1, \quad t_2 = \frac{\rho_{21,0} + \rho_{12,0}}{\rho_{12,0} - \rho_{12,0}}$$

4. Local intertwiner (III): 1, 1 \leftrightarrow 2, 1

$$T_{11,21} = \frac{\rho_{11,1} + \rho_{12,1}}{\rho_{12,1} - \rho_{12,1}}, \quad t_1 = \frac{\rho_{11,1} + \rho_{12,1}}{\rho_{12,1} - \rho_{12,1}}$$

5. Local intertwiner (IV): 1, 1 \leftrightarrow 2, 0

$$S_{11,20} = 1 + z_2X_1, \quad s_2 = \frac{-\rho_{20,2} - \rho_{12,2}}{-\rho_{12,2} + \rho_{12,2}}$$

Global intertwiner reads

$$R(1,2) = S_{11,20}T_{11,21}S_{11,20}.$$

We list the effect of the actions of each local intertwiner $S_{10,11}$, $T_{11,21}$, $T_{10,20}$, and $S_{11,20}$ consecutively as follows.

Coproduct of E_1 is mapped consecutively from ΔE_1 to $\Delta E_1'$, $\Delta E_1''$ and finally $\Delta E_1'''$:

$$\Delta E_1 = X_1y_1 + Z_1X_1y_1\mu_{11,10} - Z_1X_1y_1\mu_{11,11} - Z_2X_1y_1\mu_{11,12} - Z_2X_1y_1\mu_{11,13}$$

$$\Delta E_1' = X_1y_1\mu_{11,11} + Z_1X_1y_1\mu_{11,11} - Z_1X_1y_1\mu_{11,12} + Z_2X_1y_1\mu_{11,12} + Z_2X_1y_1\mu_{11,13}$$

$$\Delta E_1'' = X_1y_1\mu_{11,12} + Z_1X_1y_1\mu_{11,12} - Z_1X_1y_1\mu_{11,13} + Z_2X_1y_1\mu_{11,13}$$

$$\Delta E_1''' = X_1y_1\mu_{11,13} + Z_1X_1y_1\mu_{11,13} - Z_1X_1y_1\mu_{11,14} - Z_2X_1y_1\mu_{11,14}$$

Coproduct of E_2 is mapped into:

$$\Delta E_2 = X_1y_1 + Z_1X_1y_1\mu_{21,20} + Z_2X_1y_1\mu_{21,21} + Z_2X_1y_1\mu_{21,22}$$

$$\Delta E_2' = X_1y_1\mu_{21,21} + Z_1X_1y_1\mu_{21,21} - Z_1X_1y_1\mu_{21,22} + Z_2X_1y_1\mu_{21,22}$$

$$\Delta E_2'' = X_1y_1\mu_{21,22} + Z_1X_1y_1\mu_{21,22} - Z_1X_1y_1\mu_{21,23} - Z_2X_1y_1\mu_{21,23}$$

$$\Delta E_2''' = X_1y_1\mu_{21,23} + Z_1X_1y_1\mu_{21,23} - Z_1X_1y_1\mu_{21,24} - Z_2X_1y_1\mu_{21,24}$$
This condition is satisfied because of the form of the intertwiner in equation (3).

$$\Delta \Phi = X_2 p_{11}(u) X_1 X_2 p_{12}(u) X_1 X_2 p_{13}(u) X_1 X_2 p_{14}(u) X_1 X_2 p_{15}(u)$$

$$+ X_2 X_2 p_{21}(u) X_1 X_2 p_{22}(u) X_1 X_2 p_{23}(u) X_1 X_2 p_{24}(u) X_1 X_2 p_{25}(u)$$

$$\Delta \Phi^I = X_2 p_{11}(u) + X_1 X_2 p_{12}(u) + X_1 X_2 p_{13}(u) + X_1 X_2 p_{14}(u) + X_1 X_2 p_{15}(u)$$

$$\Delta \Phi^II = X_2 p_{11}(u) + X_1 X_2 p_{12}(u) + X_1 X_2 p_{13}(u) + X_1 X_2 p_{14}(u) + X_1 X_2 p_{15}(u)$$

$$\Delta \Phi^IV = X_2 p_{11}(u) + X_1 X_2 p_{12}(u) + X_1 X_2 p_{13}(u) + X_1 X_2 p_{14}(u) + X_1 X_2 p_{15}(u)$$

Coprodct of F is mapped into:

$$\Delta F = X_2 p_{11}(u) X_1 X_2 p_{12}(u) X_1 X_2 p_{13}(u) X_1 X_2 p_{14}(u) X_1 X_2 p_{15}(u)$$

$$+ X_2 X_2 p_{21}(u) X_1 X_2 p_{22}(u) X_1 X_2 p_{23}(u) X_1 X_2 p_{24}(u) X_1 X_2 p_{25}(u)$$

$$\Delta F^I = X_2 p_{11}(u) + X_1 X_2 p_{12}(u) + X_1 X_2 p_{13}(u) + X_1 X_2 p_{14}(u) + X_1 X_2 p_{15}(u)$$

$$\Delta F^I = X_2 p_{11}(u) + X_1 X_2 p_{12}(u) + X_1 X_2 p_{13}(u) + X_1 X_2 p_{14}(u) + X_1 X_2 p_{15}(u)$$

$$\Delta F^IV = X_2 p_{11}(u) + X_1 X_2 p_{12}(u) + X_1 X_2 p_{13}(u) + X_1 X_2 p_{14}(u) + X_1 X_2 p_{15}(u)$$

Free fermion condition is satisfied

$$R_1 R_2 + R_2 R_3 = R_4 R_5 + R_5 R_4 .$$

This condition is satisfied because of the form of the intertwiner in equation (3).

The explicit expression for the non-zero elements of the R-matrix reads

$$R_{i,j} = \begin{cases} 1 + tsp_{13} & i = j = 1 \1 + tsp_{12} & i = 1, j \neq 1 \1 + tsp_{32} & i = 2, j = 1 \1 + tsp_{31} & i = 2, j \neq 1 \1 + tsp_{24} & i = 3, j = 1 \1 + tsp_{43} & i = 3, j \neq 1 \1 + tsp_{25} & i = 4, j = 1 \1 + tsp_{54} & i = 4, j \neq 1 \end{cases}$$

5 8-Vertex Ising Model

To parameterize the intertwiner into elliptic functions, we set

$$\hat{x}(u) = \left(s(u) \sqrt{\beta} \right)^{-1} , \quad \hat{y}(u) = \left(s(u) \sqrt{\beta} \right)^{-1} ,$$

$$\mu(u) = \sqrt{\beta} \delta(u), \quad \nu(u) = \sqrt{\beta} \delta(u),$$

$$\hat{\mu}(u) = \sqrt{\beta} \delta(u), \quad \hat{\nu}(u) = \sqrt{\beta} \delta(u),$$

$$\nu(u) = \sqrt{\beta} \delta(u), \quad \nu(u) = \sqrt{\beta} \delta(u),$$

where we applied short notations such as $s(u) = \frac{m(u)}{m(1)}$. Please note that w_i ($i = 1, 2, 3$) are independent parameters. As a special case, we further set

$$w_3 = w_2 = -2k', \quad w_1 = w_2 - 2ik' + u ,$$

we get the intertwiner as

$$\hat{R}(u) = \frac{1 + c(u)}{4} \left[1 + (k \mu(u) - m(u)) X \otimes X \left(1 + \frac{m(u) - c(u)}{2m(u)} \right) \right]$$

$$\otimes \left(1 - \frac{k \mu(u) - m(u)}{2m(u)} \right) \left[1 + (k \mu(u) + m(u)) X \otimes X \right] ,$$

which is nothing but the R-matrix for 8-vertex Ising model

$$\hat{R}(u) = \frac{1 + c(u)}{4} \left[\begin{array}{cccc} c(u) & 0 & 0 & k \mu(u) c(u) \\ 0 & 1 & \frac{m(u)}{2m(u)} & 0 \\ 0 & \frac{m(u)}{2m(u)} & 1 & 0 \\ k \mu(u) c(u) & 0 & 0 & c(u) \end{array} \right]$$

where g is a gauge parameter

$$g = -k - ik' .$$
6 Acknowledgements

We would like to thank H. Y. Guo for helpful discussions. One of the authors (H. Y.) would like to thank M. Kashiwara, T. Miwa, M. Jimbo of Kyoto University for drawing his attention to this interesting topic, and their numerous discussions and stimulating suggestions. This work was started during his visit at RIMS of Kyoto University as a postdoctor under the financial support from Japan Society for the Promotion of Science (JSPS) which is also gratefully acknowledged.

References