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ABSTRACT 

We introduce the gauge theory on discrete groups with Higgs fields being such 
gauge fields and the Yukawa coupling between Higgs and fermions is automat­
ically given by the minimum coupling principle. We concentrate on the Z2­
symmetry taken as {e, r = (C PT)2}, a subsymmetry of the CPT transforma­
tions. A OL x On x Z2-gauge invariant model is presented. The standard model 
for the electroweak-strong interaction is refonnulated in detail. The method for 
the model building is very different from and much simpler than that of Connes 
and others by means of non-commutative geometry. 

1. Introduction 

It is well known that Higgs fields playa very important role in modern QFT, 
especially, in the standard model of electroweak-strong interaction. However, unlike 
Yang-Mills gauge fields, not only the introduction of Higgs fields but also the Yukawa 
couplings between Higgs and fermions seem to be artificial and have no profound 
meaning from' ordinary differential geometrical point of view. 

lWork supported in part by The National Natural Science Foundation of China. 
21nvited talk given by H.Y. Guo at The International Conference on Interface between Physics and 

Mathematics.. Ha"ngzhou. September 6-10. 1993. 

Recently, Alain Connes [1] applied his non-commutative differential geometry to 
particle physics model building. An interesting result is that his formalism applied 
to a two-sheeted spacetime automatically presents the Higgs field as a gauge field 
associated to discreteness. Later, Connes and Lott [2,3] and Kastler [4] made further 
study on Connes' approach. Since then, lots of efforts have been made along this 
direction [5-8]. In this approach the non-commutative Yang-Mills action together 
with fennions reproduces some constraints among free parameters at the tree level 
and at least some of the constraints, say, the Weinberg angle, seem to be unreasonable 
from the point of view of QFT and they do not survive standard quantum corrections 
[9]. On the other hand, however, this approach 'indicates that the Higgs fields have 
also deep geometrical meaning and there exists some nontrivial geometry behind the 
Weinberg-Salam model in the sense of the non-commutative differential geometry. 

Among others Coquereaux et al [5] emphasized that it could be possible to for­
mulate Higgs fields as gauge potentials with respect to discrete symmetry without 
any knowledge of non-commutative geometry. Very recently, Sitarz [10\ proposed 
an approach towards the construction of a pure gauge theory on arbitrary discrete 
groups in which Higgs fields appear as gauge potentials on discrete groups. This ap­
proach also does not require entire knowledge of non-commutative geometry and for 
the two-point space ( with Z2 symmetry), it is more or less equivalent to the ones 
in preVious works. Unfortunately, Sitarz [10] could not achieve the goal towards the 
realistic model building. In fact, the formalism in [10\ has not been completed yet 
since fermion fields were not included into the formalism. 

In [11-14], we have completed the construction of the gauge theory on discrete 
groups coupled to the fennions Namely, the ordinary Yang-Mills gauge theory is gen­
eralized in order to take not only Lie groups but also discrete groups as gauge groups. 
It has been shown that a simple complex Higgs field is such a gauge field with respect 
to Z2-gauge symmetry over 4-dimensional spacetime M" and the Yukawa coupling 
between Higgs and fermions is automatically introduced via the covariant derivative 
or the minimum coupling principle with respect to Z2-gauge potential. Therefore, 
together with the Yang-Mills fields, all fundamental bosonic fields are gauge poten­
tials and their couplings with fermions are all given by the corresponding covariant 
derivatives or the minimum coupling principles. It has also been shown that the 
Weinberg-Salam model and the standard model for the electroweak-strong interac­
tion can be reformulated. In [12, 13\, for all these models, the Zrsymmetry is taken 
to be a subsymmetry of the CPT transformations, i.e. Z2 = {e, r = (C PT)2}, and the 
Higgs appears as discrete gauge fields of this Z2-gauge symmetry over spacetime M". 
And in [14], we further take a Z,,-symmetry with elements being C PT-transfonnation 
as a whole to be the gauge symmetry. With a simple ansatz, the Weinberg-Salam 
model has also been reformulated. 

It is important to stress that in our approach there is no constraint on the Weinberg 
angle at the tree level and all other constraints the mass parameters are not direct 
consequences of the gauged discrete symmetry but totally depend on certain working 
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hypotheses. Although we may get some constraints on ffli and Mil at the tree level 
under certain natural hypotheses. However, all of them could be completely released 
at all in principle. 

In this talk, we briefly introduce our approach to the gau.ge theory on discrete 
groups We concentrate on the Z2-symmetry taken as {e, r = (C PT)2} ,a subsym­
metry of the CPT transformatiQns [11, 121. We first review how to construct the 
Higgs field as a gauge field on discrete gauge symmetry over the spacetime M4. 
Then we present a G£, x Gn x Z2-gauge invariant model with Z2-symmetry being 
{e, r = (CPT)~} and we reformulate the standard model for the electroweak-strong 
interaction in detail. The method for the model building is very different from and 
much simpler than th~t of Connes and others by means of non-commutative geom­
etry. Finally, we ~nd with some discussions and remarks. Especially, we emphasize 
the differences between our approach and the ones by means of the non-commutative 
geometry and explore the implication of the Z2 {e, r = (CPT)2}-gauge symmetry; 

2. Higgs As Gauge Field On Discrete Group Z2 

In this section, we outline the notion of a pure gauge field theory on discrete group 
Z2 and construct the Lagrangian of a simple complex Higgs field being as the gauge 
field with respect to Zrgauge symmetry as a Yang-Mills like Lagrangian on spacetime 
M4. For details, it is referred to [1O-12J. 

Let us consider the discrete group Z2 {e, r} and A the algebra of .complex 
valued functions on M4 x Z2. We exten4 the exterior derivative operator dM on M4 
as follows: 

d=dM+dZl , (1) 

where dz2 is the exterior derivative on Z,. If f(x, h), h E Z2 is a function, th~n 

df apfdxp +a,.fx", (2) 

where ar is the partial derivative defined by 

(ar)f(x, h) = f(x, h) - f(x, h . r), 

X" ( sometime denoted as X ) is a one-form on Z2 dual to a,. and a metric on Z2 can 
be defined as 

< X,., X" >= .",.,., 

sometime it is denoted as ." for simplicity. 

The nil potency of d requires the nilpotency of both dM and dZl as well as 

dMdZ'l -dZldM • 
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Acting with dM dz2 and dz2dM on f(x, h), h E Z2 separately, it follows 

dxP® X = -x ® dx 
p
. (3) 

On the other hand, the nilpotency of dz2 requires 

xf(x, h) = f(x,h'r)x, dX dz2X=2X®X· (4) 

Let us now construct the generalized gauge theory on finite group Z2. We take the 
gauge transformations to be unitary elements of A dependent on the both x E M4 
and the Z2 elements, 

1i =U(A) = {a E A: aat ata = I}. 

It is easy to see that the exterior derivative d is not covariant so that we should intro­
duce the covariant derivative d + ell, where ell = eII(x, h)X is a generalized connection 
one-form. The Hermiticity requires that 

x· =-x, eII(x, h) =eIIt(x, h· (5) 

The generalized curvature two-form should be defined as follows 

F dell +<p ®eII 

= Fp"dxP® X+F,.,. X® X 

= ap.elldxp ® X + (arell + eII<pt - 2~)X ® x. 

To get the Lagrangian of the pure generalized gauge field with respect to Z2 on 
M4, we define metrics as 

< d~P, dx" >= gJJ", < dxP® x,x ® dx" >= gP".". 

Then the Lagrangian of the pure genera~ized gauge field on M4 reads 

Cy M - -kf Zl < F, F > 
(1) 

=k{r]ap.</>ap</>t - .,,2(</></>t _1)2}, 

where </> = 1 - ell, N is a normalization' constant and f z2 is the Haar integral over Z2 
which is introduced as a complex valued linear functional on A that remains invariant 
under the action of Z2. In general, for a discrete G, it is defined as: 

fJa = ;aLI1Eaf(g), 
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which is normalized sllch that f G 1 = 1. 

Now we get a full Lagrangian of Yang-Mills type for a simple complex Higgs field 
up to some coupling constants which will be introduced later. Note that there is 
a tiny but important difference between this Lagrangian and the conventional one. 
Namely, unlike in the conventional one, the ratio of coefficients of the kinetic term 
and the potential here is fixed by the metric we have chosen. It turns out that this 
ratio indicates a constraint. However, it could be released at all. We will mention this 
issue at the end of the talk. On the other hand, without loss of Zrgauge invariance 
we may also take the conventional Lagrangian as the one for the Higgs being Z2-gauge 
field. 

We may also introduce the coupling of the Higgs field with fermions. It turns 
out that the Yukawa couplings are the· gauge couplings with respect to the gauge 
potential, the Higgs field, on the Zrgauge symmetry. Due to the limitation of the 
space, we do not illustrate it here. For this issue, it is referred to [11,121. 

3. A Model with GL x GR x Z2-Gauge Symmetry 

Let us construct a model of the Gz. x G n x Z2-gauge symmetry with Z2 C CPT 
symmetry with leptons 1j;(x,h), h E Z2, Yang-Mills gauge potentials A,..(x,h) and 
Higgs tb(x, h). We assign them into two sectors according to two elements of the 
group Z2 as follows: 

y,(x, e) = -y,(x, r) = ( ~ ) ; 

Lp
A,..(x, e) A,..(x, r) = ( 	 0 ~,..) ; (8) 

~(x, e) = ~(x, r) = ( _~t -: ). 
where L (R) is the left (right) handed fermion, Lp (R,..) the gauge potential valued 
on the Lie algebra Qf the gauge'group Gt.. (Gn) and coupled to the fermion L (R), 
I' and .\ two constants. Note that the minus sign in -1j;(x, r), r = (CPT)2, is 
due to the transformation property of the fermion under (C PT)2 modulo the gauge 
transformations of Gt.. x GR. lFrom the assignments, it is easy to see that the field 
contents of the model are of Z2 symmetry and the Higgs in such a model may be 
regarded as the gauge field with respect to a gauged Z2 subsymmetry of the group 
CPT. However, it should be mentioned that th~ assignments (8) not only assigns 
the fields lo the elements of Z2 but also implies that we arrange all fields into certain 
matrices. In fact, this arrangement is nothing to do with discrete gauge symmetry 
but for convenience in the forthcoming calculation. Of course, we must keep in mind 
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that this arrangement is a working hypothesis and sometimes one should avoid some 
extra constraints coming from this working hypothesis. 

lFrom the general framework we have developed in [11, 12], it follows the gener­
alized connection one-form 

.\
A(x, h) =A,..(x, h)dx'" + 	-~(x, h)X, hE Z2, (9)

I' 

where X denotes X,., and the generalized curvature two-form 

F(h) dA(h) +A(h) ® A(h) 
(10) 

tF,..,,(h)dxP 1\ dx" +*F,..,.(h)dx'" ® X + ;;'Fr,.(h)X ® X. 

Using the above assignments, we get 

F(x, e) = F(x, r) 

0 -~pt,b ) dxl' ® X! (L/.lII 0 ) dx"'l\dx" +* -Dpt,bt( 	 (11)
2 0 R,.." ) 


).3 ( t,bt,bt - ~ 0 3 X ® X; 

+;r 0 t,btt,b-~ 

where 
D,..t,b o,..t,b+L,..t,b-t,bRp- (12) 

Having these building blocks, we may get the generalized gauge invariant· La­
grangian including both the bosonic part and the fermionic one as well as their in­
teractions via generalized minimum coupling principle in the conventional way. From 
the field contents (8), it follows Lagrangian of the ordinary type in gauge invariant 
models. On the other hand, we may also introduce the generalized gauge invariant 
Lagrangian with respect to each element of Z2 first, then take the Haar integral of 
them over Z2. 

For the Lagrangian of the bosonic sector with respect to each element of Z2, we 
have 

~YM-H(X, e) = .cYM-H(X, r) 

= - 4.~£ Trr..(L,.."LP") - 4~1tTrR(R,.."RP") 
(13) 

+271;;Tr( D,..t,b( x))(DPt,b(x)) t 

-2712~Tr(t,b(x)t,b(x)t - ~)2 + canst; 

where Nz. and NR a.re normalization constants, 11 is a metric parameter defined by 
." =< X, X>, Dim(71) =:: 1'2. Here we suppose that both Gt.. and GR are semi-simple. 
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For the fermionic sector, the Lagrangian with respect to each element of Z2 may 
also be given as follows: 

£F(X, e) = CF(X, r) 
(14) 

=iL'"YJ.I(8J.1 + LJ.I)L + iR'"YJ.I(8J.1 +RJ.I)R - A(LtPR +RtPt L). 

It is easy to get the entire Lagrangian for the model: 

£(x) =£F(X, e) +£YM-H(X, e). (15) 

Obviously, this is the one of SSB type and there may exist some constraints among 
the coupling constants and mass parameters, which will be explained for the concrete 
model. 

4. The Standard Model 

We now turn to the standard model for electroweak-strong interactions. Namely, 
we take into account the colour degree of freedom together with the weak isospin 
and the weak hypercharge degrees of freedom for both leptons and quarks in three 
families. with the gauge group SU(2)L x U(I)y x SU(3)c. We make use of the field 
assignments in (8) with the field contents in the standard model. Then we present 
the generalized gauge invariant Lagrangian including both the bosonic part and the 
fermionic one as well as their interactions via generalized minimum coupling principle. 
As in the previous secti~n, we introduce the Lagrangian with respect to each element 
of Z2 first, then take the Haar integral of them over Z2' 

Let us take the assignment for the fermions with respect to Z2 symmetry as follows: 

tP(x,e) = -1jI(x,r) = ( ~ ), (16) 

with 
U C ' GFC 

UC 

bC 
bC 

(11)L= R= 
lie e 

Jl 
T 

T'L R 

Here superscript c stands for the colour degree of freedom. Taking into account all 
strong and electroweak interactions among leptons and quarks, we assign the gauge 
fields as follows: . 

LJ.I 0)AJ.I(x, e) AJ.I(x, r) = ( 0 RJ.I ' 
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with 

!4T.1W' 10\ IG 10\ IC1012' J.l1O'3 3 
LJ.I= ­ ( !41W' ):1 Ti ; ® If 

2 
2 210' 3 J.lAi-ig'BJ.I ( 1I2 ® If ® If _1/ IO\/G) _ ( 12®If® ~Gi \C J 

R. = -i9'Bp ( ( l -l ) ® If ®/f -If) - ( I,®If®itGp~f 0) · 
(18) 

where G~, i = 1,,,,,8, are gluons, Ai 3 x 3 Gell-Mann matrices, and /n n x n unit 
matrices. 

For the Higgs field, we take 

~(x,e) =~(x, r) = ( r -tP(x) ) (19)-tP(x)t l! 
.). 

. 

as before. But, the field content of tP(x) being gauge field with respect to Z2-symmetry 
is more complicated: 

tP°" tP+~(%) = ( _~+.~. )® If ® If 

1(
Mt ® IC 

M2 ®/f ). 
( 3 M3(:! )® If' 

Now we may write down the generalized connection one-form including both ordi­
nary Yang-Mills potentials and the Higgs field and the generalized curvature two-form. 
Especially, the components FJ.lr of the generalized field strength are the ordinary co­
variant derivatives of the Higgs field as before: 

DJ.ltP = 8J.1tP + LJ.ltP - tPRw 

Introducing the original Higgs doublet 11'", 

11'" = ( :: ), (20) 

a straightforward calculation shows that 

TrDJ.ltP(DJ.lq,)t = El(DJ.l7I")t DJ.l7I", (21) 
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where 
ig i ig'

D",1f = (a", - '2TiW", - 2:8",)1f, 

M1Ml ®I3 ) 
E, =Tr. M,M! ®/, . t . (22) 

( 
M3M3 

It is worthy to see that this is just the ordinary covariant derivative for the Higgs field 
in the standard model with both correct weak isospin charge and weak hypercharge 
assignments. We have in the Lagrangian: 

Tr(4)t 4> -	 p2)2 = E2(1ft1f ~: p2) +canst, (23) 

where 
(MIMt)2 ® 13 

E2 = Tr (M2MJ)2 ® 13 (24) 
( 

(M,M!)' ). 

The bosonic part of the entire gauge invariant Lagrangian, by some straightfor­
ward calculation, is 

LYAf-H 	 =- < F,F > 

=__1_6g2 Wi Wipv _ _1_lOg12 B BPv _ ...l:..6g2Gi C'S1V
4Nt. 	 pv 4Ny pv 4Ne c p.v. (25) 

+2n~(D 1f)tDP 1f - 2n2~(1ft1f ~1L2)2
'I p~ ,. 'f p.~ El r , 

where NL , Ny, Ne are normalization constants with respect to gauge fields W, B, and 
G respectively. The normalization of the coefficients of the terms in the Lagrangian 
leads to 

NL =6g2
, Ny = 1Og'\ Ne = 6g~, 2E~ Tf = 1. (26) 

p 

This gives rise to the following form fo'r the Yang-Mills-Higgs Lagrangian 

LYM-H = -lW;vWiS1V - !B",vB"'v - ~G!.vGi,.v 
(27)

+(D 1f)tD"'1f- l~(1ft1f _ ~lL2)2.
p 21:1 Elr 

It is easy to see that together with the Lagrangian of the usual gauge fields the kinetic' 
energy of Higgs field and the interaction hetweenHiggs field and the usual gauge fields 
are all included here. 

It is well known that the mass of top quark is much heavier than other fermions. 
If we set m. » mi, where mi is the mass for the i-th fermion except t, we have 

E2 El ~-..!L (28)-=-2'Ef = 3' E2 mu f = V~2 - mu 

where mit are the eigenvalues of the fermion mass matrices, and mu is the one corre­
sponding to the top quark. Then the Lagrangian for the generalized gauge fields can 
be rewritten as 

LYM-H = _~W;vWip.v - !BpvB"'v - !G!.vC''''v 
(29) 

+(D 1f)tD"'1f - !(1f t1f _ ~)2.
'" 6 m .. 

Consequently, when 1f field takes value 11f1 = ~, the Higgs potential is at its mini­
~~If~~ . 

< 1f >= ( ~ ), v ..j2p
72 mu 

the symmetry SU(2)L x U(l)y will spontaneously be broken down. 

Introducing new field Tf to replace the field 111"1 in eq,(29) and adding the fermionic 
part through covariant derivative, we get the final expression of the entire Lagrangian 
as follows 

L(X) = 	Li7fi(i,I"D", - m'l;)qi +EJi(i,"'D", - m,i)/i 

-~TfEiMi~7fiqi - WiTfEiM/Ji/i
u u 

-!wt W"'V - lZ Z"'v - lA A"'v - lG. Gi",v (30)
2 Pv 4"''' 4 "'v 4S1V 

:I; 	 :I; 

+~a",Tfa"'2J + tt;(v +2J)2W-W+ + 8c:cI!,,,,2(V +Tf)2Zp Z'" 

2-~(V Tf2 +v2J3 + ~), 

where the photon and Z boson are given as usual: 

A", = Bp.cosOw +W!sinOw 

Z'" = 8",sinOw - W!cosOw (31) 

gsinOw =g' cos Ow =-h =e. 
vg~+!l3 

Using (26), we get 
gl22	 3Ny }. (32)sin 0w = g2 +gl2 
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It is easy to see that the neutrinos, photon and gluons remain massless while other 
particles become mass!ve. And we can also get the following mass relations, 

1 Mw v,..,
Mw =29V, ltJz = ---MHigg, = f;)' me ..... 1'. (33) 

cos Ow v3 

Then we may have 
MHigg.,...., _2_ ~J2 (34)Mw ..... y'3g'" Mw 

where e is a free parameter coming from the metric < Xr, Xr > as introduced before. 
IT we take f = I, we may get a mass ratio m~/Mw at the tree level as well. Of 
course, this also means, 9n the other hand, the mass ratio constraint can be released 
by keeping f to be an arbitrary constant. 

5. Concluding Remarks 

Now we summarize what we have done as follows: 

First, we have completed the construction of the generalized gauge theory in which 
Higgs fields are introduced as gauge fields with respect to the discrete gauge groups 
and their Yukawa couplings with fermions are automatically given by the generalized 
minimum coupling principle. It is obvious that our approach is influenced by the 
approach due to A. Connes [1-4) by means of the non-commutative geometry. On the 
other hand, however, we have not made use of any concrete knowledge of beau tiful but 
very abstract content in the non-commutative geometry. In terms of the formalism we 
have completed, we have presented a model with GL x GR x Z'l-gauge symmetry and 
reformulated the standard model for electroweak-strong interaction among all leptons 
and quarks in three families. Obviously, the model building introduced here is much 
simpler than, in the sense of without using the non-commutative geometry, and very 
different from, in some important aspects, that of Connes and others by means of non­
commutative geometry. It turns out, in certain sense, that our formalism is easier to 
be handled and more reasonable from physical point of view. 

One of these very important points is about the constraints among the coupling 
constants and the mass parameters. We stress that all these constraints are not 
direct consequences of the gauged discrete symmetry but totally dependent on certain 
working hypotheses. Therefore, all of them could be completely released at all. In 
all these models, we have no constraint with the Weinberg angle. We have also 
shown that the mass ratio mclMw depends on the metric parameter f on the group 
Z'l = {e,r = (CPT)'l}. As for the mass ratio MH/Mw, it can also be released, say, by 
introducing a relative metric parameter in the metric on M4 x Z2 or by other means 

Of course, it should be interesting to see whether these two mass ratios could 
survive quantum correlations. Thi~ is one of the open questions to be understood in 
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our approach. Since our approach is very different from the ones by means of non­
commutative geometry, the answer to this question may also different. Especially. it 
is important to see what the role played by the symmetry Z'l = {e, r = (C PT)'l} 
is in the quantum version of the present formalism. Of course, to understand these 
problems needs further investigations. " 

Another important point different from the ones by Connes and others is about 
the fundamental fields. In our approach the gauge fields and Higgs have been directly 
dealt with as fundamental dynamical variables rather than the ones defined by a 
huge number of auxiliary scalar fields introduced by Connes and others in their non­
commutative geometry approach. Eventually, it is somehow difficult to explain what 
the physical meaning is for that huge number of auxiliary scalar fields and how to 
quantize" them. 

The third important point different from the ones by Connes and others is as 
follows. We first arrange the fermions, gauge bosons and Higgs into two sectors 
and assign them to two elements of the discrete group Z'l' Then we gauge the Z'l 
symmetry and regard Higgs as a generalized gauge field with respect to the Zrgauge 
symmetry. In other words, we have dealt with two sectors of fields on a 4-dimensional 
spacetime M4 rather than two sheeted spacetime [1-4) or two parallel universes [5]. 
Those fields transform to each other under Z'l = {e, r = (C PT)'l}. Eventually, the 
symmetry Z2 = {e,r = (CPT)2} is an intrinsic symmetry of these models in their 
conventional version. What we have done is to gauge it, in the sense that the gauge 
transformations depend on the both spacetime points and the Z'l elements, and to 
show its gauge potential is just the Higgs field in these models. Especially, the role 
played by Higgs is something just like a bridge linking the fermions and gauge bosons 
in the two sectors. 

It is worthy to note that one of the important points in our approach is the link 
between the Z'l-gauge symmetry in CPT and the standard model. It implies that the 
CPT symmetry as a whole probably should be gauged. In fact, we have gauged what 
we call in [14] the restricted CPT symmetry anq reformulated the Weinberg-Salam 
model with a simple Ansatz for Higgs. It also implies that the CPT symmetry as 
a whole probably should be gauged. Why the CPT symmetry should be gauged is 
in fact a simple but profound question similar to the questions why the Yang-Mills 
gauge fields should be introduced and why the Lorentz group should be gauged. Of 
course, by gauging a discrete group we always mean that the the gauge transforma­
tions are dependent on the elements of these discrete groups rather than the discrete 
group elements are of the functions of the spacetime points. As is well-known, the 
cont~nt and implication of the CPT symmetry is very rich. Therefore, to gauge the 
entire CPT symmetry may shed light on some fundamental problems, such as the 
CP violation, the generation of mass and "so on. Recently, Hall and Weinberg [16) 
have suggested that in order to explain the CP nonconservation systematically, the 
flavour cha~ge scalar interactions should be introduced in some extended vertion of 
the standard model. In fact, what they introduced is something like the Yukawa 

12 



couplings among the three generations via Higgs fields in addition to the Higgs in 
the ordinary version of the standard model. But, in their approach, the full Higgs 
potentials are to complicated to write down and there are too many free parameters 
involved. lFrom the point of view of the present approach, the whole structure of 
the Yukawa couplings in their approach indicates that we should take Za X Z2 as a 
discrete gauge group where Za is of the generations. The full potential for the Higgs 
could also be written explicitly and the total number of the free parameters is much 
less than that of conventional version. This also indicates that there might be more 
prediction power in the present approach. Needless to say, These topics also need 
further investigation. 

Finally, it should be mentioned that there is also another candidate for the discrete 
gauge group Z2 in the standard model. Namely, the fourth homotopy group of the 
gauge group in the standard model1r"(SU(3) x SU(2) x U(I)) = 1r4(SU(2» = Z2' 
The role played by this group might be quite remarkable. This also needs further 
investigation. 
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