gy -, 7

= /7.

S
e

é

—_,
VAR
\\

T

Foarmilab Uil
|

|
|
|
|
i
!
{

INSTITUTE OF THEORETICAL PHYSICS

FERMILAE
APR 7 1995

LIBRAD " *

0 1160 00413b8 b

ASITP

ACADEMIA SINICA

) AS-TTP-04-
November 19094

2-D Cyclic Representations of U,(sl(2)),

C-G Coefficients and A Free Fermion

8- Vertex Model

i‘.n.-ne-u‘n»\ i
’ ‘_\ o -
N ?' M
" ._?__AM — i
; T
R
! H H
! S !
[ : 1
S — N S .,.:ii
! o !
4 ! ; o
H. Yan and J. Zhang | - e |
: H T 1
| S S
i ; %
| ]
; J
¢ - [
e e
| .
b

P.O.Box 2735, Beijing 100080, The People’s Republic of China

Telefax : (86)-1-2562587
Telex : 22040 BAOAS CN

Telephbné : 2568348
Cable : 6158 .



ASITP-94-17

2-D Cyclic Representations of Uy(si(2)),
C-G Coefficients and A Free Fermion
8-Vertex Model

H. Yan and J. Zhang*
Institute of Theoretical Physics
'P. O. Box 2735, Beijing 100080, P, R. China

November 16, 1994

" Abstract .

We construct explicitly the two dimensional cyclic representation’
of quantum algebra U,(s/(2)) with ¢ = i and z central exteasion. The
representation is irrgducible and we write down explicitly the Clebschi-
Gordan coefﬁcients -and the intertwiner of tensor representations in
different orders. Thxs intertwiner turns out to be an 8-vertex R-matrix
that satisfies free-Fermion condition and therefore gives an integrable
model.

*This project is partially supported by Chinese Natural Science Foundation.
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The representations{l] of U,(s{(2)) at ¢ a root of unity are shown to be
related to the chiral Potts models{2 3, 4, 5]. The cyclic representations of
U,(s!(2)) (or its affine counterpart) are analyzed in (4, 6, 7], when ¢ is N-th
root of unity and NN is an odd integer.

In this paper, we will be concerned with the 2- d:mensxonal cychc rep-
resentations of Uy(sl(2)), i.e., the representations when ¢ = 1, or ¢* = 1.
We will also show that the reprﬂenta.tion‘s are completely reducible and give
explicitly the Clebsch-Gordan (C-G) coefficients. The tensor representations
with spectral varieties in different orders are isomorphic provided the spectral
parameters sit on an algebraic curve. The intertwiner as a similarity transfor-
mation map between the two isomorphic tensor representations is shown to
satisfy the free-Fermion condition(8, 9] and therefore gives Boltzman weights
of an integrable free-Fermion model.

In [10], it i w shown that the six-vertex Ising model is the intertwiner of
Uy(s1(2)) at ¢* =1, and in [11], it is shown that the six-vertex Ising model
is the intertwiner of U,(s{(2)). The present paper generalizes the analysis
on the 2-dimensional cyclic representations and extends existing results to.

8-vertex case. ’

1 The Algebra Uy(sl(2)) at g=1
The unital algebra Uq(;sl(Z)) is generated by e, f, K,z with the folioﬁng

" defining relations

ef-g*fe=1-K*, eK =q'Ke, fK=qKf, [z,0]=0, Yo € U,(sl(2)).

The Casimir element is

C=K.’-‘ [fc + q’il (72K + 1)] o .

The co-product operations are defined as follows

Ae=e@1+:K®@e, Af=f@1+27KQ®f,
AK=KQK, Az=:Q:z2.

When ¢ is p-th root of unity, the center of U;(s!(2)) contains not only
the Casimir operator and the central element z (appears due to Drinfeld
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quantum double theory), but also the elements e?, f? and K?, if p is odd, or
the elements e?/?, f7/? and K?/*if p is even.

In this letter we will focus on the special case of p = 4, or ¢ = i. Explicitly
we have the following algebraic relations (please note that a constant factor
2i has been absorbed into e or f),

{8,f}=1—K2, {e,K}z{f,K}=[z,0]=

The Casimir element is -
L :
= K- (Kt —
C=K (fc+2(K 1)).

and hereafter we denote this algebra by U.

" We can classify all the representatlons by the eigenvalues of the central
elements. And we fix the eigenvalues of €2, f2, K? and z to be ¢, $,x% and z
respectively. And we introduce two more parameters € and ¢ for convenience,

such that .
. @ é
R gy qs:l—z"tc"
Therefore the Casimir element takes the eigenvalue ¢ = —-I-A , where A is

a constant (please note that it is not the coproduct map),

A= -1 (1 —4eg) + (- 2.
We denote the above tepresentatlon by 1r¢, where £ is the set of para.meters

{5:95» L z}

2 The Cyclic Representations

. Representation space V is spanned by

o=[5] = m=[9].

respectively. The action of generators in this space reads

() =pl1), () =p140),
(Q)l0)  =nl1), re(e)|l) =n"120) ,
(K)m) =(=)"xlm), wz)|m) =zlm),  (m=0,1)
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where : (R—1)+A .
T=73R r+z v'p=\/;(1__z')’

and therefore the central elements take their eigenvalues as follows

we(e)’=€-1=é(l—z’n’)~1 , w(fP=¢-1=¢(1-2"%3-1,
(K =x%1, me(z) =z - 1. :

So we have an algebra homomorphism

x: U — End(V), £€C*.

3 Tensor Representations and C-G Rule

3.1 The Reducibility of Tensor Representations

We show explicitly that the tensor product of two 2-dimensional represen-
tations is completely reducible. The analysis will be made in the following
orthogonal basis

[0,0) =10)®l0) » 1L,0)=1[1}®(0) , ) =1)80) , 1,1 =[1)el).

We ta.ke two 2-dimepsional representations ¢, and ¢, with the values of
central elements in sets §; = {c., i, Kiy z.} (i = 1,2) to form = tensor product
7¢, = %¢, ® 7¢, . The central elements {Az(e)?, Ara(f)?, A1 K)?, Ara(2)}

take their values in the set £} = {612,45“,::“, z12} , iee.,
Vo
A A L3 3hA P R
€13=€; +2yK) €, =0y +2{ Ky $,  Kpa = KiKa, I = Z12,

or equivalently

-yl -st) (= da) (1 - n2377
€n=€3+( 1 2)(2 2"1’1) . bu=ét ( 21 1 ) )
1~ xi221; . 1- "uzu

It can been seen that if 451 $2 = ¢ then ¢13 = 4, and similarly,if; = e; = ¢
then ez =¢.



Let
[012) =a I051a0€z> + 6“{1: 1€2) ’ 1112) = :Bllfnotz) + 7]06111&) )

or equivalently,

106,,0¢) =& |0(+)>+~( )]ng)> e 06) "ﬂ il(” 5( )]

~(+) ~( =) (- (+) ~(=) (-
’051 ’ 1(: =7 l1(+)) +7 ]1{ ) !lfu 1€2 lo(+)> +46 ‘0(12)> )
The action of the generators in this representation space gives

(me, @ 7e,) (f)l (t) = Pu‘l *
(me, ® 7¢,) (f) 112))) = (p12)” ¢u lon >

(re, ®76) () [05)) =0l 13), 3 )
(76 ® 7e,) (¢) 1‘*’2 = (1) @ o)
(re, @ me,) (K) mn > = (=) *x12 ‘m{?)

(w& ® w(: !m12)> =z lm(i) s (m = 0: 1)

where A

@ _ 11—l = o (1 = kipz=
M2 2‘/% 1+z;2l"12 y P2 12 (1 mzzl.‘.)

2 2 2 A
Au = (Ku ol 1) -4 ¢12€|g,

The Casimir operator takes the valua of Cip = ﬂ:E—LAn Thé 2-dimensional

K12
representatnons *¢,, are classified into two kinds wm according to the plus/minus
sign in the eigenvalue of the Casimir operator.

3.2 Clebsch-Gordan Coeflicients

For the construction of intertwiner, we give the explicit expression of C-G
coefficients and inverse C-G coefficients. From (1), we have the following
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coefficients,

™) =271k 60) (z?puﬂ{ Ve -7 3:) (’hPu - ’Ig;)m)—l ’
§0) = nx'a (pram — punf3) (’fP"”fl & iy 3‘)—1
B8 = it (ot — 5'myp" 4, 6,

1 =g} (7 kipra® 4 57t 6, 89))

and

5% - ol®

~(d) (4) -

& =t I’ § :Fa(ﬂa(-)ﬂ — O’
¥

) e L xE) D

B = Ay —geam F 5,0 — g,

where the superscipt (£) corresponds to the representations T
The non-zero C-G coefficients are given as follows

odzﬂ 0;1,05, =&(*)' odf) lg,le ) = 6(*)!
Ign|0e,le) =75 (10| la0a = p),

0¢,, 0, 0651“ =al#), 1, 1g 06(;;*) = §t&),
Og,; 1 lg(g’ = 7, gy, Og 16‘,?) = p),

4 The Construction of Intertwiner
We consider the following algebra homomorphisms

(’ril 8752) U — LI (U)@?\’& (U) ’
(re®7g) :U — wa(U)@ 7, (U) -

These two representations are isomorphic provided that the spectral varieties
&1 and £, sit on an algebraic curve. In case this is true, we should have an



intertwiner R, or a similarity transformation matrix between the two repre-
sentation spaces. In other words, we should solve the following intertwining
equation,

R(&x f’) (7& ® f(:) (g) = ("'Gz ® 'Xﬁ) (9)R(§h 52) v (2) )

to give R if it exists.
First we should consider the necessa.ry conditions for intertwiner satisfying
n. (2) to exist. Actually, taking trace of that equation in the indicated
representa.tions gives such conditions. When g = e? and f? are concerned,
we have the following nontrivial constraints,

(1 - "1‘1) (1 /c,z,) (6 —€&)=0, (Kl - z,) ( - z,) ($r—¢2) =0.

The solution is an algebraic curve with equations ¢, = ¢; and ¢; = ¢,, and
we will be working under this condition in the following discussions.
According to eqn.(2), we have the entries of intertwiner explicitly as fol-

lows
RiMad) = 0 (maanglre) (rel ke, le)

[ re=0¢ ¢ . iy

and the non-zero ones read
RY =aWa® +350), Rl =754 fat5(-).
RY = pM5 4 g5 (-) R =FHEE 435,
RS =pMpw 47 "ﬂ( )R =55 4 550,
R} =5 13950, R® —ahFe) 4 g -)5( ),

Here we apply a map :"‘

o 7 by — =6,
' - T — I, ,z=amﬂx7y‘s'

5 A Free-Fermion 8-Vertex Model

As it is known, the intertwiner constructed in this way does not necessarily
give (the Boltzman weights of) an integrable model. However, it can be

verified that our R-matrix gives an integrable eight vertex model, in that it
satisfies the free fermion condition{8]

R Ry} + BRI = Ry R} + Ry Ryg.

This is an interesting result.

It has been shown that the R-matrix of an elliptic free Fermion model
(9] can be obtained as intertwiner of the tensor representations of a Clifford-
Hopf algebra. CH,(2 [12 13, 14], which is a graded algebra. While in our
result, it is U,(.sl(2)), in the same category as the chiral Potts models. We
wish to come back to the relationship between the results of Madrid group
and the present paper in a future publication.
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