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Abstract 

We review the Edwards transformation, and investigate the Robertson transformation and the 
Mansouri-Sexl (MS) transformation. It is shown that the MS transformation is a generaliza­

tion of the Robertson transformation, just as the Edwards transformation is a generalization of 

the Lorentz transformation. In other words, the MS transformation differs from the Robertson 

transformation by a directional parameter q, just as the case of the Edwards and Lorentz trans­
formations. So that the MS transformation predicts the same observable effects as the Robertson 

transformation, just as the Edwards transformation does with the Lorentz transformation. This 

is to say that the directional parameter q representing the anisotropy of the one-way speed of 

light is not observable in any physical experiment. The observable difference between the MS 

(Robertson) transformation(s) and the Lorentz transformation is caused by the anisotropy of the 

two-way speed of light and another parameter d. Therefore a physical test of the MS transfor­

mation is a test of the two-way speed of light (or the parameter d), but not of the one-way speed 
of light. 
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1 Introduction 

In Einstein's theory of special relativity [1], constancy of the speed of light is its 

second postulate. With this postulate, a clock located at any position in a inertial 

frame can be synchronized with a clock at the origin of the frame by means of a light 

pulse. Since that time, the clock synchronization problem has been discussed by many 

authors. Robertson (1949) {2] proposed a more general transformation. Reichenbach 

(1958) [3] and Grunbaum (1960) (4] discussed this problem in detail, and pointed out 
that no observable difference would result if the speed of light really were anisotropic. 

Ruderfer (1960) [5] held that special relativity contains an important assumption which 

has not and possibly cannot be tested. Edwards (1963) [6] and Winnie (1970) [71 ob­

tained a generalized Lorentz transformation starting from the constancy of the two-way 

speed of light. It was concluded that the generalized Lorentz transformation predicts 

the same observable effects with the standard Lorentz transformation. Later, Mansouri 

and Sexl (1977) [8] proposed another more general transformation. After that time, 

many papers on this topic, such as Bertotti (1979) [91, MacArthur (1986) [10], Haugan 

and Will (1987) [111, Ab61ghasem, Khajehpour and Mansouri (1988) [12], Riis et al. 

(1988, 1989) [13], Bay and White (1989) [14], Gabriel and Haugan (1990) [15], Krisher 

et al. (1990) [16], and Will (1992) [17], were published. However, some ambiguities 

stilI exist in comparing the test theory with physical experiments. Thus it is necessary 

to analyze these kinds of test theories in detaiL 

In this paper, we shall first recall the Edwards transformation and its physical 

meaning, and then investigate the Robertson transformation and the Mansouri-Sexl 
transformation. We give the physical meaning of these transformations, and show the 

connections among the transformations under consideration. We propose a method for 

constructing a covariant dynamics. 

2 One-Way Speed and Two-Way Speed 

Consider a Cartesian coordinate frame whose origin is the point O. Let P denotes 

a point with coordinates (x,y,z), and r = (x,y,z) indicates a radial vector. c,. and 

C-r refer to the one-way speed of light in the direction of r/r and in the opposite 
direction, respectively. We define the two-way speed of light along the path lop + lpo 



as c.,. = (lop + Ipo)/(top + tpo), where lop = Ipo = r, top = ric,. is the time lapse 
between the emission of the light pulse at 0 and its arrival at P, and tpo = r/c_r is 

the time interval spent by the pulse from P back to O. So that the two-way speed of 

light can be expressed as 

c.,. = 2c,.c_r . (2.1) 
c,. + C_ r 

Eq.(2.1) implies that the choices of c,. and C-r are restricted in such a way that the 

sense of cause is preserved. In other words, a light signal starting at 0 cannot reach P 

before it leaves O. Since top and tpo must be positive, so must c,. and C- r be positive. 
Thus Eq.(2.1) leads to the restriction 

c.,.
"2 ~ c,.{c_r) ~ 00. (2.2) 

It is convenient to introduce a directional parameter q as follows 

Cr (2.3a)c,. = _ qr C-r 1 +qr 

Using Eqs.(2.3a) in (2.2), we get the limit on the directional parameter 

-1 ~ qr ~ +1. (2.4a) 

In particular, along the X-, y-, and z-axes, we have 

q q 
(2.3b)c. = 1- qi' C-i = 1 +qi' 

-1 ~ qi ~ +1, i = x,y,z. (2.4b) 

Let us discuss the relation between qr and qi. Consider the following "loops" of light: 

1+ = lOA + lAB + IBP + Ipo, L = lop + IpB + IBA + lAO, (2.5) 

where lOA is the distance between 0 and A, and so on. Coordinates of the points 

0, A, B and Pare (0,0,0), (x, 0, 0), (x, y, 0) and (x, y, z), respectively. Let t+ and L 

denote the time intervals spent by the light pulse traveling along 1+ and L, respectively, 

i.e., 

t+ = tOA + tAB + tBP + tpo, L top + tpB + tBA + tAO. (2.6) 

Substituting tOA = X/C:S:, tAO = x/c_:s:, tAB = y/Cst, tBA = Y/C- IJ , tBP = z/cz, tpB = 

z/c_z , top r/c,., tpo = r/c_r into Eq.(2.6), we have 

x y z r x y z r 
t+ =-+ - +- +-, L -+-+-+-. (2.7)

C:s: Cst Cz C-r C-:s: c-v C- z c,. 
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Using the definition, Eq.(2.3), we obtain from Eq.(2.7) 

qr (q:s: qlJ f:J qz )]t+ L = 2r -=- - -=-cosa + -=-cos + -=-cos'"( , (2.8)[c,. C:s: Cst C" 

'1. 2where cosa = x/r,cos/3 = y/r,cos,"( = z/r, and cos a + cos 2f:J + cos '"( = 1. Assuming 

t+ = L, from Eq.(2.8) we obtain 

qr q:s: qv f:J qz-=- = -=-cosa+ -=-cos + -=-cos'"(. (2.9) 
c,. C:s: Cst Cz 

3 The Edwards Transformation 

Let us recall a generalized Lorentz transformation as an example in illustration of 

how to compare a test theory of special relativity with physical experiments. Ed­

wards (1963) [6] assumed the constancy of two-way speed of light, and modified 

Einstein's second postulate as: the two-way speed of light in a vacuum as mea­

sured in two coordinate systems moving with constant relative velocity is the same 

constant regardless of any assumptions concerning the one-way speed. The con­

stancy of two-way speed of light implies c.,. = c.,.1 = C =constant. For simplicity, 

let q:i:: q:s: i- 0, q' == q:s:, i- 0, qll = qll' = q" = q;r' = 0, so we have from Eq.(2.3) 

C C 
C:s: = C_:s: = 1 +q' clJ = c- IJ =C" =C_z = c, 

c C 
C:s:' = --, C-:s:' = --, Cst' =c- lI' = C,,' = C-z' = c. (3.1)

l-q' 1+q' 

From the constancy of the two-way speed, Edwards (1963) [6] obtained the following 

generalized Lorentz transformation: 

t = J(1+ ;:')' _~ {[I +~(q +q'l] t' - [~(! - q~l + (q - q'l] f}, 
x- 1- V (x' vt/)(1 + ~ql) 2 _ ~ , 

C 

y = y', 

z = z', (3.2) 
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where v is the velocity of the inertial frame 5(txyz) with respect to 5'(t'x'y'z'). In the 

case q' = 0, the frame 5' is a "preferred" reference system to be denoted by I:(TXYZ). 
In this case, the Edwards transformation Eq.(3.2) reduces to 

t- --~_ 
1 

+ ~q) T (~ +q) ~] ,-/1-~ 
J 1 

2(X­
1- v

C1 

y=Y, 

z=Z. (3.3) 

How are applications of the Edwards transformation (3.2) to physical experiments 

made? It is noted that the coordinate t and t' are not directly observable because they 

depend upon the definition of simultaneity (an observable time should be a proper 

time), and hence all quantities associating with t and t', such as v = dx/dt and v' 

dx' / dt', are also not directly observable. On the other hand, distant clocks in physical 

experiments are generally synchronized by means of Einstein simultaneity, i.e. the 

constancy of the one-way speed of light. Thus in order to compare the mathematical 

quantities in the test theory with data given in physical experiments, a relation between 

a general clock synchronization and Einstein clock synchronization is needed. Let 

quantities with a subscript "0" correspond to Einstein simultaneity. Consider a light 

signal traveling from 0 to P. Let to be the departure time at 0, and t or to be the 

arrival time at P. A general clock synchronization implies 

x y Z 
t = to + - + - +-. (3.4)

Cs Cy C~ 

On the other hand, Einstein clock synchronization gives 

x y z 
to = to + - + - + -. (3.5) 

c C c 

The relation between t and to follows from Eqs.(3.4) and (3.5) 

(3.6a)to + x (~ - !) + y (~ - !) + z (.!. - !) . 
Cs C Cy C Cz c 

Similarly in frame 5', we have 

t " = to + x,(1- - -1) + y,(1- - -1) + z,(1- 1) (3.6b)-. 
~ c ~ C ~ C 
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For Edwards clock synchronization, using Eq.(3.1), Eq.(3.6) leads to 
, 

x ,x 
t = to - q-;;, t' = t~ - q;. (3.7) 

Using Eq.(3.7) we obtain relations between the velocities (us = dx/dt, U:r' = dx'/dt',·· 


.) corresponding to Edwards simultaneity and the ones [(us)o = dx/dto• 


(us,)o = dx'/dt~,· ..J corresponding to Einstein simultaneity: 


(us)o (US/)O • 
~-) , (3.8a)

U:r = 1 - q(u:r 0 Us' = 1 - q'(usl)o 

In Eq.(3.2), v = dx'/dt', and hence we have from Eq.(3.8a) 

vo 
v=--v-' (3.8b)

1- ~q' 

Using Eqs.(3.7) and (3.Sb), the Edwards transformation, Eq.(3.2), reduces to the stan­

dard form 
to _ _ 1 t' Vo/l-~ ( o-~), 
x = 1 (X'-vot~)

1-~ , 
CR ,

y y, 
,

Z z. (3.9) 

This result shows that the difference between the Edwards transformation and the 

Lorentz transformation is just their different simultaneities, and that the Edwards 

transformation predicts the same observable effects as the Lorentz transformation. In 

other words, the directional parameters q and q', and hence the one-way speed of light, 

cannot be tested in any physical experiment. Let us give an example in illustration of 

this fact. The Doppler effect can be easily obtained [18] 

2 2 
V J(1+ 'Ilq') ~ 

Vi = C C , (3.10)
1+ ~q' - ~COS(l 

where v is the frequency of light emitted by source moving at velocity v relative 

to an observer, v' is the corresponding frequency measured by the observer, (l is 

the angle between the propagating direction of light and the velocity v. It is stressed 
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C'" = C-z Cy = C-1I C" C- 2 = C1.' (4.7b) 

One can see from Eq.(4.7) that in the Robertson test theory the one-way speed of light 

in a given direction is equal to the one in its opposite direction, but the two-way speed 

of light, in general, depends upon v2 and is anisotropic. Now we consider the problem 

of how to compare the Robertson transformation (4.3) with physical experiments. It 
needs to be emphasized that contrary to MacArthur [10], Robertson simultaneity is 

different from Einstein simultaneity because of the anisotropy of the two-way speed 

of light. So that we still need a relation between Robertson clock synchronization 

and Einstein clock synchronization. The general relation is given by Eq.(3.6a). In the 

present case (Le., C:z cll! Cy = c% = c1.), Eq.(3.6a} becomes 

t = to +x (~-!) + (y + z) (~- !). (4.8)
cil C C1. c 

Using Eq.(4.8) in Eq.(4.3b), the Robertson transformation becomes 

to=(dLC { 1 {[I+ v(C CII)]T_v+(c-CU)x} c-c1. }
C1. g2 c2 c2 -2-(Y +Z) , 

1-- C 
2c

x=(d)CU 1
C1.g(X-VT)1-~ 1 

2c

y = (d)Y, 

z = (d)Z. 

One should compare Eq.(4.9) with physical experiments. The Robertson transforma­

tion differs from. the Lorentz transformation by the anisotropy of the two-way speed 

of light, cli and C1.I and the parameter d. The difference is of the second order in vic. 

The Mansouri-Sexl Transformation 

Mansouri and Sexl [8] proposed a more general linear transformation as 

t = aT +f 'X, 

8 

x = b(X - vT), 

y= 

z (d)Z, (5.1) 

where the frame E(TXY Z} is a preferred inertial reference system in which the one­

way speed of light is isotropic. The frame S( txyz) is moving at velocity v in the positive 

x direction with respect to E, the parameters a, b, d, and f are functions of v. Let us 

introduce the following new vector parameter q (qz, qll' q.) in place of the old vector 

parameter f = (f:z, f ll , 

a (V
f", = cb (1 _V2) ; +q",) = -;. (~ +q ) c cn C :z, 

2 

fy = / 
a 

,q,--=­
cd 1- ~ c1. %" 

2c

a c 
f% = (5.2)/ ' q. = -::-q..v C1. 

cd 1--2c
where the constant c is the speed of light in E, and clI and clI are given by Eq.(4.4}. 

Putting Eq.(5.2) in Eq.(5.1}, the Mansouri-Sexl transformation can be expressed as 

g2 V) T (~ +q:z) !]c1. _ Zt = (d)":" { 1 [(1 + ;q:z - _ ~ }1- _ c C qll q2­~ C c' 

x = (d}.9t. 1C1.g(X-VT)1-~ , 
2c

y = (d)Y, 

z = (d)Z. (5.3) 

Next we shall prove that the new parameters (q:Z1 qlll q%) are just the directional param­

eters defined by Eqs.(2.3) and (2.4). For this reason, we first calculate the speed of 
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light in S. Substituting the Mansouri-Sexl transformation (5.3) into (4.5), we get the 

equation satisfied by the one-way speed of light in frame S: 

2[12 1 (1 1) 2] (1) . (5.4a)Cr 	 =2qr- - =2 - =2' cos a +Cr =-qr +1 =0, 
c r cn cJ. Cr 

whereCr = r/t,x/t =Crcosa,y/t =Crcos/3,z/t = CrCOsi,cos2a+cos2/3+cOS2i = 1, cJ. 

and clI are given by Eq.(4.4) which we will show are just the two-way speed of light 

parallel and perpendicular to v, and qr / Cr is defined by 

~ = ~coSCt + :11 cos/3 + :z COSi. 	 (5.4b)
Cr cli CJ. CJ. 

Solutions to Eq.(5.4) for Cr and C_,. are given by 

(5.5a)
Cr= 	 ,1 (1)
+ 	=2 - _~ cos2 a - ~ 

91 CJ. Cr 

C_,. 	 (5.5b)
1 ( 1 1 ) 
 2 qr- + - - - cos a + ­-2 -2 -2 ­

CJ. 91 CJ. Cr 

In particular, the one-way speed of light along the i-axis can be found from 

Eqs.{5.5} and (5.4b) 

~ i=x,y,z, (5.5c)
Ci = 1- qi C_i = 1 +q/ 

where Cz = CJI and Cy =Cz =cJ.. The result shows that cn and cJ. are just the two-way 

speed of light along x and y-axis (or z-axis), respectively, and the new parameters 

(qz, qll' qz) defined by Eq.(5.2) have the same meaning as the directional parameters 

given in Eq.(2.3), and hence q,./c.. defined by Eq.(5.4b) is the same as the one given in 

Eq.(2.9). Consequently, from (5.5), the speed of light in the frame S reduces to 

Cr = c.. 	 (5.5d) 
- qr C_,. = 1 + qr 

_ CJlcJ. 
(5.5e)

Cr = J~~ +(Ci -:- ~)cos2a' 
We can see that the two-way speed of light, Eq.(5.5e), is the same as the one, 

Eq.(4.7), in the Robertson test theory. Again a relation between t in the Mansouri­

Sexl transformation (5.3) and to corresponding to Einstein simultaneity is needed, in 

10 

order to compare the test theory with physical experiments. This relation is given by 

Eq.(3.6). Putting Eq.(3.6a) in Eq.(5.3) and using Eq.{5.5c), we obtain 

to=(dLC {f-;{[1+ v(c CII)]T v+(t:;-clI) } c-cJ. }
CJ. v c 2 2 X - -2(Y + Z) 

1--
2 

C C ' 

r2 

x=(d)CII 1CJ.g(X-VT)
1-~ , 

2c

y = (d)Y, 

z 	 (d)Z. (5.6) 

For the same reason as in Sec. 3, we should directly compare Eq.(5.6) with physical 

experiments. Eq.(5.6) is the same with Eq.(4.9), as expected. This implies that the 

directional parameter q in the Mansouri-Sexl transformation also cannot be tested in 

any physical experiment. 

6 Discussion and Conclusions 

The following relations can be shown from comparing the Lorentz transforma­

tion, the Edwards transformation (3.3), the Robertson transformation (4.3), and the 

Mansouri-Sexl transformation (5.3): 

Lorentz +-- q =0 +-- Edwards 

CII =cJ. =C CD = cJ. =C 

Robertson +-- q =0 <-- Mansouri-Sexl 

When the different clock synchronizations are taken into account, the Edwards 

transformation Eq.(3.9) is the same as the Lorentz transformation, while the Mansouri­

Sexl transformation Eq.(5.6) is also the same as the Robertson transformation Eq.( 4.9). 

So that we come to the following conclusions: 
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\ ,. 

(i) the Mansouri-Sexl transformation predicts the same observable effects as the 

Robertson transformation, just as the Edwards transformation does with the Lorentz 

transformation. 

(ii) In other words, the directional parameter q cannot be observed in any physical 

experiment. This is to say that its modulus can be taken as any value in the range 

(-1, +1), or to say that the definition of simultaneity can be chosen arbitrarily. Einstein 

simultaneity is the simplest one among the theories in which the two-way speed of light 

is isotropic; while Robertson simultaneity is the simplest one among the theories where 

the two-way speed of light is anisotropic. 

(iii) the Robertson transformation differs from the Lorentz transformation by the 

anisotropy of the two-way speed of light and another parameter d. So they predict 

different observable effects. It is same for the Mansouri-Sexl transformation and the 

Edwards transformation. Thus for comparing with physical experiments, it is better 

to use the Robertson transformation, one does not need to employ the physically 

equivalent the Mansouri-Sex! transformation. 

(iv) Therefore, a test of the Mansouri-Sexl transformation is just a test of anisotropy 

of the two-way speed of light (and a test of the parameter d), but not a test of 

anisotropy of the one-way speed of light. For instance, the constancy of values ob­

tained by measuring the two-way speed of light in physical experiments performed 

before may yield a limit on the two parameters ell and Col; and then the second-order 

Doppler effects may give a limit on the third parameter d. 

Finally we suggest that in order to construct a covariant dynamics with anisotropy 

of the two-way speed of light, it is better to start from Eq.(5.6) where the Einstein 

simultaneity is used. 
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