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Massless N-component free complex Klein-Gordon and Dirac field equations 

possess global affine symmetry. Localizing this symmetry leads to gauge mod­

, els with nonlinear connections. In a special gauge in which the original fields 

disappear, these models contain only connection fields. Generally new gauge 

fields can be decomposed into several massive fields with different spins and 

masses. The translation gauge fixed theories look like the usual SU(N) gauge 

models with several matter fields. 

Local gauge invariance as a guiding principle to find possible interaction theories, 
suggested by Yang and Mills (1) , has been successfully applied to the electroweak unified 
theory [2) and quantum chromodynamics of strong interaction (3). It is well known that 
the mathematical structure of above gauge field theories is the principal fibre bundle 
theory with linear connections. In this paper, starting from the global affine invariance 
of equations of motion of free massless fields and following Yang and Mills's idea, we 
try to establish the local affine invariant interaction theories, i.e. the nonlinear gauge 
theories with local affine symmetry, examine their mathematical structure and physical 
implications. 

Let us look at the equation of motion of the massless N-component complex free 
scalar field first: 

0/101'f$i(X) 0, i = 1,2, ... ,N. 

Obviously this equation is invariant under the global affine transformations which are 
defined to be 

if$,i(X) =Uj(a)¢l(x) +u	 (2) 
iwhere UJ(a) is the SU(N) group element with parameter am (m 1,2, ... r), and u

is the "affine translation" parameter. Our aim is to construct an interaction theory 
which is invariant under the local affine transformations 

f$,i(x') =Uj(a(x»f$i(x) +ui(x). 	 (3) 

Since the transformations (2) and (3) are not linear with respect to f$i, we can not 
use ordinary linear connection to construct the gauge theory. In fact, the set {f$} here 
does not form a linear space, it is only a differential manifold. So instead of usual 
vector and principle bundle theory which is frequently used in the physics literature, 
we need to use a more general differential bundle theory. That is, it is necessary to 
use the nonlinear affine connections (4)(51 which will be briefly reviewed in the following. 
The formulation used here comes mainly from ref.(5), since we think, the coordinate 
description there is more convenient for the physicists. 
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The nonlinear connection fields B~(x, f$) are vector fields which transform as 

B'~(x, f$') = U;(x)B~(x, f$) O/1Uj(x)¢l(x) - O/1Ui (x) (4) 

under (3). These B~(x, f$) can be expressed in term of group generators as follows 

B~(x; f$) = gAClp(X){TCl)~¢l(x) +ime~(x) (5) 
where (TCl)'S are anti-Hermitian representation matrices of SU(N) generators. A~(x)'s 
are usual SU(N) gauge fields and e~{x)'s are affine translation connection. Under 

transformation (3), A:{x) and e~{x) transform as 

A'/1(x) UA/1(x)U-1 
- i(O/1U)U- I 

(6)I
e'l'(x) = Uel'(x) + *O/1u(x) + *[U(gAI')U- I - (O/1U)U- lu(x). 

The covariant derivative of fields f$i( x) is defined as 

V /1f$i(X) ol'f$i(x) + B~(x, f$) (7) 
= O/1f$i(X) +gAI'~q,i(x) +ime~(x) == [D/1f$(xW +ime~(x) 

which transforms as 
V'/1f$,i(X) = U;(x)\1/1q,i(x) (8) 

under (3). The curvature tensor has the following form 

R(I)~/1vq,i +R(2)~vR~v 
R(l)i. 	 (9)(Fl'v)~ = (F:vTCl)~ = (O/1Av OVA/1 +g(A/1' AvmJI'V 

R(2)i
I'V im{ol'e~ ove~ +gA~jet - gA~je~). 

They transform as 
i _ i i (I)i i (I)k -1 1 

[(I'V - Uj(x)RI'V , R' jl'lI UkR 1/1I1(U )i' (10) 
R,('}.)i = U~(x)(R(2)j R(I)] (U-1)1 uk]I'v J /111 1/111 k 

In general nonlinear connection theory one needs to introduce a new connection to 
define the covariant derivative of \1 /1f$, but for affine case it is enough to define second 
covariant derivative by use of linear connection A/1{x): 

(VI'f$i )lIv 	 ov(\1 /1f$i) +g{ All)~(V /1q,i) 
ovol'f$i +gov{A/1)~q,i +g{A/1)~ovq,i +g{AII )jo/1¢Y (11) 
+g2(Av)~(A/1)if$k +im(oZle~ +g(AII)~e~}. 

Also the second curvature tensor is nothing but R(l)~/1I1' Their transformations under 
(3) are 

(\1'~f$/i(x) )lIv = U;(x)(\1/1f$i(x) )U" 	 (12) 

and (10) respectively. 
Above mathematical formulas have been obtained by mathematicians. What we do 

is to write them for particular case of our affine gauge group. 
Now we are in a. position to construct the physical model invariant under the lo­

cal affine transformation. With the requirement of no higher derivative of fields and 
renormaliziability of the final action, we can write down a Lagrangian 

( = (I +£2 + (3 +L t + (5 

..t. 



£\ -1 F~"F"I'V , £1, 92(~J"R'l"v , 

£3 93(Vp~it(Vp~i) , £4 94(Vp(P)"V(VI"~1)IIV , (13) 

£5 95(Vl"~i)lIp·(v v~i)lIv. 

This Lagrangian looks quite complicated, moreover £4. and £5 look nonrenormalizable. 
But since this gauge system is a highly constrained one, we can use the transformation 
(3) to eliminate some nonphysical degree of freedom. As the first step of the gauge 
fixing, 	we can use the local affine translation transformation to eliminate ~i fields: 

~/'(X) = ~i(x) +qi(x) = O. (14) 

Thus we have 

£2 + £3 92(Dpe~ Dve~)·(Dpeiv - D"eil") +93e~*eil" 
(15) 

£4 + £5 94(Dl"e~t(DPeiv) +95(Dl"eip)*(DVeiv). 

Here 9k = 9km2, k = 2,3,4,5, and the definition of DI" see eq.(7). We can find that 
£4 and £5 become renormalizable in the gauge (14). The situation is similar to the 
supergauge field theory of superfields, where the Lagrangian becomes renormalizable 
in the Wess-Zumino gauge [S). Notice that now £5 in (15) can be expressed as a linear 
combination of £2 and £4 so we simply omit it in the following. In order to make clear 
the physical contents let us write (15) as ' 

£ = £A +£a + £a-A (16) 
where 

£a 292(8I"e~r(8"'e'" - 8Ve'''') +93e;e'l" +94(8"e~)*(8Vfip) (17) 

is the quadratic part of e~ field. The variation of (17) with respect to e~ produces 
the free equation of motion of e~ : 

- 29281"(8"e'v 8Ve;"') +93 eiv 
- 94.8",(8"e'V) = O. (18) 

Taking derivative 8" of (18) we get 

9481"81"(8veV) - 93(8veV) = O. 	 (19) 

It shows that (8v eV
) is a scalar field with mass m; = -~. Furthermore we define that 

94 

e", e;: - ~8p(8"eV). 	 (20) 
m" 

Substituting it into (18) and using (19) we obtain that 

a al"(eT) - ~eT = O. (21) 
'" v 292 + 9" v 

It shows that e~ is a vector particle with mass m~ -~. We would like to 
292 +94. 

comment that we have not found any basic principle to fix the values of m" and my. 
Some special choice of parameters, e.g., 94 = -292. seems possible so that my becomes 
infinite and spin 1 particle becomes ineffective. But it seems for us the natural way is 
both of scalar and vector particles are active. 

The same consideration can be applied to the fermion case. The Dirac equation of 
N-internal component free massless fermion field is 

i"fp 8"'lpi(x) =0, i = 1,2, .'" N. 	 (22) 
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which is invariant under the following affine transformations 
(23)tP~(x) = uj(a)tPi(x) +X~ 

where /3 (1,2,3,4) is the spinor component index and X~ is the spinor parameter. 
The local affine transformation is defined as 

tP/~(X) =Uj(a(x»tPMx) +X~(x). 	 (24) 

The nonlinear spinor-vector connection can be written as 

B~p(x) = 9(A:TQ)~tP~(x) +ime~p(x), 	 (25) 

which transforms under (24) as 

B/~p(X) Uj(x)B!p(x) - 8I"uj(x)tPb(x) - 8pX~(x). (26) 

The first and the second covariant derivatives of tPMx) are 

V ptP~(x) [Dl"tPp(xW +ime~p(x) 
8I"tPb(x) +9(A~TII)~tP~(X) +ime~p(x), (27) 

(VI"tPMx»Uv = [(8v +9Av)VI"tPP(x)]'. 

The total curvature tensor is 
R' = R(I)i. .,.i(x) +R(2)i 	 (28)Ppv ]l"v'+'P p",V' 

where R(I)~l"v is the same as in eq.(9) and 

R(2)~",v = im(Dl"evp - D"eI"P( (29) 

The second curvature tensor is the same with R(I)' j",v' Under the transformation (24) 
they transform respectively as 

V/l"tP/~(X) = uj(x)VptP~(x), (V/l"tP'~(X»II" Uj(x)(V"'tP~(X»II'" (30) 
OIi Ui( )Ri 	 g(I), - U'R(l)k (U-I)'fippv j x (J",v' j",v - I: 11"" j' 

Now we construct the model invariant under transformation (24). We also require 
the Lorentz and C.P.T invariance. Since e~{J is a fermion field, we also omit terms 
with the second and higher order derivative of e~{J' The general form satisfying above 
requirements is 

£ =£1 + £1, + £3 + £" + £5 + £S 

£1 = -~F:"FQpV, £2 = ~VptPV"'tP, 


£3 ~VptP1p1vVvtP, £" i~VptP1V(V"'tP)lIv+h.c., (31) 

£5 = i~V I"tP1V(VvtP)lIp + h.c., £6 = i~V I"tP1vR"''' + h.c. 


Again we can choose the gauge 

tP'p(x) = tP~(x) + X~(x) = O. (32) 

The free e~13 part of the Lagrangian is 

£a = A2m6pel" + A3m61"1"'1vev + iA"6,,,1v8"'ev 
(33)

-iA,,~"1vel" + iAs6",1v 8"el" - iAslF9'"1ve", 

where A4. = A~ + A~ and As = A~ A~. So the motion equation of free e~/J field is 

A2mep + A3m1p1vev + iA4.8"'bve") + iA41"'(8"eV
) + 2iAsae'" = O. (34) 
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In order to clear the physical property of E>~p fields, we define two spiu ~ fields 

(Si) )("{/lE>i 
Ill' == Qi = ~o8/le~ 

where ma is a parameter determined lalter. After tedious calculation we obtain that 

i8w - Mill 0 , AI, (Mll M12) . (36) 
M21 M22 

where 

Alu = A2 +4A3 MI2 M21 = 4(A4 + AS)
A4 2A5 m , A4 2A5 ma , 

A2 + 4(A.+Asl (A4 hl.ili. - A
M22 = A.-lAs A.-2As 3) 


A4 +2A5 A4 4(A.+As ) m 

A.-lAs 

1 

{ 	
}l(A2+4A3)(A4~1!~~3 A3) 

m 	 • S m 
a 4(A +A )(A +2A _ A 4(A.+As)

4 5 4 5 4 A.-lAs 

Diagonalizing M matrix we get 

m± = 
1 

+M22 ) ± j(Mll .'\122)2 +4Mf2l· (37) 

They correspond following two states respectively: 

F+ = S - M1:W m+ Q , F_ = Q M2:w. m_ S. (38) 
12 	 12 

Decomposing E>/l into three parts: 

ib20j.! E>; + + ia2 8/l)F+ + + -8/l)F- (39)
m+ m_ 

where 
a = __I_(4mo(Mu -m_) Ai)

1 	 m+-m_ rn_ 12 , a2 = --I-(Mu m_ - !E..2..MI2 )m+-m_ m_ 
(40)

=b1 _1_(M12 - ~=-u-=::.!. ~ = --I-(.1!!!.JI.M12 - MIl +m_),m+-m_ m+-m_ m+ 

we can prove that 

//lE>; 0, 8/l0; 0, (i8 -'~2m )E>; O. 
-A5 

These equations show that E>~ is a spin ~ Rarita-Schwinger field with mass I I. 
SO far by using nonlinear connections we have established the local affine invariant 

interaction theories for both scalar and spinor cases. In the gauge choices (14) and 
(32), the theories appear to be renormalizable. The matter fields have been absorbed 
into the connection fields. Thus, generaly speaking, except ordinary gauge fields, one 
massive scalar and one massive vector fields appear in the bosonic theory and two 
t and one spin ~ massive fields in fermionic theory. We have not fOllnn any basic 
principle to restrict their mass values. It seems possible that some particular choices of 
parameters make some particles (e.g. spin 1 and spin ~ particles) become infinite heavy 
and disappear in the effective theories. We think the quantization in the interaction 

picture can be carried out in terms of the methods for Stueckelberg field [71 and Rarita­
Schwinger field (81, based on the complete sets of solutions of equations of free motion. 
We are trying to work out it. As a final comment the formalism used here can be used 
in SU(3) and SU(2)xU(1) theories. Thus the standard model would be generalized to 
include some new particles. We think it is interesting to search for these new particles 
experimentally while seach for heavy particles in other theories (such as SUSY etc.). 

In summary, we have constructed several local affine gauge models by using nonlinear 
connections. After special gauge fixing of local translations both of matter and gauge 
fields in usual gauge theory become components of nonlinear connection fields. We 
predict the existence of some new particles if nature choose above mentioned local 
affine invariance. We think that further study of these local affine symmetries and 
their consequence for field theory behavior is interesting. 

We are indebted very much to prof. Q.K.Lu for explaining us the nonlinear connec­
tion theory. This work is supported by the NSF of China and the Grant LWTZ-1298 
of Chinese Academia of Science. 
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