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ABSTRACT 

The coordinates of quantum Minkowski space-time, which are ele

ments of on clgebro, can be treeted as operotors. Their representation 

in Hilbert space is then investigated. It turns out that two of the four 

dimensions of the space-time are hidden, and eigenvalues of the rest 

two coordinates are discrete, even become a lattice in some region. 

llnvited talk in CCAST-ITP Workshop on Frontiers in Quantum Field Theories, Beijing, May 
10-18,1993. 
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The relativistic quantum field theories constructed over the conventional space

time are successful in describing the microscopic particle world above the length 

scale,.., 10-18 m (or below the energy scale,.., 1 TeV). However, the difficulties 

emerging in loop diagrams in them may manifest some essential defects. Perhaps 

they are not applicable when the scale of physics was down to the sub-microscopic 

world [11. In this aspect the quantum Minkowski space-time was suggested [1-8] 

which might be a candidate for the description of the sub-microscopic space-time. 

Quantum Minkowski space is a vector representation of the q-deformed (i. e. quan

tum) Lorentz group SLq(2, C) [1,3,5,6,9]. When q -+ 1, it approaches to the con

ventional one. In order to formulate physics in this space and get some predictions 

from it, study of its structure is thus necessary, 

1. Quantum Lorentz Group and Quantum Minkowski Space 

A quantum matrix M = (M",,)(a,b = 1,2) is said to be in SLq(2,C) if 

RI2MIM2 = M1M2R12 , 

Rl'lMIM2 = M IM2R12 ,
{ 

ftlbM"cMbd =fed, (arb,c,d = 1,2) 

in which 

[ q 0
R= (Ra.D cd) = 0 q - q-l o 011 0 , (q is real and positive) (2) 

o 1 o 0 , 

o 0 o q 

-q_12 ) 
... = ( ~ (the "spinor metric") (3)

q2 o ' 
and 

M = (Mt)-l = (M-I)t, (in SLq(2,C), too), Mt = (M·)T. 

Matrix R satisfies the Yang-Baxter equation (YBE): 

R12R23R12 = R23R12R23' (4) 

A q-spinor utl(a = 1,2) is said to belong to the H, 0) representation of SLq(2,C) 

if it transforms under action of M E SLq(2, C) as 

u'tl = Mtl6UIl , (a, b = 1,2) 
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and its *-conjugation Uti == (UO
)-' (a :: 1,2) is said to belong to the (0, i) represen

tation of SLq(2, C) and transforms as 

uG = M\vf, (a,b = 1,2) 

where ua = u~i)o. Quasi-bosonic q-spinor ZO obeys the commutation relation 

Z1 Z 2 = q-l R12z1 Z2 , (5) 

and quasi-fermionic q-spinor ¢>o obeys 

¢>1 ¢>2 = -qR12 ¢>l ¢>2' (6) 

Their conjugation spinors obey similar relations. When q --+ I, ZO becomes com

mutative and ¢>o anti-commutative. 

There are two fundamental fusion of R: 
R(12)(34) = q-l R23RI2R34(R-l)23, 

(7)
5(12)(34) = R23R12(R-l )34(R-1 h3. 

They also satisfy YBE respectively and with each other the crossed YBE, i.e. 

R12R23R12 = R23R12R23, 512523512 = 523512523, 
R12R23512 = 523R12R23, S12523R 12 = R23S12S23, (8) 

512R23R12 = R23R12523, R12523512 = 523512R231 

and they are "orthogonal": 

(E +qR)(E S) = O. (E: 16 x 16 unit matrix) (9) 

Fusion of the spinor metric is 

HooM qfocftii:R"M' (10) 

All the above matrices play fundamental role in the bi-spinor representation of 

SLq(2,C). A bi-spinorulw2 transforms as 

(UIW,)' = M1M 2(UIW2), (M E SLq(2,C» 

and Ml M 2 satisfies 

~(12)(34)MIM2M3M4 = MIM2M3M4~(12)(34)' 
S(l2)(34)MIM2M3M 4 = M1M 2M3M4S(12)(34), (11) 

{ ·MO MIi·Mh ....-:;bM· . - H .HaliI>/) c c d d - ccdd' , 
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Bi-spinor u llu;4 (a, a= 1,2) can be transformed into q-vector v" (I' :: 0, +, 3, -) 

by virtue of a matrix K"oti: 

v" :: K"oouo~ I (12) 

where K" OA is determined by the left eigen-equation of R: 

K°obRo/)cd, = -q-lK°cd" (singlet) 
{ Kmo/) Robcd, = qKmcd,. (m = +,3, -, triplet) 

And R,5 can also be transformed into their vector's counterparts: 

-r""" _ K" K" FoGM (K- 1)" (K-1),u (13).r d - oti hI, "dd " ,\, 

in which F represents R,5 and :F represents ii, $, respectively, and Hoo~ trans

formed into 

9"" = Hoo/)j,(K- 1)OO,,(K-1)M II' (14) 

Under application of SLq(2,C) the q-vector v" transforms as 

Vi" =L""v", (1',1/ = 0,+,3,-) 

where 

L",,;= K"ooMohF~(I(-l)b6" (M E SLq(2,C» (15) 

is the quantum Lorentz matrix satisfying 

~12LIL2 = LIL2~121 
$12LIL2 = L1L2$121 (16) 

{ 
9""L" "L",\ = 9",\, 

and hence 
(17)9""V"v" = inv. 

Therefore 9"" is the vector's metric. 

The quasi-bosonic q-vector x", regarded as the "coordinate" of quantum space

time, obeys the following commutation relations, 

XIX2 = $12X I X 2, (18) 
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which are covariant under quantum Lorentz transCormation. Explicitly they are 

xOx+ - x+xo = 0, 

XOx3 - x3 XO = 0, 

xox- - x-xo = 0, 
(1~)

qx+ x3 - q-l x3x+ = (q _ q-l )xox+ , 

qx3x- - q-1x-x3 = (q _ q-l)XOX-, 
x+x- - x-x+ = -(q - q-l)(xO X3 )x3 , 

thereCore XO (the quantum time) is the linear center oC this algebra. Furthermore 

the invariant quantity 

J = 9/wXllXIl = (xO)2 - qx+x- - q-1x-x+ (x3 )2 (20) 

is the quadratic center, i.e., 

Jxll -xllJ = O. (21) 

At the same time we can introduce conjugation relations in this algebra such as 

(XO)* =xO, (x+t = q-l x-, (x3 )'" = x3 , (x-t = qx+, (22) 

and then 

J*= J, (23) 

which are covariant, too. This makes the algebra a C·-algebra. When q -t 1, all 

the XllS commute with each other, and if we put 

x± ~(Xl ± ix2), (x+t x-, (i2= -1) 

then 

J = (xO)2 - (x 1)2 - (x2)2 _ (x3)2 inv. 

which means the conventional Minkowski space-time is recovered. 

2. Representation of Quantum Space-time in Hilbert Space 

Now let us construct a representation oC the algebra defined by Eqs.(i9-23) 

in Hilbert space. Indeed all the elements xo, x+, x3, x- ,J in this algebra can be 

regarded as operators over Hilbert space, and *-conjugation as their hermitian con

jugation. Firstly we find that {J, xO, x3 } are hermitian and commutative, thereCore 
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the simultaneous eigenstates 16,T,q) oC {J,xO,x3 } Corm basis oC the Hilbert space, 

i.e. 
JI6, T, q) = 616, T, q), 

x016, T, q) = T16, T, q), , (24) 
{ x3 16, T, q) = q16, T, q), 

and 6,T,q are real numbers. Then it is easy to prove that x:t::16,T,q) are eigenstate 

oC {J, xO, x 3 }, too, with the .same eigenvalues oC J and XO but different eigenvalue oC 
3x	 : 

x+16,T,q) '" 16,T,q2q - (q2 -1)T), 
(25)

{ x-16, T, q) '" 16, T, q-2q + (1 - q-2)T), 

thereCore x:t:: are "movers" oC x3 • x+ moves q (the eigenvalue oC x3 ) to q2q_(q2 -1)T., 
3Ifq > 1, it is greater than q Cor q > T and less than q Cor q < T, i.e., x+ moves x = q 

outward starting Crom the static point q = T (x3 = xO), hence it is an "expander". 

x- acts just oppositely, moves x3 inward, and hence is a " concentrator". 1£ q < 1, 

they all change their moving directions, thus x+ is concentrator and x- is expander. 

By applying x+ or x- many times on /6,T,q}, one moves it to the points with the 

Collowing eigenvalues: 

J and XO invariant, x3 = q2"'q - q"'[njwT, (26) 

in which n = 0, ±1, ±2,"', [nj = 9;::::." , W = q - q-l, n > 0 means (x+)'" applica

tion and n < °means (x-)Inl application. I£ we let 

x+/6, T,q} = c+(6, T,q)16, T, q2q - qWT}, 
(27)

{ x-16, T,q) = c-(6, T,q)16, T,q-2q + q-1WT}, 

where C:t::(6,T,q) are complex numbers, and 

(6, T,qI6, T,q) = 1, (Cor any 6,T,q) (28) 

we find by the algebra that 

Ic+(6,T,q)12 = 9!~~1[(T+q2q)(T-q)-6j, 
(29) 

{ le-(6,T,q)12 = 9+:-. [(T +q-2q)(T -q) -6J. 

Because lel2 ~ 0 Cor any complex number c, only those values of (6, T, q) which 

make the R.H.S. oC Eq.(29)~ 0 are permitted, otherwise they are Corbidden. We 

6 



denote the permitted regions in (8, T, (1) space required by c+ and c- as V+ and 

V-, respectively: 
V+: (T + q2(1)(T - (1) - 8 ? 0, 

(30){ V- : (T + q-2(1)(T (1) - 8 ? 0, 

and their boundaries (equality holds in Eq.(30» by S+ and S-: S+ =6V+, S- = 
h'V-. The final permitted region V is V = V+ nV-, and its boundary S = bV is 

partly S+ and partly S-. The surfaces 5+ and S- are q-deformed saddle surfaces 

in the (8, T, (1) space, and V+ and V- is the inner or outer zones bounded by the 

surfaces. On a plane with a fixed 8, the boundary S+ (or S-) becomes a pair of 

hyperbolas, except at 8 =0 where it is a pair of straight lines. When q =1, V+ and 

V- are the same, therefore V = V+ = V- and S = S+ = S-. But for q > 1, V+ 

and V- are different, and we find that for 8 $ 0 the boundary is S+ at both (left 

and right) sides and for 8 > 0 the boundary is half S+ and half S-. 

Furthermore, when q f:. 1 not all points in the permitted zone do really appear. 

If we apply x+ (or x-) on the boundary, because 

x+18, T, (1) 0, 
(31){ x-18, T, (1) 15-=0, 

x+ (x-) annihilates those states on S+ (S-), hence it cannot move them. On the 

contrary application of x+ (x-) on S- (5+) will result in a new surface. Therefore 

if the boundaries are acted successively by their counter-mover infinite times, they 

will give some families of surfaces. Only the interJectionJ of those surfaces resulted 

from the shift of the real boundary represent the permitted states. 

There are three cases in different regions, taking q > 1 as examples; 

(1) 8 =0 (see Fig.l) 


Real boundary is T = £1 (of both S+ and S-) and T = _q2£1 (of S+). The 


former can be moved neither by x+ nor by x-. The latter can be moved by x-, and 

it gives a family of straight lines in the plane: 

£1 =(1 - q-2n - q-ln-2)T. n =0, 1,2,···. (32) 

The line £1 = T is the asymptotic limit of this family when n - 00. 

(2) 8 < 0 (see Fig.2) 

7 

Real boundary is S+ at both sides (a pair of hyperbolas in the plane 8 = 
const.(< 0», and it can be moved by x-. This gives a family of hyperbolas : 

[£1 + (q-2n + q-2n-2 _ I)T](£1 - T) + q-4n-28 =0, (n =0,1,2",,) (33) 

and they have asymptotic lines £1 = T and £1 =(1 - q-2n - q-2n-2)T, which are just 

ones in the plane 8 = O. 

(3) 8 > 0 (see Fig.3) 

In this case the boundary is half S+ and half S-. Shifts of S+ and S- give 

different families of surfaces, and only their intersections represent permitted points 

of states. At the section of 8 =const.(> 0), those points form a lattice in the £1 ,..., T 

plane, with the following eigenvalues: 

in the upper half plane (T > 0) {£1 (,,,+;:::;--1 - qm).;8, 

T = (,"+1+,-"-1) (34)I7i 
9+9-1 v 8, 

the lower half plane (T < 0) is symmetric w.r.t. the origin, 

where n = 0, 1,2,"'; m = -n, -n + 2,··· ,n 2,n. For a given n we have (n + 1) 

nodes on the horizontal line (T =const.). Also when going to infinity those points 

asymptotically fallon the straight lines at the section 8 = O. 

If q keeps greater than 1 and goes up, the permitted points become more scat

tered (see Figs.4-6). And if q < 1, the permitted points are exactly the same as 

those for q-l (> 1). 

3. Conclusion and Discussion 

We see that in the Hilbert space representation of quantum space-time its ap

parentnumber of dimensions becomes 1 + 1 (xO and x3), and other two dimensions 

(x+ and x-) seem to be hidden. This representation is discrete in view of its eigen

value space, even becomes a lattice in the "time-like" region (J > 0). 

Also the above conclusion holds for other quantum (q-deformed) 4-vectors in 

the quantum Minkowski space, say the 4-momentum, because they obey the same 

commutation relation. Therefore in the quantum space-time the observable num

ber of components of energy-momentum becomes two and their values discrete. 

Quantitatively they rely on the deformation parameter q, which i~ also observable 

in principle. Because the quantization of space-time depends on the scale of the 
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relevant phenomena, this parameter is presumably a running quantity. 

The auther is grateful to Profs. H. Y. Kuo, K. Wu and X. C. Song for their 
helpful discussions. 
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Fig3. Section of quantized space-time at 8=+1. 

Deformation parameter q=1.125. 
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Fig2. Section of quantized space-time at 8=-1. 
Deformation parameter q=1.125. 

-4 -2 o 2 4 



Fig5. Section of quantized space-time at 8=-1. 
Deformation parameter q= 1.25. 
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Fig4. Section of quantized space-time at 8=0. 
Deformation parameter q= 1.25. 
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Fig6. Section of quantized space-time at B=+ 1. 

Deformation parameter q= 1.25. 
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