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Abstract 

The thermodynamics of a Reissner-Nordstorm (RN) black hole is 
studied with particular attention paid to a possible second order phase 
transition.!t is shown that, at the thermally stable phase at which the 
heat capacity at constant charge is positive, the mean square ftuctu­
tation of mass and entropy of a massive RN black hole are divergent 
as a certain critical temperature is approached, simiUar to other ther­
maUl' stable thermodynamical system,; which undergo second order 
phase transition. In the thermaUy unstable phase at which the heat 
ca.padty at constant charge is negative, the Ructutation probabiUty 
diverges exponentially as the critical tempera.ture is approached. An 
order parameter is then introduced to describe the transition between 
the thermaUy stable and thermaUy unstable phase phenomenologi­
eaUy_ Within this phenomenological framework. the ftllctutatioll di~­
sipation properties of the black hole near the critical temperature is 
studied. Critical exponents of rele\.-ant thermodynamica.l qua.ntites are 
also compu ted 

1 Introduction 

In black hole thermodynamics, it is known that a black hole may have neg-
I 

ative heat capacity when regarded as a thermodynamical object. However, 

it was discovered by Davies) and Hut2 that a black hole may also have pos­

itive heat capacity, depending on the charge or angular momentum of the 

black hole. The transition from positive to negative heat capacity or vice 

versa takes place at a certain critical temperature at which the certain ther­

modynamic potential has first continuous partial derivative with respect to 

temperature but the second partial derivative with respect to temperature is 

discontinuous. This characteristic is shared by many other thermodynamic 

systems which exhibit second order phase transition. In view of this simil­

iarity, it is suggested I that a second order phase transition also occurs for 

a black hole with charge or angular momentum. So Car very little is known 

about this possible phase transition. Some 3.4 even express scepticism about 

whether there is really any pha..<;e transition taking place at all. 

The aim of this work is to investigate this possible phase transition phe­

nomenon further in the case of a RN black hole. The content oC this work 

is arranged as follows: The necessary background material is presented in 

section two. In section three, the critical exponent of the heat capacity at 

constant charge is first determined. In section four, the thennodynamical 

fluctutation near the critical temperature is studied. An order parameter is 

introduced in section five to provide a phenomenological description oC the 

transition between the thermally stable and unstable pha..<;e. The fluctut,ation 

dissipation properties of the black hole near the critical temperature are then 
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discussed in section six. Section seven consists of a few concluding remarks 

of this work. 

2 Thermodynamic Preliminaries 

We first consider the case of a RN black hole first. To facilitate subsequent 

discussions, the necessary background material is reviewed and some nota­

tions are fixed in this section. Throughout, we shall set G =Ii =c =1, k = 
/; where aU symbols have their usual me3.Ilings. 

For a RN black hole with mass I.\-/ and charge ; such that e2 ::; Al2 I the 

entropy is given by 

- 2 i 
1 ;) 1 2 1 2 ( e )S = -AI - -e + -M 1 - - (1)
" 8 4 Al2 

From (1), 

T_(_OM) ___4....;.(M_2___e2...;..)t-.--_ 
(2) 

- 05 e - 2M(ll-/+C:U2 -e2).)-e2 

From a thermodynamical perspective, .(2) may be looked on as the equation 

of state of the black hole. It gives a functional relation among the thermo­

dynamical variables similiar to, for example, that of an ideal gas. 

Let e2 =13m2 where 0 ::; !3 ::; 1. Define 

a =(1 - j3)i (:1) 

where the positive root is taken in (3). With (3), (1) and (2) may be 

rewritten respectively as 

5 = !.J{l(l +a)2 (-t)
8 

2 

4a 
T = ~\1(1 +a)l 

(5) 

Define the Helmoltz free energy as 

F= J/ -TS (6) 

The heat capacity C. with constant charge is then given as 

Ce (OS) (fPF) (i)=T aT ~ = -T 02T e 

With the help of (1), further elucidation of (i) I gives 

, 8MS3T 
C. = le" _ 8S3T2 .. 

With (4) and (5), it may be further be expressed as 

32S3T 
(8)

Ct! = JJ3(1 +a)2(1 - 2a) 

Thus Ct! has a singularity at a =!(e2 = !M2). C~ -+ ±oo as a -+ !:'f. At 

the same time, both F and S = - (~~). are continuous at a = !. Thus a 

RN black hole exhibits the characteristic of a second order phase transition 

at a = t 

3 Critical Exponent of Ce 

The theme of this section is to work out the critical exponent of Ct! which 

sheds light on the asymptotic behaviour of Ct! nears Te. In doing so. the 

temperature dependence of F and 5 near Tc will also be determined. 

To this end. we need to express F as a function of T and e. This is feasible 

by virtue of the equation of state in (2). In general, to express M in terms 
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of T and e, it is required to solve the following cubic equation derived from 

(2) 
2 

3 1 2 2 e 1 4 
1\J - 1).,1 - Ale +T + 16 Te = 0 

This cubic equation, though in principle solvable, yields very complicated 

solutions which are not particularly illuminating for our purpose. Since we 

are only interested in the physics near the critical temperature Tc at which 

a = ~, let 
M = Me(1 +6) 

(9)
T = Te(1 + t:) 

where 161,lfl <t: 1, "Ie is the mass of the black hole at Te with e constant. 

(9) describes JI and T of the black hole near Te. 

For 6 sufficiently small, Taylor expansion of (3) in terms of 6 yields 

a( 6) = 21 
(1 + 36 - 962

) (10) 

where terms of order higher than 62 are neglected. Eventually, for 6 suffi­

ciently smalL we only consider the first order terms of 6. For r{'asons becom­

ing apparent later, we shall include 62 term in (10). Putting (10) back into 

(8), for 6 sufficiently small, we have 

Me ~ 
Ce (11)= -12T 6 

e 

which is the asymptotic form of Ce near Te in terms of 6. To further express 

(11) in terms of t:, with the help of (9) and (10), (5) may be written as 

i + f = (1 + 36 - 962
)( 1+ 6) -\ (1 + 6 - :3b'zr 2 (12) 

·1 

Taylor expanding (1 +6t1 and (1 +6 - 362t2 and keeping only up to second 

order terms of 6, (12) becomes 

l+e = (1+36-962)(1-36+1262
) 

1 ­ 662 

As a result, 

t: = -662 (13) 

As expected, the first order term of 6 vanishes in (13) otherwise, by virtue 

of (11) and (7), S would be singular at T, which is a contradiction. At 

first sight, (13) may seem to be counter intuitive since. at Tc. both increase 

or decrease in mass of the black hole will lead to a decrease in the tempera­

t~re. However, a moment of thought reveals that this is actually the correct 

description of the physical situtation peculiar to a RN black hole. 

Consider first 6 > O. In this case ee < O. A RN black hole behaves 

similiarly to a Schwarzchild black hole in the sense that increase in mass will 

lead to a decrease in temperature of the black hole, in accordance with (13). 

In the case 6 < 0, increase in 62 means that 6 becomes more negative, i.e. 

the mass of the black hole decreases. Since Ce > 0 for 6 < 0, a RN black 

hole behaves like a thermally stable system. Hence a decrease in mass leads 

to a decrease in temperature as described in (13). From this, we also see 

that. at constant e, Te is .the temperature ceiling of the black hole. 

Incidentially. we note that (13) together with (9) give 

C= (aM) = Mea6 = _~Me ~ 
e eaT Tc at: 12 Tc 6 

near Te. It coincides with (11) whkh is ohtained without using (] 3). This 

provides a consistency check that (13) is a good approximation near Te. 
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From (11) and (13), we then have near Tel 

c. ={-A{-e)-t 6> 0 (14)
"'.(-ftt 6 < 0 

where A = 24~T" which is a positive function of e. Thus, both above and 

below Me, C. has critical exponent -t. From (7) and (14), we further have, 

near Tel 
es={ti-f)t+ S 6>0 (15) 

-2'(-f)t +Se 6 < 0 

F = { l~( -f)i - So: +Fe 6> 0 (16) 
-iA(-e)i - Sc +Fe 6 < 0 

where the subscript c denotes the relevant quantity evaluated at Te. 

4 Thermodynamic Critical Fluctutation 

Having determined the temperature dependence of F and S near Te in previ­

ous section. we shall go on to investigate the thermodynamical fluctutation 

near Te. Our experience with systems known to have a second order phase 

transition show that, apart from the discontinuity of (~) e at Te, the ther­

modynamical nuctutation also behaves anomalously near the critical tem­

perature Cor these systems. The aim of this section is to see whether there is 

any similiar anomalous behaviour for the thermodynamical fluctutation Cor 

a RN black hole near Te• 

Consider a RN black hole in equilibrium with a conl:ltant temperature 

heat bath cOllsisting of black body radiation. The temperature of the heat 

bath is taken to be Tee 1 +f) where f < 0 and IfI <: I. For 6 > 0, to ensure 

thermal stability, we need to assume the heat bath consists of a box made 

6 

of perfect reflecting walls whose volume is sufficiently small' with the black 

hole immersed in it. No such restriction is necessary for 6 < O. Further, 

we also assume the mass of the black hole is sufficiently massive so that its 

charge may be regarded as constant'. 

Suppose the black hole deviates. from the equilibrium of the heat bath 

with temperature deviation given by At: where At: is sufficiently small so 

that the equilibrium of the heat bath is not disturbed. Let p( f, e) denote the 

fluctutation probability of the black hole at constant f and e. Then .. 

-811"AF'}
p(f,e)ocezp { T (l+f) (17) 

e

Here the S7r factor comes in because we have taken k = i,;, ex denotes 

proportional to and 

F' = M - Te(1 + f)S (18) 

Note that F' is not the Helmoltz free energy of the black hole because the 

temperature of the black hole is now Te(l +f +~f) and the Helmoltz free 

energy of the black hole is given as 

F = ;l,r[ - Te(1 +f +Af)S (19) 

Using (18) and (19), we may deduce from (17) that~ for IfI, j.lfl <: 1 

p(f,e) oc exp{-811"(t' +AS.:lf)} 
(20) 

= exp{ -811"( '* +C,,{.:lf)l)} 

where the second line follows from (i) and ~f being sufficiently small. Fl'Om 

(16), we have 

flF = { (-t(-e)i + Se).:lf 6> 0 
(21)

(t(-e)t + Se)..lf 6 < 0 

i 



Compare -~ with -Ce(ue)2 in (20) using (14) and (21). We see that 

near Te, -Ce(~f)2 dominates over -to Hence, for IfI< 1, (20) becomes 

p( f, e) ()( exp{ -811'Ce( Uf)2} (22) 

Consider first the case 6 < O. Followed from (i), (14) and ILlfl < 1, 

(~M)2 A?(_e)-t(.:lf)2 (23) 

Using (23), (22) then becomes 

811' 
p(f!e} ()( exp{- C (uM)2} (24) 

e 

For 6 < 0, Ce > O. p( f, e) is then a Gaussian distribution in terms of the 

variable ~.\l. Denote the mean square fiuctutation of M < (UM)2 >. 

< (LlM)2 > is then given by the variance of p(e, e) and from (24), we have 

< (.~M)2 >e< C~ 

which diverges to infinity as --Lr- when f -+ O. Similiarly, we may also show 
(-()2: 

< (~S)2 >-+ 00 as ~ when f - O. Thus, the thermodynamical fluctuta­
(-~)2: 

tion of a RN black hole (at least a. sufficiently massive one) in its thermally 

stahle phase be-h.wes similiarly to other thermally stable thermodynamical 

systems which undergo second order phase transition. 

For 6 > 0, Ce < O. From (14) and (22), 

p(f. e) ex: exp {A(~f.)2} 
(-E)i 

Since .t(~f)2 > O. p(f. e) dh-erges exponentially as f -+ O. 

8 

If we envisage a large number of copies of RN black holes prepared in an 

identically way such that their average behaviour is described as being in 

equilibrium with constant temperature heat bath consisting of black body 

radiation and Ce < O. As T -+ Tct number of systems in the ensemble whieh 

deviate from the average behaviour is infinite. This indicates a break down 

of the description of a RN black hole by means of canonical ensemble near 

Tc in the thermally unstable phase, even though we enclose a RN black hole 

in a box to ensure thermal stability. 

The divergences obtained in both 6 < 0 and 6. > 0 CaJIles seem to con­

tradict the result of Pavon et. aI." whose derivation is based on the hydro­

dynamic approximation to a black hole, no use is made of the equation of 

state (2). However, one assumption behind this approximation scheme is 

that the thermodynamical system under consideration may be subdivided 

into subsystems. The fluctutation in each subsystem is independent of each 

other and uncorrelated. It is questionable whether this aJIlsumption would be 

upheld for a black hole within which gravitational force is so intense, not to 

mention the fact that gravitational interaction is also long range. 

5 The Introduction of an Order Parameter 

Due to our lack of understanding of the statistical mechanics of a black 

hole, there is no hope oC going Curther in our sea.rch Cor a detail. microscopic 

understanding of the transition between the thermally stable and unsta.ble 

phase of a RN black hole. However, in analogy to other thermodynamical 

systems which exhibit a second order phase transition, we may introduce 
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an order parameter to describe the transition phenomenologically, without 

necessarily knowing the underlying microscopic dynamics. 

Let 'I be a real parameter such that 

fl=O 6>0 (25)
fl~O 6<0 

Assume for cS < 0 and IcSlt IfI <: 1, F is of the form 

F =h(e,'1){-f)f +h(e,.,,)(-f) +Fe (26) 

where h, h are smooth functions of e and fl. Thus the singularity of U~t 

at f = 0 is entirely due to the term ('7"f)i. Taylor expanding h, h in terms 

of 'I, (26) becomes 

F = (-~.4 + b1(e)." + iJ.z.,,2 + ... )( -f)f + (-Sc + d1(e)q + ... )( -f) + Fe (27) 

where Me},dj(e),i =1,2··· are {unctions of e. We then recover (16) as the 

zero order term o{." in (27). 

In all thermodynamic quantites describing a RN black hole, only e2 terms 

appear. As a result, the thermodynamics o{ a RN black hole is invariant 

under charge conjugation. Now the presence of charge is responsible for the 

change of phase. Like in superconductivity, " is a measure of density of 

Cooper pairs of electron. fJ is presumably a measure of electron density for 

a particular kind of electrons whose behaviour is responsible for the phase 

transition of a RN black hole. Hence charge conjugation symmetry implies 

that only terms of order ,,2'11 where n is a positive integer will appear in the 

series expansion in (26). As a result, we have {rom (27) 

F = (-JA+b-z(e)"2+b..,,,,+... )( _f)f+( -Se+d2(e)fJ2+d . .( e)fJ"+· .. )( -f)+Fc 

(28) 

10 

(28) looks similiar to the expansion of F in Landau theory 7 in the sense that 

only even powers of fl appear in the series. However, unlike Landau theory 

in which· the singularity part of F is encoded in the series, the singular part 

of F in the present context is in the (-f)f term. The series expansion in 

terms of ." is merely Taylor expansion. Further, at constant e and f, F is a 

locai minimum. Hence 

(29)(~~) e~ 

(28) and (29) together with fJ =0 at f =0 imply d2(e) = O. (28) then 

becomes 

F = (-~A+b-z(e),,2+b""'''+''')(-f)f +(-Sc+d..(e)'I"+···)(-f)+Fc (30) 

From (29) and (30), we also get, for sufficiently small -f, 

fJ2 =-~(-f)l (31) 
d" 

By our assumption, " is real. Thus, b-z and d.. are of opposite sign in (:)0). 

Further, (25) together with (31) give, for IfI<: 1, 

o ., > 0 
fJ ={8(-f)l 6 < 0 (32) 

where 8 is a real valued function of e. t is then the critical exponent of 11 

when ~ < O. For ~ < 0 and constant e, (32) implies 

.;lfJ =B( -f)-t ilf (3:) 

Using (33) and arguments similiar to that in last section, we also have 

limt_o < (~fJ)2 >- 00 as (~(' in the thermally stable phase. 

11 



6 Fluctutation Dissipation Relation 

To enhance our understanding ot the physics of the black hole near Te. let 

us introduce a weak perturbation of unspecified nature to the black hole and 

investigate the response of the black hole near Tc to this external perturbation 

within the framework described in last section. The relationship between the 

weak perturbation and the response of the black hole to it is usually termed 

the ftuctutation dissipation relation. Note that within the context of linear 

irreversible thermodynamics of a black hole. there are two senses we may talk 

about the ftuctutation dissipation relationship 8: (i) Fluctutation dissipation 

relation for an accelerated quantum field or a quantum field on a black hole 

spacetime. (ii) Fluctutation dissipation relation for a black hole itself by 

regarding a black hole as a thermodynamical system in equilibrium. 

Obviously it is the second sense we refer to here. ).Ioreover, the ftuctuta­

tion dissipation relation we are going to discuss is not entirely equivalent to 

that governed by the ftuctutation dissipation theorem. The distinction will 

be made dear in what follows. 

Let It be a weak perturbation of unspecified nature and ~tl be the del"ia­

tion of ." from equilibrium due to the presence of h. Assume h is sufficiently 

weak so that the following linear relationship holds: 

~.,,=\h (3,1) 

where. at constant e and f, X is a constant called generalised susceptibility. 

From (34:), we also have 

(35)x = (:k) ~.(.h=O 
12 

Assume that near Tel for 6 < 0, F assumes the form as in (26) ,vith It, h 
now smooth functions of e, ." as well as h. Then F acquires the form 

F =(-!A +b:t(e).,,2 +b(e)h +...)(-elf +(-5e +d(e)h +...)( -e) +Fe 
3 

(8F) = 0 then implies 
8" e.e." 

(2."b:t(e) +b(e)h)(-e)t +d(e)h =0 (36) 

From (35), (36) and IfI<: 1, 

x= D(-f)-l (37) 

where D = - 2:(~) is a functioa Reissner-Nordstorm n of e. n the presence 

of h, ." f:. 0 for 6 > O. Similiarly, we may show, for 6 > 0, 

x= D/(-f)-~ (38) 

where D' is some function of e. From (37) and (38), the critical exponent 

of 'x is then -1 for both 6> 0 and 6 < O. Since X -+ 00 as e -+ 0, a weak 

perturbation will entail a large response from the black hole in terms of ~." 

near Te:. Again within the phenomenologca.l framework described here, the 

ftuctutation dissipation relation of a RN black hole near Tc is similiar to other 

thermodymamical systems undergoing phase transition. 

To end this section. it is worth pointing out that .:l." discussed in this 

section is different from that discussed in section 4. In linear irreversible 

thermodynamics, no distinction is usually made between these two due to 

the Onsager regression hypothesis. However, the assumption of Taylor expan­

sion of the entropy function near the equilibrium state behind the hypot.hesis 

13 
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breaks down in the present context near Tc as may be seen from (15). Thus, 

there is no reason to identify the spontaneous fluctutation of TJ and the fluc­

tutation of 11 induced by external perturbation. We are then not able to go a 

step further and assert the connection between X and < (~1I)2 > in secti?n 

4, as we usually do in the context of fluctutation dissipation theorem. 

Concluding Remarks 

We have shown that the thermodynamical fluctutation and the fluctuta­

tion dissi pat ion relation of a RN black hole bear some resemblance to other 

thermodynamical systems known to undergo second order pbase transition. 

However, despite all these similiarities, the existence of a thermally unstable 

phase for a RN and Kerr black holes have no analog in any known thermo­

dynamical systems outside the realm of gravitation. Probably, we are faced 

with a. new kind of critical phenomenon peculiar to gravitation here. The 

relevant critical exponents were also calculated here. Our experience in mean 

field theory suggests to us that the critical exponents of 11 and X may not be 

so reliable. In future, microscopic or other method are in need to calculate 

these critical exponents and compare with the results presented here. How­

ever, the critical exponent of Ce should be quite reliable since the calculation 

of which use only the equation of state for a black hole and series expansion. 

Since Kerr and Kerr-Newman black holes in general also have a singularity 

in the second partial derivative of the free energy with respect to temperature, 

it is also possible to extend present investigation to those cases. Preliminary 

investigation in the Kerr case show that the critical exponent of the heat 

14 

capacity at constant angular momentum is identical to that of C~. .Moreover, 

modulo some constants, the temperature dependence of the free energy and 

entropy are also identical to that of a RN black hole. Thus. despite all the 

apparent differences between a RN and Kerr black hole, at constant angular 

momentum, the thermodynamical behaviour of a Kerr black hole near its 

critical temperature is strikingly similiar to that of a RN black hole.It remains 

to see whether a generic Kerr-Newman black hole also behaves similiarly. It 

could be the case that all Kerr-Newman black holes with non zero charge 

or angular momentum form a universality class of thermodynamical systems 

in the sense that they share the set of critical exponents and hence have 

identical thermodynamics near critical temperature. Further work remains 

to be done to elaborate on the Kerr and Kerr-Newman cases. 
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