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Abstract 

We construct explicitly the two dimensiona.i cyclic representation 
of quantum a.igebra. Uq( ,,'(2» with q =i and z centra.i extension. The 
representation is irreducible and we w:rite ctown explicitly the Clebscli.
Gordan coefficientd' 'and \he intertwiner of tensor representations in 
different orders. Thls int~rt';'bier turns out to be an 8-vertex R-matrix 
that sa.tisfies free-Fermion condition and theref~re giveS an integrable 
modeL 

-This project is partially supported by Chinese Natural Science Foundation. 

The representations[l] of Uq(sl (2)) at q a root of unity are shown to be 
related to the chiral Potts models[2, 3, 4, 5]. The cyclic representa.tions of 
Uq(sl(2)) (or its affine counterpart) are analyzed in [4,6, 7J, when q is N-th 
root of unity and N is an odd integer. 

In this paper, we will be concerned with the 2-dimensional cyclic rep
resentations of Uq(sl(2)), Le., the representation~ when q = i, or q4 = 1. 
We will also show that the representationS are completely reducible and give 
explicitly the Clebsch-Gordan (C-G) coefficients. The tensor representations 
with spectral varieties in different orders are isomorphic provided the spectral 
parameters sit on an algebraic curve. The intertwiner as a similarity transfor: 
mation map between the two isomorphic tensor representations is shown to 
satisfy the free-Fermion condi tion[8, 9 J and therefore gives Boltzman weights 
of an integrable free-Fermion model. 

In [10J, it is shown that the six-vertex Ising model is the intertwiner of 
Uq(;1(2)) at q4 =1, and in [11], it is shown that the six-vertex Ising model 
is the intertwinerof Uq(sl(2)). The present paper generalizes the analysis 
on the 2-dimensional cyclic representations and extends existing results to. 
8-vertex case. 

1 The Algebra Uq(sl(2)) at q = i 

The unital algebra Uq(~1(2)) is generated bye, I, K, z with the following 
defining relations 

el-q'le = l-K', eK: = q'Ke, IK =q-'Kf J [z,eJ =0, 'Ve E Uq(sl(2)). 

.The Casimir element is' 

C=K-; [/<+ q'~l (q-'j(';l-l)] 

The co-product operations are defined as foUows 

.ae =e ® 1 +zK ® e, !:l.1 =I ® 1 +Z-l ]( ® I , 

.aK = K ® J(,.az z ® z . 

When q is p-th root of unity, the center of Uq(sl(2)) contains not only 
the Casimir operator and the central element z (~ppears due to Drinfeld 
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qua.ntum double theory), but also the elements eP, I' a.nd K', if p is odd, or 
the elements e,/2, 1,/2 and /(1'/2 if p is even. 

In this letter we will focus on the specia.l case of p = 4, or q =i. Explicitly 
we ha.ve the following a.lgebraic rela.tions (please note tha.t a. constant fa.ctor 
2i has been a.bsorbed into e or I), 

{e,/} = 1- K2, {e, K} = {1,K} = [z,.j = 0 . 

The Casimir element is 

C =K-1 (Ie +~(.i<i -1»). 
and hereafter we denote this a.lgebra. by U. 

" We can classify a.ll the representa.tions by the eigenva.lues of the centra.l 

elements. And we fix the eigenva.lues of e2, r, K'J and zto. be e, ~, x2 and % 

respectively. And we introduce two more parameters E a.nd q, for convenience, 
such tha.t 

e ~ 
E=-122' q,=----Zll: 

Therefo;e the Casimir element ta.kes the eigenvalue c = - 2~ 6. I where 6. is 

a. constant (please note ,tha.t it is not' the coproduct ma.p), 

I 2 2 .6.=V(1I:2 -I) (1-4Eq,)+(Zl-z-l) . " 
, 

We denote the a.bove representa.tion by 11"(, where ( is the set of pa.ra.meters 
{l,J, x, %}. . 

The Cyclic Representations 

Representa.tion spa.ce V is spa.nned by 

10) = [ ~] , a.nd 11) = [ ~ ], 
respectively. The action of genera.tors in this spa.ce rea.ds 

• 1\ 

11"((/)10) pII) , 1I"((f) 11) = p-l q, 10) , 
1I"((e) 10) =,,11) , 1I"((e) 11) = ,,-1 ~ 10) 
1I"((K) 1m) = (-)mll:lm), 1I"((Z) 1m) zlm) , (m = 0,1) 

where 
= z (11:

2 
-1) + 6. = fj, (1 _ ~)

" . 2~ II:+Z P V~ z'I 

and therefore the centra.l elements ta.ke their eigenva.lues as follows 

1I"((e)2 =e·1 = ~(1_z211:2)'1, 1I"f.(f)2 = J.1 = ;(I-z-211:2).1 , 
1I"((K)2 = 11:2 . 1 , 1I"f.(z) = Z .1. 

So we ha.ve an a.lgebra. homomorphism 

11"(: U --+ End (V) , (e G' . 

3 Tensor Representations and C-G Rule 

3.1 The Reducibility of Tensor Represe"ntations 

We show explicitly tliat the tensor product of two 2-dimensiona.l represen
ta.tions is completely reducible.' The ana.lysis will be ma.de in the following 
orthogona.l basis 

10,0) = 10) ® 10) , 11,0)"= 11) ®10) , 10,1) = 10) ® 11) , 11,1) = 11) ® 11) . 

We take two 2-dim~p.si~na.l representa.tions 11"(1 and 11"(2 with the va.lues of 
centra.l elements in sets (i = {Ei, JiJ Xj, Zj} (i = 1,2) to form a. tensor product 
11"(12 = 11"(1 ® 11"(2' The centra.l elements {6.12(e)2, 6.12(f)2,6.12(K)2, 6.12(z)} 

ta.ke their va.lues in the set (12 = { ~121 ~12' 1I:~2' ZI"2} , Le., 

1\ 1\ 2 2 1\ 1\ 1\ -2 2 1\
E12=El +z111:1 E2, q,12=q,1 +Z1 11:1 q,2, 11:12 = 11:111:2, %12 = z1Z2, 

or equivalently 
I • 

(El - (2) d- II:f~~) q,12 = q" +'(q,l- q,2r(1-1I:~%12)
E12 = E2 + 1 2 2 

- 11:12%12 1 - 1I:~2z1iI 

It can been seen tha.t if q,1 = q,2 = ; then q,12 = q" a.nd simila.rly, if El = E2 = E 
then E12 = E. . 
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Let 

1012) = a 10(1, 0b) t 5 1(2) I 1112) = 13 11(11 0(2) +110(1, 1b) I 

or equivalently, 

... (+) I (+» -(-) 1,../-» -(+) I (+) -(-) IC-»
10(1 I0(2) =a 012 +a Ui2 I 11e1I O(,) =13 112 + 13 .112 , 

-(+) I (+» -(-) I ( ...» -(+) I (+» -(-) I (-»
1°(11 1(2) =1 112 +1 112 I Ilett 1(2) =5 012 + 5 012 I 

The a.ction of the genera.tors in this representa.tion space gives 

I (:»
(ir(1 ® 1I"(2) (J) lOW) =	P12 112 , 

( ) -1 1 I (:»(1I"el ® 'lr(2) (J)111~» = P12 Yl12 012 ,(:) I (:»('Ir(1 ® 1I"h) (e) o1~» = '112 112 I 

( (:»)-1_ 	 I (:»
(11"(1 ® ire,)(e) 11ii» = '112 (12 012 

(1) 
I 

('Ir(1 ® 'Ir(2) (K) mii» = (-)k"12lml~», 

I (:» . 
(ir(1 ® 'lr(2) (z) Im~i» = z mn I (m = a,l) 

" !
where 

'1(:)- 1 1-"~2±A12 r; 
12 - 2v'1iU 1+Zyl"12' P12 = v<Pn (1 - "nzi2l) 

and 
-' 2 A A

6.12 = V("~2 - 1) - 4 ;12(12' 

1
The Casimir opera.tor ta.kes the values of en = ±-26.12• Th~ 2-dimensional 

. "12 . 
representa.tions 11"(12 a.re classified into two kinds 11"[.2 according to the plus/minus 
sign in the eigenvalue of the Casimir opera.tor. 

3.2 Clebsch-Gordan Coefficients 

For the construction of intertwiner I we give the'explicit expression of CoG 
coefficients a.nd inverse CoG coefficients. From (1), we ha.ve the .following 
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coefficients, 

a(-) -1 ~(_) ( 2 -I A -1 ~ ) ( (-) )-1=%t 	 "1(1 %tPn'h (1 "'7""P2 '#'2 '1tPI2 - '112 PI , 

-1 (+) 2 -1 A (+)-t A5(+) 	 )-1
= %1"1 a(+) (pn'11 - Pl'112) ( %IPn'1t (t -'112 Pt <PI , 

pC:) = PIl (Pt a(:) - zll"IP;1 ~2 5(:») I 

,.(:) = Pl21 (%11"IP2a (:) +PIt <PI 6'<:») I 

and 

5(T) 	 aCT)
at:) = ± I., _I 	 ) _ a(-l5(+)t ;5(:) = =F (+)5(-) _ a(-}5(+)' 

,.(T) a peT)pc:) 	 1(:) = =F _I,. _I'I. I ••• =, ± P(+)I(-) - P(-)I(+)' 

where the' superscipt (±) corresponds to the representa.tions 1I"..l:l:).
Ci2 

The non·zero CoG coefficients are ~ven as follows 

I(1'(2I 	 ~ '-- 5(±) I~01l~1 0,.. 0,. ~ =ii(±), ?Iltl 
1(11 0(2 ' = p(:),l~:) 	0(1,16 = j(:) I 1e1.:) 

and 

o('I~ =Q(±) OMI~ =5(±),~o,,,o,. (12 I ~I,.. I,. 
1(:1:) = 13(:).1~:I:) = ,.(:) 1(11 0(20el J 1(2 12 	 ; I 12 

4 	 The Construction of Intertwiner 

We consider the following algebra. homomorphisms 

(11"(1 ® 11"(,) : U -+ 11"(1 (U) ® lr(2 (U) I 

(lr(2 ® lr(l) : U -+ lr(2 (U) ® lr(l (U) . 

These two representa.tions are isomorphic provided tha.t the spectral varieties 
el and 6 sit on an algebraic curve. In case this is true, we should ha.ve a.n 
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intertwiner R, or a similarity transformation matrix between the two repre. 
sentation spaces. In other words, we should solve the following intertwining 
equation, 

R(e1t6)(1I"(} ®1I"E2)(g) = (1I"E2 ®1I"El)(g)R(ehe2) " (2) 

to give R if it exists. 
First we should consider the necessary conditions for intertwiner satisfying 

eqn. (2) to exist. Actually, ta.lcing trace of that equation in the indicated 
representations gives such con4itions. When 9 = e2 and /2 are concerned, 
we have the following nontrivial constraints, 

(1 ~ ,,~z:) (1- ,,~zi) (El - E2) ~ 0 , (,,~ - z:) (,,~ - z~) (<<PI -;,) =0 . 

The solution is an algebraic curve with equations El = E2 and «PI = «P2, and 
we will be working under this condition in the following discussions. 

According to eqn.(2), we have the entries of intertwiner explicitly as fol
lows 

Rk't(el.e2) = I: ('!IE21 REI IrE) (rEI kE1 , '6) 
;! ,,{=Oe,l{ , 

and the non-zero ones read 

= O<+)Ci(+) +a<-)iiH , .R8~ =-=;<+)::;(+) -t-::Y{-)::;<-),~ 

m~ '= p<+)::;(+) +P<-)::;(-) , -ffl~ = r+)P(+) +::y{-)p<-), 

RIO = p<+)p<+) +p<-fpH, RII = ~+)6(+) +~-)6(-),
10 

RM = ~+)Ci(+) +~-)Ci(-), ~ = 0<+)6(+) +at-)6<-), 

Here we apply a map 

0' " ell --+ en = en, 
X I'--t Z, .x = cr.,/J,'1,c.

: .t 

.5 A Free-Fermion 8-Vertex Model 

As it is known, the intertwiner 'constructed in this way does not necessarily 
give (the Boltzman weights of) an integrable model. However, it can be 
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verified that our R-matrix gives an integrable eight vertex model, in that it 
satisfies the £ree fermion condition[8] 

oOORll nOlRlo _ Rl1 nOO + 00l R 10 
"'00 11 + 11.io 10 - "0011.ii . "~1 10' 

This is an interesting result. 
It has been shown that the R-matrix of an elliptic free Fermion model 

[9] can be obtained as intertwiner of the tensor representations of a Clifford
Hopf aIgebraCHq(2) [12, 13, 14], which is a graded algebra. While in our 
result, it is Uq(,,/(2)), in the same category as the chiral Potts models..We 
wish to come back to the relationship between the results of Madrid group 
and the present paper in a future publication. 
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