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Abstract

In this paper, some new generalized inhomogeneous quantum groups
corresponding to the homogeneous multiparameter quantum groups
GLx.,(N) are constructed. furthermore, the R-matrices for these

inhomogeneous quantum groups are found out.
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1. Introduction

The quantum groups are now widely used in the 2-dim conoformal field theory, 2-.
D gravity and 2-dim intergrable model so that they are being paid more and more
attention. The concept of quantum groups originated from the quantum inverse scat-
tering method(see ref.[1]-[2]) and in middle 1980s Drinfel’d found out the algebraic
constructions associated with it are closely related to Hopf algebra. According tok
the viwpoints of Reshetikhin et.al[3], the quantum groups are the noncommutative
function rings over the classical groups, i.e. they are either noncommutative or non-
cocommutative Hopf algbras while their realization spaces also have noncommutative

geometric structure.

In group thoery it has been known how to construct a matrix representation of the
usual undeformed inhomogeneous groups acting on the affine space with translation
and rotation parts. If we take z' as the coordinate functions of the translation part,
and T} as the matrix of homogeneous part acting on the translation vectors z', then

the matrix representation of the corresponding inhomogeneous group is
T! = . (1.1)

In the undeformed case all these matrix entries commute with one another and gener-
ate the function algebra over the inhomogeneous group. But how about the quantum

(deformed) groups?

Inhomogeneous quantum groups corresponding to homogeneous quantum groups



U,(N),50,(N) have been constructed in ref.[4], howev;ar, the relevant R-matrix has
not been given out. In ref.[5] the R~ matrices for the inhomogeneous quantum groups
IGL,(N) has been discovered, at the same time the beautiful structure associated
with these inhomogeneous quantum groups has been displayed by Castellani. In his
approach the quantum group and its quantum plane are combined together, according
to the relation

RABeTETE = TETAREF op, (1.2)

where T4 is given in (1.1) and R is

RABLp = , 1.3)

Obviously, a new structure appears: the quantum plane is no longer the left or right
module but the bimodule structure. In the quantum group case, the matrix entries
which do not commute with one another generate the g-deformed Hopf algebra of
functions over the inhomogeneous groups. Especially, in order to reflect the covari-
ance of the generators under the homogeneous group the new Hopf algebra must
be a left covariant bimodule of the original Hopf algebra which corresponds to the
homogeneous quantum group (see ref.[4]). This nice inhomogeneous quantum group
structure should have got important application, for example, one of them has been
used to discuss the quantum Poinéate group{6]. However the full meaning of the
inhomogeneous quantum groups is not so clear for us. It is worthwhile to search for

its deeper understanding.

; ln’ this paper we turn our attention to the multiparameter quantum groups
GLyx,,,(N). At first we construct new inhomogeneous quantum groups IGLx,; (V)
following the formalism in ref.{4] and {5]. Secondly, we construct a new type of
inhomogeneous quantum groups SIGL x.q;_,-(N ), which is a little different from th?
first 6ne. Thirdly, we introduced another type of inhomogeneous quantum groups
PPGLyxq,;(N). All the R-matrices for the inhomogeneous quantuﬁz groups above are
given. We will find that the Hecke relation play an important role in our construc-
tions. The new R-matrices for these inhomogeneous quantum groups should satisfy

the same Hecke relation as the original one.

In Sec.2, we briefly review the quantum groups GLxq,(N) which has been dis-
cussed in ref.[7} and [8] in order to explain our notation. In Sec.3, three types of
inhomogenous quantum groups are investigated. The corresponding R-matrices are

examined through the RTT = TT R relation and the Yang- Baxter equation.

2. Multiparameter quantum groups GLx; and quan-

tum plane

Let
(Rxa,Yiu = BA(09 +0F =+ 01%) a6 - X7, 1)
here k
0 = 1, if i>j, )

0, otherwise.



One can easily prove that this Ry 4, satisfies the Yang- Baxer equation
Rcmdzhﬂa“'ﬂsanmbam = Rh= hmRﬂqczm Ra,hﬂsbs' (2'2)

and if we take
6i=¢, (i<j), X=g,

in (2.1), we will get the R-matrix for quantum groups GL,(N). Here, the Hecke

relation for R = PR is to be
RP=(1-X"YHR+X'I (2.3)

Associated with Ry g, , we get the multiparameter quatum group GL X0, (V)
From relation
R tet] = 2R, (2.4)

for i, j, kI =1,--- n, withi < j,k <, we have

titi = putit
it = it

titl = el
P

o D s
{tl = Beltl + (ous — gt
iH
where p;; = —.
ij

The projecting operators corresponding to quantum group GLyx ;(V) is the same

as the ones for GL,(N), i.e.

- B 2 -1
I-R T-—R+X I

A=z T= T+x-1°

(2.6)

and satisfy

A*=A, T*=T, @7
A+T =1, AT =0. (2.8)

Quantum vector space and exterior quantum vector space that correspond to fix,,,.,-

can be calculated directly, the result is

ATyzrrt = 0= e = q,'j:x:’.::", 1<, (2.9)
L i1 = —py71EE, i<
Tougg=0m i o P (210)
f‘z = 0.

The determinant of the quantum group GLx 4; can be given

DetGL(T) = Z,Es‘ Z (—Pc(k)a(n'))] t",(,,tﬁ(,, oo t:(,,). (2.11)

i<k
a(i)>e(k)

The relation between the matrix element and the determinant is no longer commu-

tative and has been given out in ref.[7}:

k-1 n ,
i,D - a=1Jak aniﬁlphmi. (2.12)

-1

d=196i H?,.'“Pis
here D=DetL(T). In general, ¢;; cannot be equal to p;(Vi,j) that makes the D be

not the center of GLy (V).

Definition 2.1:

Clti, D™
RN\T; - T\ T3R,DD-! -~ 1,D-'D~1

GLX&;;(N) =



Theorem 2.2:

GLx 4.;(N) is a Hopf algebra with coproduct A
A =1@1, A(t)=tetf
counit ¢
(1) =1, «t) =24
antipode §
S(E) = (T;
multiplication m on GLx

(™)

iy

m(t; @ 1) = tjtf

3. Inhomogeneous quantum groups

The concept of inhomogeneous quantum groups v}as first defined ir; ref.[4], and follow-
ing the work in [4], the R-matrix corresponding to JGL,(N') was given out obviously
in ref.[5}. Our work is to construct the R-matrix for multiparameter inhomogeneous
quantum group IGLyx .. (V) at first, and then we introduce two new types of inho-

mogeneous quantum groups who are different from the first one.

3.1 The first type of inhomogeneous quantum groups

With the method used in [4] and [5], we can define the inhomogeneous quantum

groups IGLx ;. (N) as follows.

Deflnition 3.1.1

The multiparamer inhomogeneous quantum group IGLy (V) is the associative al-

gebra A generated by

(1)the non-commuting matrix entries T4 = (#§,1* = z°,¢, = 0,¢, = 1):

T4 = A , (3.1.1)
0 I
satisfying the following relations
R, gtet] = thts R 4, (3.1.2)
2t = XRY 1t (3.1.3)
A% gztrd =0, (3.1.4)

A being the projecting operator defined in (2.6), R°®.; being the R-matrix for

GL g5, (N)(see (2.1)).
(2) the inverse D! of the determinant D = Det®L(T) defined by

DD=DD =1, (3.1.5)

the DetSL(T) and the relation between D and ¢} have been given out in eq.(2.11),(2.12).

The relations between new element z* and D, D! is

. . j- .‘Y n
@D =YD\ Y =X -([[.; =) - (Mm99, (3.19)

=1 g


http:eq.(2.11),(2.12

rD =YD, (8.1.7)
which can be readily checked using the eq.(3.1.3). If we let q;; = X3, we find
oD = X%Dod, (3.1.8)
Theorem 3.1.2

The algebra A is a Hopf algebra with coproduct A

A1) =191, A(TH)=T4 31§, (3.L.9)
AD)=DO®D, AD)=D'9D™, (31.10)
counit ¢
fl)=1, «T§) =1, ¢D)=¢D)=1, (3.1.11)
and antipode § “
$(Tg)=(T"YY, SMD)=D, 5(D"Y)Y=D, (3.1.12)
where
(TYHa= St -S| (3.1.13)
0 I

From (3.1.9), let B = ., we have

Az) =@z +2° I, (3.1.14)
From (3.1.12),(3.1.13), we get .
$(z*) = -S(#8)z®, (3.1.15)
From these relations, we can easily check that
A(z*D-YDz*) =0, AE*D™ -Y~'D1z%) = 0.

9

The R matrix for IGLx.q,(N) can be constructed

RABp = ‘ , (3.1.16)

so that it satisfy all the relations for a R-matrix:

(1) RTT = TTR relation

RAB e TETE = TETAREF ¢p, (3.1.17)

can reproduce the relations (3.1.2),(3.1.3) and (3.1.4). Iflet A = a,B =5,C = -, D =
d, we have

Rt pzot] = (1 — XV)2be8 + 422, (3.1.18)
which is equivalent to (3.1.3) and the Hecke relation satified by R* 4.
(2) Hecke relation
The Hecke relation for the R-matrix which corresponds to GLx,q,,;(IV) has been given

out in (2.3), the same relation must be satisfied by R

R*=(1-X"HR+ X", (3.1.19)
or in another form
R=(1-XDI+R™1, (3.1.20)
(3) Yang-Baxer equation
RA'B' A28, R'hci AyCa RB’C’ ByCy = RB]C‘ B1Cy RA! c A1Cy RA’BI A3Bs- (3‘1'21)
10


http:3.1.12),.(3.1.13

1t is easy to verify that R is a solution of above eduation.

Using a concrete formula to define IGLyx ,,.(N), we get

Ci{T4, DY

IGLxal(N) = R, T; — T;T R, DD-1 — 1,D-1D — 1

(3.1.22)

3.2 The second type of inhomogeneous quantum groups

In subsection 3.1, we have constructed a kind of inhomdgeneous quantum groups
using the method in ref.[4]. Where we let z* be the coordinate functions of the
translation part, t§ be the matrix of the homogeneous part acting on the translation

vectors so that we get the matrix representation of the inhomogeneous quantum

group:
iy z°
Th = . _(3.2.1)
0 1

Here we let the exterior quatum vecter £° be the coodinate functions of the
translation part taking place of *, we get the matrix representation of the new type

of inhomogeneous quantum group:
Ti= , . (3239)

ie.

Th = (,7° = £, =0, = 1).

We demand that the R corresponding to this new inhomogeneous quantum group

SIGLyx .4, (V) should satisfy the Hecke relation (3.1.19), YBE (3.1.20). And from its

11

RTT = TTR relation we must get
T 464 =0, (3.2.3)

where T is defined in (2.6).

The R-matrix can be constructed as follows

(Rx.q;,')“cd 0 0 0
. 0 -1 1-X" 0
(RK.Q.’;)ABGD = ‘ , (3.2.4)
0 0 =X 0
0 0 0 .

From RTT = TTR relation, we have
€] = —(Rugi;) “bath€, (323)
such that we can (;alculate the commuting relation i)etween £ and DetS'9L(T)
&P = 2D€, (3.2.6)
here we let D = DetSICL(T) = DetS%(T) and
Z=(-1)- (Hf:;é;) ) (Hlm% (32.7)
the inverse D! of de:terminant D can be defined as in (3.1.3), then we get
FD = 271D, | (3.2.8)
Definition 3.2.1:
The inhomogeneous quantum groups SIGLx (V) is defined as

C(T4, DY
RT;T; - sz‘]fz, b'D“ - 1,D-1D - l‘

SIGLx,, (T) = (3.2.9)

12



Theorem 3.2.2:

The inhomogeneous quantum group SIGLx ,.(T) is a Hopf algebra with coproduct

A
A(l)=181, A(TF)=T4e1E, (3.2.10)
counit €
«(Tg) = 63, (3.2.11)
antipode §
S(T4) = (T4 = Sty —Stax’ , (3.2.12)
0 1

here 4 = (a,-),B = (b,").

The proof is obvious.

3.3 The third type of inhomogenous quantum groups

We have discussed two kinds of inhomogeneous quantum groups IGLx,, (:V) and
SIGLx ,i;(N) in above sections, and now we begin to investigate another kind of
inhomogeneous quantum groups. We can generalize the idea we used above: we add
another translation part on (3.1.1), then we get the matrix representation of new

inhomogeneous quantum group:

. tﬂ xﬂ yl
I3=]o0o 1 o | (3.3.1)
00 1

13

here T4 = (t,t* = z°, 2 =y, t; =t =0,t = ¢l =1, =t = 0)

The relations between the matrix elements are

R®,jtet] = 2R .y, (3.3.2)

2t = XR¥, tez/, (3.3.3)

v = XRe iy (334

A% ztzt =0, ‘ (3.3.5) |

A gyy? = 0, ' (3.3.6)

R zty! = X7lyPz® 4+ (L - X Y)zbye, (3.3.7)
R® y°z! = 2ty (3.3.8)

here R being the R-matrix for quantum group GLx,.(NV)(see (2.1)) and A is the

projecting operator of GLyx (V)

I-R

A= 'I—;F, (3.3.9)

We can construct the R-matrix corresponding to this new inhomogeneous quan-

14



tum groups I*GLy .,.(N) as follows

R*y 0 o 0 0 0 0 o o)

0 X' 1-X'0 0 0 0 0

0 o 1 0 0 0 0 o o

0 o o 1 0 o0 o 0 o

R¥ep=| 0 o 0 0 X' 0 0 0o 0|, (3310

0 0 0 01-X11 o0 0 0

0 o 0 0 0 0 X' 1-X1o0

0 o 0o 0 0 0 0 1 0

0 0 o 0 0 0 0 0 1

It is not hard to check that the R satisfy the RTT = TTR relation, Hecke re-
lation, and the Yang-Baxer equation. For example, the RTT = TTR relation is
nothing but the formulae (3.3.2-8). One gé.n find similar relation in ref.(3] and {9] in
which it is used to discuss the quantum coset space and quantum Minkowski space.
We will give the exact relation between quantum coset space, quantum Minkowski

space, and our construction in the forthcoming paper.

It is easy to find out that the determinant and the relation between the de-
terminant and the group elements are not changed, one can see them in (2.11),

(2.12),(3.1.6),(3.1.7).
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Deflnition 3.3.1:

The inhomogeneous quantum groups [*GLy (V) is defined as

C[T4,D
2 — 83
I GLx,%.(N) = R, = T‘,il}R,D’D“ 1D D-T (3.3.11)

Theorem 3.3.2

. The inhomogeneous quantum group I*GLy,,, (V) is a Hopf algebra with coproduct

A
AT =T4 0TS, (3312)
counit €
«(T3) = &3, (3.3.13)
antipode §
S(T#) = (T™1)3, (3.3.14)
where

s@) -S@) -S|
TY5=| o 1 0 , (3.3.13)
0 0 1
We can also consider the matrix representation of a new inhomogeneous quantum

group just like

&
Ti=|0 1 0| (3:3.16)
0 0 1

The relations among the matrix entries change into
R, jtit] = 2R 4, (3.3.17)

16



) = —RI% 3¢, (3.3.18)

n't] = —RI%utin®, (3.3.19)
Tttt =0, (3.3.20)

T®ann? =0, (3.3.21)

Rabelfeql = ‘Y-lnb‘sc + (1 - ,X‘.l )Eb a, (3322)
R ¢! = €', (3.3.23)

here R is still the R-matrix for GLx 4,(V), and 7 is the projector we defined in (2.6)

_R+x-

= —— .3.2
T TR (3.3.24)

Then we can give out the R-matrix for this new inhomogeneous quantum group

PGLx q,(N):
R*, 0 | 0 0 0 00 0 ]
0 -11-X' 0 0o 00 0 0
0 0 -X' 0 0 00 0 0
0o 0 0o -Xx' 0 00 0 0
B¥p=| 0 o 0 0 X' 0 o0 0 o |
0 0 0 0 1-X'10 0 0
0 0 0 0 0 0-11-X" 0
0 0 0 0 0 00 -X1' 90
\ 0 0o o 0 o 00 o0 -X)
(3.3.25)

The discussions about determinant, RTT = TTR relation and the Yang-Baxer

equation in this case is slmilar to the previous ones we have given.

17

We have discussed three types of inhomogeneous quantum groups corresponding to
homogeneous quantum group GLyx q,;,(N) and give out the relevent R-matrices. What

about the physical meaning of these results, we will discuss later.
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