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Abstract 

Using the knowledge 0/ non-commutative geometry, we show that the original 0'­

model can be built up by the gauge theory on discrete group. 

Introduction 

It has become widely accepted that strong interactions exhibit a set of approximate 

symmetries corresponding the chiral groups SUL(2) x SUR(2) and SUL(3) x SUR(3). 

The best known Lagrangian model based on SUL(2) x SUR(2) is the so called 0' ­

model[l]. Whether there is more pt'Ofound mea,.ning from the ordinary differential 

geometrical point of view in O'-model is an open question. 

Since Alain Connes[2] applied his· non-commutative geometry to the particle 

physics model building in which the Higgs fields were introduced as gauge fields, 

many efforts have been done in this direction[3-6]. Especially, Sitarz[7] developed 

discrete points idea and built a gauge theory on discrete group, which is simple to be 

understood. Soon aft:r, the physical model building was completed by the authors[8]: 

In the previous works, the main idea is consider Higgs field as gauge field. In [8], 

we developed the free fermion Lagrangian on discrete group which contain not only 

lWork supported in part by The National Natural Science Foundation Of China. 
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the derivative on space time but also the derivative on discrete group, if we require 

the Lagrangian is invariant under local transformation of a gauge group, besides the 

Yang-Mills gauge field was introduced, another gauge field must be introduced also, 

which is just the Higgs field, corresponding to the standard model, the gauge group 

is SUL(2) x Uy(l), in the following we ,will repeat the main idea in detail. 

In this letter, we found that O'-model can be set up by the gauge theory in non­

commutative geometry. If the system only have global chiral invariant, the gauge 

group elements are not the function on space time, but they might be the function 

on discrete group. Using this idea we can build the O'-model by the gauge theory on 

discrete group. 

2 Gauge Theory on Discrete Group 

Let us first assign the free fermion field with respect to Z2 elements as follow 

¢(z, e) = ¢L(Z), ¢(z, r) = tPR(Z), e, r e {Z2} (1) 

we write down a Lagrangian on discrete group Z2 as follow 

C(z,r) = tJ)(z,r)(i,"8" +1'8z)¢(z,r) (2) 

where 8z is the derivative on discrete group, acting on the function of discrete group 

as follow 

8z/(h) = /(h) - Rz/(h) = /(h) -/(h· Z). 

By noticing the fact 

C(z) = J, C(z, Z) == ~(z, r)(i,"8" -I')¢(z, Z)
Z2 . 

just is the Lagrangian of free fermion in space time Mol, then we call that the La­

grangian (2) is the free fermion Lagrangian on Mol x Z2 

Similar to the reason that leads to the introduction of Yang-Mills fields, it is rea­

sonable to require that the Lagrangian (2) be invariant under gauge transformations 
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H(z, h), hE Z2, where H not only are functions on M, but also on Z2 as well 

¢(z, h) -+ ¢(z,M' =H(z,h)¢(z, h). (3) 

Namely, we require Z2 symmetry be also gauged. Then the first term in (2) should 

be replaced by 

~(z, h)i1" D,,¢(z, h), D" = 0" + igA(z, h) (4) 

where A(z, e) = L" and A(z, r) = R" are gauge potentials valued on the Lie algebras 

of GL and GR" which are supposed to be semi-simple in this sub-section, respectively. 

As for the secon~ term p¢(z, h)or¢(z, h) in (2), it is also needed to introduce 

another gauge covariant derivative Dr to replace Or and 

Dr¢(z,h) -+ [Dr¢(z, h)]' = H(z,h)Dr¢(z,h) (S) 

in order that 1ii(z, h)Dr¢(z, h) is Z2-gauge invariant. This can be realized if we 

introduce a field q,(z, h), the Higgs field, as a connection with respect to the Z2­

gauge symmetry and form the covariant derivative as follows 

A
Dr¢ = (Or +-~Rr)¢. (6) 

p 

Then the t;ransformation law (S) is satisfied if the generalized gauge field ~(z, h) has 

the transformation property 

r-q,' =H(r - ~)(RrH-l). (7) 

We may introduce a new field ff1 = I - ~ such that the transformation rule 

becomes 

4) -+ 9' ~ H9(RrH-1
). (8) 

Similar to the usual gauge theory where the covariant derivative is equivalent to the. 

covariant exterior derivative DM =dM +igA"dz" and DM/ =D,,/dz", for the case 

at hand, the covariant exterior derivative takes form 

.. 
DZ2 = dZ2 + ~~xf'. (9)

P 
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The reason is that 

A A
(dz2 +_~xr)f = (Or +-~Rr)/Xf' = Df'/Xr. p . p 

Thus from (2), it follows the generalized gauge invariant Lagrangian for fermions 

in each sector characterized by Z2 

£F(Z, h) = ¢(z, hHi1"(Op + ig(h)A,,(z, h» +(pOr +A~(Z, h)Rr)}¢(z, h) 
(10) 

=1ii(h"D" +pDr)¢. 

The Hermitian property of operator ~Rr requires that 

~t(z,e) = Rr~(z,e) = ~(z,r). (11) 

After integrating over Z2 the last terms in £(z, h) we get 

f A¢(z,h)ff1(z,h)Rr¢(z,h) = -A1iidz)ff1(z)¢R,(z) - A1iiR,(Z)ff1t(Z)¢L(Z) (12)
Z2 

which are nothing but the Yukawa couplings between the Higgs and chiral fermions. 

From direct calculation, similarly the antisymmetric tensor F"v is related to the 

covariant derivative as 

(D"DII - DvD,,)¢ = igF"II¢' (13) 

where 

F,," =o"AII - OvA" + ig[A", All]' 

We have Fr" and Frr are related to the covariant derivatives respectively 

. A . A 
[Dr,D,,]¢ = -Fr"Rr¢ = --F"rRr¢,

p p 
(14) 

A2 
(DrDf' - 2Df') = "2Ff'r¢' 

p 

where 

Fr" =0". + igA"c) - 4)Rr(igA,,), (IS) 

p2
Frf'=9.t- 12 · 
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In [7], Sitarz show that if we consider the linear term of the field strength, all the 

constrains on the parameter should be relaxed. Then we write down the most general 

Lagrangian for the gauge bosons and Higgs as following: 

.cYM-H(Z, h) = -~TrL,...,(x)LI"'(z) -lTrR,...,(z)RIW(z) 
(16) 

+TrF""FJ" - '1TrFrr FJ. . 
where '1 is a positive real constant. Then we get the entire Lagrangian of the system 

.c(z) =.cF + .cY':'-H, (17) 

where .cF is the gauge invariant one for fermions with Yukawa couplings to Higgs 

and .cYM-H is the one for Yang-Mills fields and Higgs 

.cF = 1/J(z)i"'("8,,1/J(z) 

-gl~dz);"L,,1/JL(Z) - g2~R(Z);"R,,(x)1/JR(Z) 

-l(~L(X)~(X)1/JR(Z) +~R(Z)~(Z)t1/JL(Z», 
(18) 

.cYM-H = -~TrLI'II(x)LI'II(x) -lTrR"II(z)RI'II(z) 

+Tr(D,,~(z»(DI't(z»t 

-'1Tr(t(x)t(x)t _ ~)2. 

In this work, the most important idea is that the Yukawa coupling is introduce 

as gauge coupling, especially, even though Yang-Mills fields were zero, the scale field 

might exist also. As an example, we will study 0' model in next section. 

3 SUL(2) X SUR(2) (J' model 

Now we are ready to build the 0' model by the knowledge of non-commutative geom­

.. etry, for the nucleon d~ublet field N = ( : ), we set 

1/J(z,e) = NL, '4'(x,r) =NR (19) 

the gauge transformation H(e) ~ 5U£.(2) and H(r) e 5UR(2) are global to the space 

time, but are local to the discrete group. For the elements of gauge group are not 
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depend on the space time, then the Yang-Mills gauge field A(z, e) = A(z, r) = 0; 

but they depend on the discrete group, therefore, the scale field ~ is nonzero. More 

general we can write ~ as 2 x 2 Hermitian matrices 

~(z) = 0'1 +iTi1l"i (20) 

where 1 is 2 x 2 identity and T, are three pauli matrices, 0' and 11" are real scale fields. 

From the (17), we have the lagragian for the 0' model 

.c = i~(z);"8,,1/J(z) -l~L(Z)~(Z)1/JR(Z) -l~R(Z)~t(Z)1/JR(Z) 
(21) 

+8,,~(8"~)t - '1(~~t - x:.)2 

Rewrite the Lagrangian in terms of the fields 0',11", we get another form expression 
2 

.c = iN'1"8"N ;-IN(O' + i'15T '1I")N +(8,,0')2 +(8,,11")2':' '1(0'2 + 11"2 - ~2 )2. (22) 

Now we discuss the transformation property of the fields. For the gauge transfor­

mation 

H(r)::l+ih(r)'T, heA, reZ2. (23) 

If we set heel =a, h(Z) = p, gauge transformation (23) is 

H(e) =5UL(2) =1 +ia· T, H(Z) =5UR(2) = 1 +iP - T. 

From (8), we have that under the gauge transformation 

N -+ N +i~ 'TN +i;=!. T'15N 
(24) 

0' + i1l'" T -+ 0' - (a +P) -11" + i(1I"'- O'(a +P) - (a - {3)" 11"1, T 

If we redefine the parameter as a = a +P,{3' ={3 - a, we get 

N -+ N + iii.· TN - iD:.· T'Y5N2 2 I 

0'-+0'-a'1I" (25) 

11" -+ 11" - O'a' +P' " 1r 

which is just the one for the 0' model. 

As the Higgs fields, the 0' model has its geometry origin. Similarly, the other 

effective Lagrangian models can be studied in non-commutative geometry also. We 

will discuss these topics in the following papers. 
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