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Abstract 

We present a method in dealing with the Heisenberg spin} models in 
one and higher dimensions by T emperley-lieb-Jones algebraic structures. 
It is shown that the model in higher dimensions can always be reduced 
into the one in one dimension with some non-nearest interactions and 
Temperley-lieb-Jones algebraic structures for the isotropic case. Some 
examples are given with detailed calculations. 

Contents 

1 Heisenberg Spin Models and Bi-algebras 2 


1.1 Lie Bi-algebra su(2) •........... 2 

1.2 Permutation Algebra and Isotropic Chain 3 

1.3 Q-deformed Bi-algebra su,(2) ..... 4 


1.4 T-L-J Algebra and Anisotropic Chain 5 


2 Structures of T-L-J Algebra 6 


2.1 Young Operator & Basis of Solution Spaces 7 


2.2 General Scheme for Solution. . . . . . . . . 8 


2.3 Example: Sol.utions for n = 1 to XXZ Open Chain. 9 


2.4 Example: Open Chain with 3 Spins. . . . . . . . . 10 


2.5 Antiferromagnetic Ground State Solutions of Closed Chain of 5 Spins 11 


(Supported in part by the National Natural Science Foundation of China and lWTZ-1298 of Chinese 
Academy of Sciences. 

:lMailing address 

3 Chain with Next-to-Nearest Neighbour Interactions 12 


3.1 Model and Symmetry ................ 12 


3.2 Result for n =1 and Arbitrary N ....... 13 


3.3 Approximation at n =1 with Arbitrary N . 14 


3.4 Complete Solutions for Four Spin Case . 15 


4 2D Isotropic Triangular Lattice 19 


4.1 2-Fold Co-Casimir ....... 19 


4.2 T-L-J Algebra on Triangular Lattice 21 


4.3 A Simple Example . . . . . . ....... 25 


5 2D Isotropic Square Lattice 26 


5.1 The First Step 26 


5.2 The Second Step . . . . . . . 28 


5.3 The Third Step ...... , 29 


5.4 Example: 2 x 2 Square Lattice 29 


5.5 Another Example: 2 x 3 Square Lattice 31 


6 Auxiliary Discrete Symmetry 33 


6.1 The Triangle with 3 Spins . . 34 


6.2 The Square with 4 Spins . . . 35 


6.3 The Tetraploid with 4 Spins . 35 


6.4 The Tetraploid with 6 Spins . 37 


1 Heisenberg Spin Models and Bi-algebras 

1.1 Lie Bi-algebra su(2) 

For completeness and facilitating the forthcoming discussions. we choose to start our 
discussion from the very beginning of Lie bi-algebra su(2). 

Lie algebra su(2) is spanned by {J±,J3} and defined by the following commutation 
relations 

[J+, J-] = 2J3 , [J3, J±J = ±J± , (1) 

and for the convenience of the following description, we supplement it with unity 1. 
The center of this algebra is therefore spanned by 1 and the Casimir element C = 
J+.]- + .]3 (J3 - 1). 

The algebra structure is built with two maps, the unit map u and the map of 
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multiplication m, 
m: su(2) ® su(2) --- su(2) 

(2) 
U: C --- su(2) 

and m is associative. 

A co-algebra structure can also be defined based on the co-unit map e and the map 
of co-multiplication ~! which are algebra homomorphisms, i.e., 6(ab) = ~(a)~(b), 
e(ab) = e(a)e(b), Va, bE 8u(2). The maps turn the algebra into its tensor representation 
as shown below 

~ su(2) --- su(2) ® su(2) 
(3) 

e su(2) --- C 

and ~ is associative, i.e., (~®id)~(a) =(id®~)~(a), Va E SU(2). The actions of ~ 
and e on generators J:J:..3 are explicitly 

~(J:J:..3) = J:J:..3 ® 1 + 1 ® J:J:..3 I 

(4) 
e(J:J:..3) = 1 . 

As algebra su(2) has the co-algebra structure, it is a Lie bi-algebra. 

The Casimir element of this Lie bi-algebra is the diagonalization of C, often called 
the (l-st rank) co-Casimir, which reads, 

~ (C) = J+ J- ® 1 + 1 ® J+ J- + J+ ® J- + J- ® J+ 
(5) 

+1 ® (J3)'l + (J3)'l ® 1 + 2J3 ® J3 -1 ® J3 - J3 ® 1 

1.2 Permutation Algebra and Isotropic Chain 

For the case of spin-~ representation, formula (5) gives rise to 

16. (C) =q+ ® q- + q- ® q+ + _q3 ® q3 (6)
2 

where q:J:..3 are Pauli matrices. Therefore the operator 

E =! . 1® 1_d(C) = (0 1 -1 ) (7)
2 -1 1 

o 

is in the center of the Lie bi-algebra su(2) ® 8u(2). Hence it is true that 

ej = 11 ® 1'l ® ... ® Ij-l ® (El i •i+! ® 1i+'l ® ... ® IN+! (8) 

(where i = 1,2,··· N) is su(2)-invariant, i.e., 

[ei! e) = 0, VeE $u(2)0N • (9) 

It is interesting that ej are elements of the N-dimensional permutation group algebra 

PN satisfying 
e~ =2ej 

(10)ejei;j;1 ej = ej 

lei! ei] =0, Ii - il ~ 2 

which is a special case of Temperley-Lie-Jones (T-L-J) algebra[11. Therefore the Hamil

tonian for spin-~ Heisenberg chain 

N N ((1 )){i.i+!l 
HIll = G?:ei = G?: ~ ?-C 

.:1 .=1  (11) 

_ G{ ~ ( + - - + 1 33) !N}- - ti qj qj+! + qi qj+! + 2qj qi+! + 2 

is invariant under the action of Lie bi-algebra su(2), therefore su(2) is the hidden sym
metry of this system. When G > 0 the system is ferromagnetic and when G < 0 it is 

anti ferromagnetic. 

1.3 Q..deformed Bi..algebra suq(2) 

The q-deformed algebra .su'l(2) is generated by {J±.3,1} [21: 

[J+, J-] = [2J3]q, [J3, J:J:.1 = ±J:J:. , (12) 

where [x]q = ~~:~1%' and the center is spanned by {I. C'l } and C" is the Casimir 

element 

C'l = J+ J- + [J3 - ~]: - [~]: ' (13) 

satisfying 
[Cq , .] = 0, V. E $u1(2). (14) 

Recall that the co-multiplication map of the Hopf sU'l(2), 

(15)~ : su'l(2) - $uq(2)®su'l(2) 

is defined explicitly by 

~(J3) = J3 ® 1 + 1 0 J3 , 

~(J±) = J± 0 qJl +q-JJ2) J:J:. , (16) 

~(1) = 101, 

which is algebra homomorphism, i.e., ~(ab) = ~(a)~(b), 'Va. bE sU'1(2). When q - 1, 

algebra 31£-;(2) becomes su(2) and the Casimir C'l- C = J'i0J- + (J3 _ n'l _(~)'l. 
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It is a direct result that the comultiplication of Casimir element is the center of the 
tensorized algebra sU q(2)®su q(2), i.e., 

[~(Cq) , ~(J3)] = [~(Cq) , a(J±)] = 0 . (17) 

As we are interested in the spin- ~ representation, we take 

1 	 3
J± = O'± , J3 - -0' , 	 (18)-2 

where 0'±.3 are Pauli matrices (note that the spin-~ representation should be taken after 
the comultiplication operation, or one will get incorrect results). A simple calculation 
leads to 

+ 	-1 [ + -1 
U (C~) !......L1 ® 1 - 0'+ ® 0'- + 0'- ® 0'+ + !......L0'3 ® 0'3

4 	 4 

- q -4q-l (0'3 ® 1 - 1 ® (13)1 
(19) 

0 	 q -1 ) 
-1 q-l

( 
o 

where C; = (q + q-l) 1 - Cq is a shifted Casimir. 

1.4 T-L-J 	Algebra and Anisotropic Chain 

The comultiplication of C~ (co-Casimir) given in (19) is just the e matrix in [2] and the 
E matrix in [4] in constructing the T-L-J algebra elements ei (\vith i = 1,2"", N) , 
i.e, 

ei = 1(1) ® 1(2) ® ... ® 1(i-l) 0 a (c;) (i.i+1) 01(i+2) 0 ... 01(N+1) , (20) 

and will be denoted simply 
ei =.:..\ (C;)(i.i+1) (21) 

These elements act on the tensorized space 

v - v:(1) n. v:(2) .0. .,. 0 v.(j) 10\ ••• v.(N+1) (22)- 1/2 '01 1/2 '01 ' 1/2 '01 • 1/2 , 

where spaces Vi/2 are spin-~ representation space of su1(2), the indices 1, 2, "', i, 
"', N +1 denote theit positions. It is easy to check that ej satisfy the TLJ algebraic 
relations 

e1 = [2]'lej , 

eiej±1 ei = ej , 	 (23) 

eiej = ejei, if Ii - il ~ 2 . 
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Without referring to the braid group, we can see that ei is commutable with the N-fold 
comultiplication of sUq(2), 

. [ei ' ~(N) (J±,3)] = 0, (24) 

where 
N+1 

_J3 J3 J3U(N) (J±) 	 '" L.J q_J3 ® ... ® q ® J(l)
± ® q ® ... ® q , 

l=1 (25)N+1 
~(N) (J3) 	 L: 1 ® ... ® 1 ® J~) ® 1 ® ... ® 1 

l=1 

and J~)3 in above equations are located in the l-th position, acting on the l-th spin 
space. 

The Hamiltonian for the anisotropic spin chain is 

H~rz = Gtei = Gt (~(c;))(i.i+1) 	 (26) 
1=1 i=1 

which is obviously suq(2)-invariant, i.e., 

[H~z , .] =0, V • E SUq(2)~N • 	 (27) 

The Hamiltonian reads explicitly 

. 10 {N [ + _ _ + [2]q 3 3 1 [2]q q - q-l (3 3)}
HIlz = G - r;. O'i O'i+1 + O'i O'i+1 + ""4O'i O'i+1 + TN1 +--4- 0'1 - O'N_l , 

(28) 
which is nothing but the Heisenberg spin chain of XXZ type with boundary terms. The 
solving of this system can be reduced into simple algebraic calculations using the rep
resentations of the TLJ algebra [5], or those of the quantum algebra sUq(2) [4]. 

2 Structures of T-L..J Algebra 

We denote AN the T -L-J algebra. which is generated by 1 and ei with i = 1,2" .. ,N-1. 
As is given in the last sectien, the elements satisfy the relations (23). 

A left ideal (denoted I) is a collection of elements such that for any element a of 
AN and i of I. a· i E I. If I has no smaller sub collection, I is called a primitive left 
ideal. Generally, a = eil ej, ..• ej" and is called a word, and 1 is called an empty word. 
If the length of a can not be reduced by applying (23), a is called a reduced word. Any 
word is proportional to a reduced word. And the reduced words are called equivalent 
if they are equal under the application of the third commutation relation of (23), and 
the set of reduced words span the algebra AN' The dimensional of AN is the number 
of reduced words, i.e., 

• 	 1 [21'1 1dim (AN) = N + 1 N . 	 (29) 
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2.1 Young Operator & Basis of Solution Spaces 

There is a natural relationship between the primitive left ideals of AN and the irreducible 
representations of 8u,(2), in analogue with the primitive left ideals of permutation 
algebra and the irreducible representations of su(2). As is well known, the Young 
operator of a Lie algebra is an idempotent of the primitive left ideals of the permutation 
algebra, For a quantum Lie algebra, a q-analogous Young operator is constructed [4), 
and it can be applied in the decomposition of the tensor representations of a quantum 
Lie algebra. For the spin-! chain,. we need the Young operator Yn corresponding to 
Young pattern of the following type, and explicitly we have 

Yn = el e2'" e2n-1Z~ , (30) 

where Z~ is composed with e2n+1,"', eN-lJ and for any ej such that i > 2n Z~ is 
effectively zero, i.e., 

ejZ~ = Z~ej = 0 . (31) 

Therefore the independent basis of the left ideal should be 

ne(m) ~ "emlm~ ...m" = CmVrl2 ...m"Z~ , (32) 

where 
~ e - cml~~ ···em " (33)c(. m ) - mlm2 ..·m" - 1 V3 2n-1 , 

and 

Ci' =em, emi-1 ... ei, 1 S m1 < m2 < ... mn S N - 1, mj ~ 2i - 1 . (34) 

Different Young patterns describe different irreducible representations. For a certain 
Young pattern, e.g, the one in Fig. 2.1, the number of irreducible representations is 

Mn = [ N - 1 ] _ [ N - 1 ] (35)
n n-2' 

which is just the number of independent basis of the primithre left ideal. 

... ...2n-I1 2n+I3 N 

...2 4 2n 

Figure 1: Young pattern Y(N - n, n). 
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2.2 General Scheme for Solution 

The solutions of a spin system with its Hamiltonian expressed by the elements of AN 
can be expressed as linear combinations of the independent basis of the primitive left 
ideal of AN. Let IZ1 Z2 ... Zrl), 1 :5 Z1 < Z2 < ... < z" S N + 1 denote the state with 
n down spins and ZiS denote the locations of the down spins of the chain. The bases for 
n down spin states wi th the highest weight j are 

n<P(m) ~ ne(m)II 35 ... (2n -1») = "C(m)Z~II 3 5 ... (2n- (36) 

where n S (Nit) and 

"Ctm) = C;'IC3"'" C!:!"-l' 1:5 m1 < m2 < ... < mn S N, mi ~ (2n -1) (37) 

and 

Ci = emem-1'" ei, j = i(N -2n -1). (38) 

Z~ is a polynomial of e/s with the property elcZ~ = 0 for Ie;;:: 2n. The action of Z~ on 
11 3 5 ... (2n - 1» gives rise to a constant factor. Therefore the bases of eigenstates 
for n spins down states are simply 

"~(m) = "C(m)II 3 5 ... (2n -1») . (39) 

The eigenstates of the Hamiltonian are the combinations of n~(m) with the same n, 

"'l1 = L: a(m) ~(m). (40) 
(m) 

For every n :5 (N + 1)/2, there are [N]n - [ n N_ 2 I . e1genvalues of energy"E from 

Hamiltonian equation 
H "'l1 = nE "q,. (41) 

The degenerate states with respect to every eigenvalue can be obtained by acting the 
total spin operator S/:" = ~(N-l) (J-) on the corresponding eigenstate of the highest 
weight. All the eigenvalue~ and eigenstates can be exactly obtained in terms of the 
above recipe. 

The actions of the elements of AN on "e(m) or ~(m) can be easily automated. Because 
we freeze the positions of C (mj) in the expression of "e(m) as C(ml)C(m2)'" C(m,,)ZO, 
and C( mi) = Cr;, we need not specify i and the indices of operator z(}. In the following, 
we give the codes in REDUCE for the actions of ej (encoded e(i» on Ci', 

PROCEDURE C 

• operator e,C,Z; noncom e,C,Z; 

• for all x such that numberp x let e(x)*Z()aO; 
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• • • 

• 	for all x,1 such that numberp x and numberp 1 and x-y=-1 or x-y=1 
let e(x)*C(y)-C(x); 

• 	for all x,y such that numberp x and numberp y and x-y=O 

let e(x)*C(y)=2*C(x); 


• 	for all x,y such that numberp x and numberp y and x-y>1 

let e(x)*C(y)=C(y)*e(x); 


• 	for all x,y such that numberp x and numberp y and x-y>-1 

let C(x)*C(y)=C(y-2)*C(x); 


• 	for all x,y such that numberp x and numberp y and x-y<-1 

let e(x)*C(y)=C(x)*D(x,y); 


• 	PROCEDURE O(x,y); FOR i:=(x+2):y PRODUCT e(i)$ 

2.3 Example: Solutions for n = 1 to lIZ Open Chain 

Now to show the way to compute the solutions, we tum to a simple example, the open 
lIZ spin chain, with the Hamiltonian given in (28). \Ve will specify our discussion to 
n=1 and arbitrary number (N + 1) of spins. The eigenstates are simply of the form 

N N 
I'll = Lit,.,. = L arn C:'ll) , 	 (42) 

mo=1 m=1 

as depicted in Fig.2.3. Applying the method encoded in the above, we get the reduction 
equation 

a,.,.+1 + ([2Jq - E) a,.,. + am-I = 0, m = 1,2" .. , N . (43) 

Where 

ao =0, aN+1 =0 . (44) 

It can be easily solved and we give the solutions explicitly 

. 	 ( rnk1r)sm N+l( 	),.,.-1 
am = - . (k1r)

sm N+1 	 (45) 
[2] br )

E1c = 2 ( 2q - cos N +1 k = 0,1,2,,'" N . 

2 	 N "v + 1 

Figure 2: 

9 

1 2 3 

Figure 3: 

For each k, there is an energy EA: and a set of coefficients am that gives rise to an 
eigenstate (42) of the highest weight state. The degenerate states with lower weights 
are obtained by the actions of the lowering operator of the symmetry algebra 8u/l(2), 
Jt-;t = ~(N)(J_), on the highest weight state. 

The solutions of the case with one spin down in the chain, n = 1, corresponds to the 
eigenstates and energies of the ground and lower exciting states of the ferromagnetic 
chain when G is. po~itive. And when G is negative it corresponds to the solutions of 
some excited states of antiferromagnetic chains. 

For n ~ 2 and general N the equation (41) becomes a set of reduction equations. 
It will be a bit more difficult to solve. However, for a given finite N the problem 
becomes the solving of a set of linear and homogeneous equations. The energies can 
be immediately obtained from the condition that the coefficient determinant of the 
equation set equals to zero. 

2.4 Example: Open Chain with 3 Spins 

We set N = 2 and free boundary condition, so that the Hamiltonian reads simply 

H = el +e2 	 (46) 

which we take as the simpliest example to be solved completely by the method we 
explained in the beginning of this section. \V~ shall consider the isotropic case in the 
following of the paper with the Temperley-Lieb-Jones element ej given by formula (8). 

When n = 0, we immediately get the highest weight vector that reads 10) = IttT) = 
I~, n· The total spin .J =- t, so this solutio1l should be a spin 4--plet, with energy 
eigenvalue n=OE = O. By applying the lowering operator u (2)( J-), we have 

n U(2)(J-) I~, n = IUt) + + liil) 

I~,-n = l~(2)(J-) I~, n It!!) +IUU +Illt) (47) 

I~,-n = ~~(2)(J-) I~, -l) = Il!!) . 

'When n = 1, the total spin J = i, and so this is a doublet. The highest weight 
vectors are XI = Clll) and .Y2 = C; 11) , and actually, as depicted in Fig.2.4, Xl = 
1(1.2).) Ith and '(2 = -1t).!(2.3}.) where I(i,i).) = It)dl)j -Il)dt)j denotes the 
singlet pair of spins i and j. 
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We assume that the eigenstate of the Hamiltonian is of the following form 

I~~) ::; a1Xl + a,x, , 	 (48) 

and therefore applying our PROCEDURE we have 

E I~~) = (2at + a')X1 + (at +2a,)x, . 	 (49) 

The solutions exist if and only if 

2-E 
det 1 ] -0 	 (50)[ 1 2-E 

which yields E = 1,3 and will be denoted n.lElcal". 

1. For _IEIc=1 =1, we have at =1 and a,::; -1 and the eigenstate reads 

I~~) = II} -13} = -1(1,3).} It}, , (51) . 

which is a highest weight vector and will be remembered as R=I~Ic=1 • Applying 
the lowering operator, we have 

I~, -~) =: -\(1,3).} I!}, 	 (52) 

2. For ,,=1 EI:=2 =3, we have at =a2 =1 and the eigenstate reads 

I~~) = II} - 212} + 13) = -\(1,2).) It}a + 1(2.3).) , (53) 

which is also a highest weight vector and will be remembered as ,,=1 ~Ic:d • Applying 
the lowering operator, we have 

I~, -~) = -1(1,2).) 1!)3 + 1(2,3).) , (54) 

We have been considering the ferromagnetic case, and apparently the order of the 
energy eigenvalues of these states are ,,=0E < ,,=1 E Ic:1 < ,,=1 EI:=2. If we consider the 
antiferromagnetic case, when one should note that the energy eigenvalues are _n Eic. So 
the ground state should be ".1~1:=2 which is a spin doublet with degenerated energy 
eigenvalue -3. 

2.5 	 Antiferromagnetic Ground State Solutions of Closed Chain 
of 5 Spins 

Consider five spins aligned on a circle, as depicted in the Fig.2.5(a). The isotropic 
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Hamiltonian reads 
H =G(el +el+e3+e4+e15), (55) 

where el5 denotes the interaction between spin 5 and spin 1, and 

e15 = e1 + en - {ell elS} ,el5 =e, +e3S - {e2,e3S} ,ea5 =ea + e4 - {ea,e4}' (56) 

For more about the above recursion relation, see the next section. 

When G > 0 this is a ferromagnetic system, and when G < 0 this is a anti
ferromagnetic system. And we are interested in the antiferromagnetic ground state 
(AGS), i.e., G < 0 and n = 2. The quantum angular momentum number for AGS 
should be 1/2, so it is a spin doublet. The wavefunction is of the following form from 
formula (39) 

'II = a13~13 + aI4~14 + a23~23 + a24~24 + a3-4~3-4 , (57) 

and the action of the Hamiltonian on this state yields the following set of linear equa
tions, 

a1314 -	 ~ -8 6 -4 6 I
-8 G 	 14 - ~ -5E 4 -5 a14 

al3 I = 0 . (58) 

[ o 0 2 6-~ 2 
o 0 3 - G 0 -1 

a24 
o 0 -1 0 3 - ~ a:w 

The existence of non-zero solutions requires that the determinant of the above square 
matrix vanishes. The determinant is 

il ::; -	 (~ - 2) (~ - 4) (~ -6f (~ -22) , (59) 

and take G = -1 we get the energy eigenvalue for the AGS, E::; -22. The correspond
ing eigenstates are depicted in Figs.2.5(b ),2.5( c). 

There is an apparent degeneracy for AGS in that the above configurations are in 
cyclically permutative. 

3 	 Chain with Next..to-Nearest Neighbour Interac
tions 

Now we investigate the isotropic Heisenberg spin-~ model in one dimension with next
to-nearest neighbour interactions. 

3.1 	 Model and Symmetry 

We consider a chain with .V + 1 spins in an open line. Let ei,i+2 denote the next-to
nearest neighbour interactions between spins at site i and i + 2. We find that ei,i+2 can 
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be expressed in terms of the interactions between spins at {i, i + 1} and {i + 1, i +2}, 
i.e., ej and ei+11 

ei,i+2 = ei +ej+1 - {ei, ei+d, i =1, 2, ... 1 N - 1 1 (60) 

where {.,.} denotes the anticommutator. Therefore the isotropic Heisenberg spin Hamil
tonian with next nearest interactions are 

N N-l 

Hn _ n G {; ej +9 t;
[ 

(61)
N-l }

G { ?: [(1 +g)ei +g(ei + ei+t - eiei+1 - ei+1ei)] +eN 
,=1 

where 9 is a coupling constant of interactions between next-to-nearest neighbouring 
spins. For convenience, we omit the factor G in the Hamiltonian in the following. 

As this Hamiltonian is composed of the elements of AN, the eigenstates of this 
system can also be composed by the independent basis of the left ideal of TLJ algebra. 
In the following, we will give some detailed results for some special cases. 

3.2 Result for n = 1 and Arbitrary lV 

For the case of N +1 spins chain with one spin down, i.e., n = 1, the eigenstates are 
simply of the form 

N 

I'll = L am e;"11} . 	 (62) 
m=1 

The Hamiltonian equation gives rise to 

gam +2 + am+1 + [2(1 +g) - E]am +am -l - gam -2 =0, m 1,2"", N. (63) 

where we have 

ao =0, a_I = al +a1, 	 aN+1 =0, aN+2 =aN-l +aN· (64) 

The reduction equation (63) can be manipulated by simply setting am '1"', which 
gives rise to an equation of '1 with four solutions, 

±2J-A. - 2gE +4g +1- A.v'2 + J2 
'11,2 = 4v'2g 

(65) 
±2JA. - 2g£ + 4g +1+A.v'2 + v'2 

'13,4 = 4v'2g 

where A = J16g'2- 4gE + 8g + 1. Therefore am = b1'1i" + hz'12 + ~'13 + b4'14' It is 
apparent that we can always choose bl = 1. and the coefficients b-z, ~, b-l and ener.gy 
eigenvalue E are determined by the boundary conditions in (64). Actually, 

014 
hI - 7.) - - h3 - 1'-1)

(\'". 	 014 Q'.!4
b-z = Q~4 	. ,h3 =-- - b~ - , (66)

b2 - ,,,) - -- (73 - ;4) 	 <Y34(\'34 
(\'34 

and from aN+1 = 0, we give the equation for energy eigenvalues 

tJ14 + tJ24iJ.z + tJ340a = 0 , (67) 

where 

0ii = ('1i - '1i) (_1_ +1+ '1i + '1i)
'1i'1i 

i,j = 1,2,3,4 	 (68)tJii '1["+1 - 1]f+1 , 

;i = 1][,,-1 (1 + '1. - '1l> . 

For n ~ 2 and general N the equation (41) becomes a set of reduction equations 
and will be a bit more difficult to solve. However, for a given finite N the problem 
becomes the solving of a set of linear and homogeneous equations. The energies can 
be immediately obtained from the condition that the coefficient determinant of the 
equation equals zero .. 

3.3 Approximation at n = 1 with Arbitrary N 

Assumetba:t 9 ,..., 0, i.e., the couplings between next-to-nearest neighbours are very 
weak. 	Accurate to the order of O(g), we have 

-(2 - E) ± V(2 - E)2 - 4+ ! (4 _ (2 _ E)2)
'11.2 - 2 2 (69) 

1]3 -
1 

1]4 == 6g , 6=E-E2/4.9 

And it is an easy to get 

(\'l4 • 014 • 9
2 

(.l' N+1 {3"':" N+1 (.l"':" g-N-l- = - = '7, J.l14 = '11 , 24 - '12 ,J.l34 - • (70) 
034 034 a 

From (66) we have 

hz == -1 +lil - 12) «5 gN+1, Oa == 0 -(11 - 12) gN+3 . (71) 

From (67), we have the equation for energy (accurate to the order of O(g), 

'1f+l = '1~l+l , 	 (72) 

or 
-(2 - E) +9 (4 - (2 -	 E)2) k1r 
--__r=~===---..!... == -ictg--, k =0,1"" N (73) 

V(2 - E)2 - 4 N + 1 

Approximation to the zero-th order, we have 9 = 0 and 

kE2th = 2 (1 cos N : 	1) (74) 
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which coincides with the result supplied in eq.(45). Hence the first order approximation 
yields 

-(2-EAJ+9(4-(2-.Efthr). . k1t 
= -Ictg-- (15)

V(2 - Ek )' - 4 	 N + 1 I 

so we have 
k1r) ... k1rEk= 2 ( l-cos--	 -4gsm --. (16)

N+l N+l 

To get ~,3, we supply 

Qi.. = l[I+('1i+'11-'1;1)6g] I (i=I,2) 

Q;w = ;\- [1 + (1 +ng] . 	
(11) 

3.4 Complete Solutions for Four Spin Case 

Let us consider, for example, the case of four spins (N = 3). The Hamiltonian (61) is 
simply 

Hn_ n = (g + l)(el +e3) + (2g + l)e, - g(ele, + e,el + e,e3 +e3e2) . (18) 

For n = 0, the highest weight state of a spin 5-plet,i.e., 0\)" = 10) with all spins 
up, 0E = 0 and J = 2. The get the complete solution space, we will apply the lowering 
operator Jt-;t = Ll.(3) (J-) repeatedly to ge the states with different weights. We will 
give the highest weight states Brst and discuss the complete solution spaces at the end 
of this section. 

The states with n = 1, are spin triplets, the total spin number is J = 1. \Ve get 
three highest such states, with energies IE":;;:I",3. The states are the superpositions of 
the following vectors of primitive left ideal, 

n=I\)11 al 1"1 + a, I." + a3 1~3 , 
(79) 

(aIel +a,e,el + a3e3e,e.)ll) . 

where where the subscript {ll} of \) indicates the quantum number {J,n} and l~i= 
CH1) and Ii) is the state with a spin down at location i. 

By use of the PROCEDURE C in section 2.2 and (41) we have 

(g + 2 - E)al + (1 +g)a, - ga3 =0 

at + (2-E+2g)a, 	 + a3 = 0 (80) 

-gal + (1 - 9 )a, + 	(2 +9 - E)a3 =0 

Therefore we have 
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1. 	 Solution for k =1: for 9 :/: 1 

1E"=I = 2(g + 1) , 

a, 0, (81) 

a3 -at = -1 ; 

with the highest weight state 

I\)tfl =11) -12) -13) + 14) , (82) 

and for 9 = 1 
1Ek:;;:1 = 4, 

a, = arbitrary, (83) 

a3 -at 

with the highest weight state is an arbitrary superposition of t 'lifil and 

l~tfl =-12) + 13) (84) 


so it is degenerate. To be compact, we denote the solutions in above two cases as 


I\)~fl = \1) - (1 +a,)12) - (1 - a,)13) + 14) , (85) 


for a, = 0, it gives the first case of 9 :/: 1, and for a, = arbitrary, the second case, 

i.e., 9 O. 

2. 	 Solution for k = 2: for 9 :/: I, 

1E"=' = 2 + 9 + R - 2g + 2 , 

a, 2al (v'g' - 2g +2 - 9>-1 , (86) 

a3 at , 


and for 9 = 1, 

1E"=2 = 4, 

a2 = 1, (81) 

a3 = al = O. 

The highest weight states for the above t~o cases read 

l'1itf' = 11) - (1 +a,)!2) + (1 +a2)13) -14) , (88) 

and when a, takes the value specified in (86), we get the state for 9 :/: I, and when 
a2 -+ 00, (Le., we omit the terms without a, as coefficient), we get the state for 

9 = 1. 
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3. Solution for k =3, 

IEk=3 2 +9 - .;g2 - 2g +2 , 

a2 2al{Jg2 - 2g +2+g)-I, (89) 

03 = 	01· 

The highest weight state lW~~ is fonnally the same as IW~~3 in eq.(88), but 02 is 
specified as above. There is no degeneracy due to g. 

For n = 2, we have two spin singlets with angular moment J = O. Their energies 
are '11.=2 E k=1.2. 

2W =(013C~Ci +023C:Ci)113) = (013e3e. +a23e2eaedl13) (90) 

Using (41) we get energies for generic 9 

2Ek=1 = 2g +3 + ';4g2 - 6g +3 
(91) 

2Ek=2 = 2g +3 - J4g1. - 6g +3 , 

with 
2g -1 2g -1 

l3	 (92)a23 = 013 2Ek _ 2(1 +g) = a 1 ± J4g1. - 6g +3 

but there are two singular points for k 2 states 

1. If 9 = 1, we have 2Ek=2 = 4, a23 = 1,01a O. 

2. If 9 = 1/2, we have 2Ek=2 =3 and a23 = 1,013 =O. 

To write the states into a compact form, \ve always take 013 =1, 

2W~ = -a23112) + (1 + a23)113) -114) -123) + (1 + a23)124) - a23134) , (93) 

and for different k and g, 023 may be specified as different values as indicated above. In 
the case of 9 =1 and k =2, we take a23 = 00, and renonnalize the state. 

Now we give the complete solution spaces with all possible quantum numbers of 
total spins. The highest weight state are provided early in this section, 

1. 	Spin 5-plet \vith n =0, J =2 and 0 E = O. 

0'1'22 = 1 Tiit) , (94) 

therefore the descendent states should be 

0'1'21 ~(J-)IO) = 11) + 12) + + 14) , 

0'1'20 = ~~(J-). 0'1'21 112) + 113) + 114) + + 124) + 134) , 
(95)

°W71 = 3~(J-)· °W20 = 1123) + 1124) + 1134) + 1234} I 

°W22 ~Ll(J-). °W2i =11234} = I 

2. Spin triplets with n = 1, J = 1 and I E k=I,2,3, 

(a) For k =1, the highest weight state is Iwtil in eq.(85). The descendent states 
for general 9 are 

lwtol 	 Ll(J-)· IW~il 

= -a2112) +02113) +2114) - 2123) - 02124) + a2134) , 
(96) 

lW~rl = l~(J-)· lwtol 

= -1123) +(1 - a2)1124) +(1 +a2)1134) -1234} . 

When 9 ':/: 1, a2 = 0 and so 

lW~l 2 (124) -123) , 
(97)

lWk=1 	 -1123) + I 124} + 1134) -1234) , , 11 

and when 9 = 1, 0:2 is an arbitrary complex number, hence the IW~ol should 
be an arbitrary superposition of 114) -123) and -112) + 113) -124) + 134), 
and the state lW~il should be an arbitrary superposition of 1124) +1134} and 
-1124) + 1124) + 1134} -1234). 

(b) 	k = 2. For generic 9 we give the descending states as 

tW~o:2 -02112) + (2 + a2)113) - (2 +a2)124) +a2134) , 
(98) 

lw~r2 1123) - (1 - a2)1124) +(1 +0,)1134) - 1234) , 

and for 9 = 1 we have 

lwti:2 = -12} + 13) , 

lwtO:2 -112} +113} - 124) + 134) , (99) 

lwti:2 -1124) +1134) . 

(c) 'When k = 3 there is no degeneracy due to g, therefore 

lW~03 =. -a2112) + (2 +02)113) - (2 +a2)124) +a2134) , 
(100) 

Iwtr3 = 1123) - (1 + a2)1124) +(1 + a2)1134) -1234) , 

3. Spin singlets, with n = 2, total angular momentum J = 0 and energies :2 Ek::&I.2 . 

In this way we get all the eigenstates and energy levels of the 1-D Heisenberg spin 
system (N =3) with next to nearest interactions. It is worthwhile to note that when 
9 = 0, we have 

0E <I E k=3 <2 E k=2 <1 Ek=1 <I Ek=2 <2 Ek=l , (101) 

and when 9 = 1/2 there is degeneracy and 

oE <I Ek=3 <I E k=2 <1 Ek=1 =2 E k=2 <2 Eb'l , (102) 
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and when 9 = 1 there are degeneracies 

oE <1 E"=3 <2 E},,,,,2 =1 EIc=I =1 E},·2 <2 E"""I (103)I 

and when 9 = 2, we have 

oE <1 E~ <2 Ek=2 <I E},,,,,2 <1 EIc=I <2 EIc=I , (104) 

and the readers may notice that there are level-overlappings when 9 changes from 0 .., 
to 2, and these changes are due to the competition between the nearest and next-to
nearest neighbour interactions. That is, the increasing of the next-to-nearest neighbour 
interactions causes two levels to meet each other and exchanges positions. 

Here the boundaries of Hamiltonian (61) are open. The cyclic boundary conditions 
may be also considered by adding a boundary term e1,4 representing interactions between 
spin 1 and 4, which is easily deduced from relation (60) 

e1,4 = el,3 +e3 - {el,3,e3} 

= el + e2 +e3 - {elt e2} - {e21 e3} - {elt e3} (105) 

+{elJ {e2,e3}} . 

It should be noted that the lower dimensional Heisenberg spin model with higher 
order non-nearest interactions corresponds to higher dimensional ones with lower order 
non-nearest interactions. Here the 1-D chain with next to nearest interactions is the 
same as the 2-D strip with triangular nearest interactions, Le., 

2 4 6 8 10 

no 

1 3 5 7 9 
Different selections of non-nearest interactions of 1-D chain will correspond to differ

ent kinds of 2-D or higher dimension lattice interactions. Similarly higher dimensional 
Heisenberg spin models may be exactly solved by reducing them to be 1-D problems. 
In any way the Hamiltonians are always the polynomials of the elements of Temperley
Lieb-Jones algebra and hence their eigenstates, are of the form (40). 

4 2D Isotropic Triangular Lattice 

4.1 2-Fold Co-Casimir 

Let's observe the 2-fold co-multiplication of Casimir (or the 2-nd rank co-Casimir) of 
su(2) case, which well illustrates the idea (the generalization to the quantum algebra 
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suq(2) is straightforward, but involves more computations, hence we leave it to a sepa
rate discussion}: 

~(2)(C") = i l ® 1 ® 1 

- [0'+ ® 0'- ® 1 +0'- ® 0'+ ® 1 

+0'+ ® 1 ® 0'- +0'- ® 1 ® 0'+ (106) 

+1 ® 0'+ ® 0'- + 1 ®0'- ® 0'+ 

+~ (0'3 ® u3 ® 1 + u3 ® 1 ® 0'3 + 1 ® 0'3 ® 0'3») , 

where C" = 15 -C and ~(2) = (~®id)~ = (id®~)~.
4 


Applying the Pauli matrices, we finally obtain 


0 0 0 0 0 0 o 0 
0 2 -1 o -1 0 o 0 
o -1 2 o -1 0 o 0 

2 o -1 -1 0~(2)(C") = I 0 0 0 (107)o -1 -1 0 2 0 o 0 
0 0 o -1 0 2 -1 0 
0 0 o -1 o -1 2 0 
0 0 0 0 0 0 o 0 

which can be written as 

~(2)(C") = 2el +2e2 - elf2 - e2fl , (108) 

where 
fl = ~ (C/) ® l, e2 =1 ® 6. (C/) , (109) 

are just the elements of a two dimensional TLJ algebra, where C' is the limit of C~ at 
q -+ 1. 

Denoting 

Wi = 1(I) ® 1(2) ® ... ® 1(i-I) ® a.(2) (C/)(i,i+1,i+2) ® 1(i+3) ® ... ® 1(N+l) , (110) 

or simply 
Wi =U(2) (C/)(i,i+l.i+2) , (111) 

we have 
Wi =2ei + 2ei+l - eiei+1 - ei+1 e" i = 1,2,·· . ,N - 1 , 

with the corresponding representation in (22). 
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It is interesting to note that the operators Wi span a closed algebra with following 
relations 

wI =3Wi, 

WiWj =WjWi, if Ii - il ~ 3 , 

WiWi+1 Wi +Wi+1 =Wi+1 WiWj+1 + Wi , (113) 

4WiWi+2 - 5(WjWi+2ya + (WiWi+2)3 = 
4Wi+2Wi - 5 (Wi+2Wi):I + (Wi+2Wi)3 . 

In stead of ei in (15) now the Hamiltonian for this spin system is given by Wi 

H!~n =Y:l Wi =t (6.(2) (e"») (',i+1.i+2) , (114) 
i=1 i=1 

which is obviously su(2)-invariant, i.e., 

[H!~n , .] =0, V. E su(2)0N . (115) 

The elements of su(2)0N are 

N+1 

J::', = L 11 ® 12 (81 ••• ® 1i-l (81 Ji (81 1,+1 ® ... ® 1N+1 , (116) 
i=1 

where a = ±,3. 
It can be seen that the Heisenberg spin chain with next-to-nearest neighbour (n-+n) 

interaction is recovered, when 9 is specified as 1. Explicitly, 

3 N-l [ + _ _ + 1 3 3 + _HJEn iN1 - {; O'j 0',+1 + O'j O'i+1 + 2'O'i O'iH + 0', 0',+2+ (11 i) 

+ ++133]
O'j
-+O'i+2 + 20'i133O'jH + O'i+l O'i+2-+-O'iH O'i+2 20'i+1 O'i+2 

4.2 T-L-J Algebra on Triangular Lattice 

Now we consider the 2-fold co-multiplication of Casimir of su(2), which leads to the 
Hamiltonian of 20 Heisenberg model (with nearest interactions) rather than the 10 
Heisenberg model including the next-to-nearest neighbour interactions. As a typical 20 
problem, we consider N x At -1 spins placed on a triangular lattice of N rows and .\1 
columns. Each spin il! labeled by its row and column numbers (i,j), where 1 :5 i :5 .\1, 
and 1 :5 i :5 N. Every three spins at (i,j). (i,j + 1) and (i + 1,j) form a triangle that 
is denoted (i, j) simply in the following. The triangles are printed as rectangular ones 
(hence the spin at (.\1, N) is missing), jut for the convenience of printing. 

For the spin at cite (i, j) there is an internal spin space Vi/2' Each spin interacts 
with its nearest neighbours, i.e., spin (i,}) interacts with spins at (i,j ± 1), (i ± 1,j), 
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(i - l,j + 1) and (i + l,j - 1) etc .. For simplicity, we write the tensorized space V as 
follows, 

(Vi12) (I.N) (Vi/2) (2.N) (Vi/2) (M-1.N) 
(Vi/2) (I.N-t) (Vi12) (2.N-l) (Vi/2) (M-l.N-l) (ViI2) (M,N-l) 

(118)V= I 

(Vi/2) (1.1) (Vi12) (2.1) (Vi/2) (M-t,l) (Vi12)(M.l) 

where each spin space (Vi /2)( .. in the i-th column and j.th row tensors all other spin
I,J) 

spaces. V will be referred as the lattice of tensorized spin spaces. 

To construct the Hamiltonian, we start from the 2-fold co-Casimir of su(2) given in 
(106) again.. However here we put the three spin spaces on a three point lattice, i.e., 
they are tensorized as followings 

V -l Vi/2 J (119)- Vi12 Vi/2 . 

The co-Casimir 6.(2) (e") acting on these three spaces is denoted 

6.(2) (e") = J - [l 0'+ J + l 0'- J + l 0'+ J~ II
2 1 1 0'- 1 0'+ 1 1 0'

+ l 0'1- 0'+ J+ l O'~ 0'- J+ l 0'1_ 0'+ J (120) 

+!(l:: 1J+l ~3 0'3 J+l:3 0'3 J)], 

Each of the three elements in L J tensors all other two elements. 

Now we put the co-Casimir onto the lattice of tensorized spin spaces with N rows 
and Jl columns at an arbitrary triangle (i,j) and denote this element W(i,jh explicitly, 

...1 1 1 1 1 

... * 1 
(121)~V(i.i) = I 

*(i.;) * 

1 1 1 1 1 1 

where triangle l* J at position (i,j), (i,j + 1) and (i +1,j) (with 1 :5 i :5 Jt -1 
*(i,;) * 

and 1 :5 j :5 N - 1) denotes the position of the co-Casimir (120). 
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Apparently Wt,j, 1 :5 i $ N and 1 :5 j :5 M, form a closed algebra corresponding to 
(113) in the case of 1D Heisenberg model including interactions between second nearest 
neighbours. Explicitly, 

Wi~ =3Wi,j, 


4Wi,jWt,,j' - 5(Wi,jWi',j,)2 + (Wi,jWil,j,is = 

4Wt,,j'W,,j - 5 (Wi',j,Wi,j)2 + (Wi',j,W',j)3 (122) 


if (i/,i') = (i ± 1,;) or (i,; ± 1) or (i T 1,; ± 1), 

Wi,j Wt',j' =Wi',j'WiJ , otherwise , 

Nevertheless it should be emphasized that the Wi; algebra given in (122) can be 
reduced to TLl algebra. Let 

(123) 

(124) 

where the cites marked by'" are (i,i) and (i + l,i). It can be found that 

~(2) (Gil) = 2/t,1 + 2et,1 - el.dl,1 - 11,t et.l , (125) 

where 

/.,1 = ~(G/)®l= l: 1 J 
(126) 

el,l = 1 0 ~ (G') =l! '" J 
are just the elements of a two dimensional TLl algebra. Generally we have 

Wi,j =2fiJ + 2ei,j - ei.i!i,j - f.,je"j , (127) 

where i = 1,2,"',.\J 1, i = 1,2"", N - 1 , with the representation in (llS). 
The algebra spanned by li,j and e',i is nothing but the 2D lattice version of the TLl 
algebra, with relations 

e~,j = 2ei,i 


ftj = 2fi,j 


e',jei',j' = ej',j,ej,j j' =F; or ;' =i but Ii' - il ?! 2 


fi,jfi'J' =h,j,!i.j i' =F i or i' = i but Ii' -;1 ?! 2 


ei,jei:i:l,jei,j = ei,j 

!i.ili,j-J:I!i.j = li,j 


e',j/r;;ej,j = ej.j, l,J = (i,i) I or (i +1,;) , or (i,i - 1) , or (i +1,; - 1) 


f'Je!d..fi,j =li,j, hi =(i,;) , or (i,i +1) , or (i -1,;) , or (i -l,i +1) , 


It is easily seen that if the Hamiltonian for this spin system is 

N-l 	M-I 

H 20 = 1: I 1: I ""Vi,j 

I 
j:::::l i=1 

or simply 
N-l 	M-l l

H20 	 J 
= L: ' L: ' "'.. * 

j=l 	 i=1 *(••1) 

where the symbol L:' denotes a summation neglecting the point of (i,;) = 
the system is obviously su(2)·invariant, i.e" 

[H20 
, .1 =0, V • E su(2)S(NM-l) , 

The elements in .su(2)0(NM-I) are constructed as follows 

,v-I 	."-1 
~(NM-I) (JO) = L: ' L: I 

j;d 	 i=l 

\vhere a = ±,3 and the triangle l* 

1 1 1 1 1 

'" 	 * 1 

*(i,j) '" 

1 1 1 1 1 1 

(12S) 

(129) 

(130) 

(AI, N), then 

(131) 

(132) 

*(i,j) 
(with 1 :::; i :::; J/ - 1 and 1 :::; j :::; .V - 1) denotes 

(133)l:O 1 J+ l ~o 1 J+ l ~ JO J 

J at positions (i,i), (i,i + 1) and (i +1,;)
* 
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Although we treated with a triangular lattice of regular configuration, the treatment 
is actually true to the triangular lattice of any irregular forms. Above all by using the 
coproduct operation, the Heisenberg type spin models of su(2) group symmetry and 
TLJ algebraic structures in high dimensions and with higher order nonnearest neigh
bour interactions can be easily constructed. And every higher dimensional Heisenberg 
Hamiltonian may give rise to some lower dimensional ones with high order nearest spin 
interactions. 

4.3 A Simple Example 

We set N = 2 and free boundary condition, so that the Hamiltonian 
reads simply 

H = el +f, + el,3 , (134) 
3 

which we take as the simpliest example to be solved completely by 
the method we explained in the beginning of this section. Because 

fl,3 = el + e3 - {elle,} , (135) ~ 
we have 1FigA.3.3(aJ 

H 2el +2e2 - {et,e,}. (136) 

This model is slightly different from the three spin chain discussed in 
the previous section 2.4. 

'When n = 0, the discussion is the same as for the open chain model in 2.4. 

When n = 1, the total spin J = !, and the state is a doublet. The highest weight 
vectors are Xl = en1} and X2 = eil1) , as depicted in Fig.4.3(b)(c). 

The eigenstate of the Hamiltonian is of the following 
form 

I~}) =alXI + a2X2 , (137) 

and therefore applying our PROCEDURE, we have 

E l~~) =3alXI + 3a2X2 . (138) LL1 'J 11 .)
Fig.4.3.3(bj FigA.3.3(clThe solution exists if and only if that E = 3, and the 

eigenstates are doubly degenerated, 
FigA. 3(b)(1~ 2) are in spin singlet 
pair.

(139)I~~) ~= Xl or X2, 	 FigA.3(c) (2, 3) are in spin singlet 
pair.

i.e., any supercomposition of the two basis vectors 
can be the solution. 
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5 2D Isotropic Square Lattice 

Consider the 2D Heisenberg spin-! model with nearest neighbour interactions on a finite 
square lattice of N rows and lv.! columns (see Fig. 5.0), 

'N),N) (M 

,~) (i, ) 

,2) 

'" 	 , - -.... ;- ... \.) (2,~1) (i. ,1) 

Fig.5.0 

Each spin in i-th column and j-th row will be labelled (i,i). The Hamiltonian reads 

H2D = - GEE (O'iJO'f.,jl +O'r.iO'f, ,j' +O'i.iO':''il) , (140) 
i,i' i,i' 

where (i',j') = (i,j + 1), or (i + 1,i), and i runs through 1 to j\{ - 1, j through 1 to 
N 1 and 0'%,11,% are Pauli matrices. 

To show that this model is exactly solvable is to show that the energy eigenvalues, 
and eigenstates can be obt'ained without making any approximation. The discussion 
will be separated into three main steps. First, we show that the 2D problem (with 
nearest neighbour interactions only) is equivalent to a 1D problem (with selected near 
neighbour interactions). Second, we show that the near neighbour interactions can be 
decomposed into nearest neighbour interactions. Third, the eigenvalues and eigenstates 
of the Hamiltonian of 1D spin model, which includes near neighbour interactions but 
decomposed into nearest neighbour interactions, is exactly sobable. 

5.1 The First Step 

Assume that N =even. and relabel the lattice points as shown in Fig. 5.1(a). 
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• • • • • • • • • • 

MN-l 	 M(N-l)+l 

rr 

M(N-l)+1M 

"T "T 

,. 
21 ~_2T2M 2/ / -1 M+l 

1-'2-"3 	 M 

Fig.5.1(a). The arrow => indicates the way we relabel the sites. 

In this way, the 20 problem is reduced into a 10 problem, but with non-nearest 
neighbour interactions, i.e., 

H2D ::; -2G L: Si' ~, (141) 
(i.i') 

where [i, i'] denote the following combinations, 

1. (i, i'), i' ::; i ± 1, i.e., nearest neighbour interactions, 

2. Let N = 2m, and m is an positive integer. For 0 Sl S m, there are interactions 
between the following pairs of spins, 


i =2(t + I)M - k , 

where k = 0 1 ? 	 '" :\1 - 1 (142){ i' = 2tM + 1 + k , ' , -, , • 


or explicitly see Fig.5.1(b) 


(( ( III 
2tM +1 2tM + 2 •• '(21+1)M-l (It+l~\( (It+1)M+1 (It+1)M+2 :.'(t+I)M-l :.'(t+1)M 

Fig.5. 1 (b). Each overbrace denotes a non-nearest interaction between two indi
cated spins. 

3. 	 For 1 S t S m, there are interactions between the following pairs of spins, 


i = (2t + I)Jl - k , 

(143){ i'=(2t-l).M+l+k, where k=O,I,2,···,.:.\1-1 


or explicitly see Fig.5.1(c), 
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(~-I)M+1 (~-I)M +2'" 2N+l 2N+12tM 2M-I (~+1)U-l (~+1)M

lC- ~-.j -jj 
Fig.5.1 (c) ..4n underbrace also denotes a nonnearest interaction 

If N =odd, then the route is shown in Fig.5.1( d). 

M(N-I)+l 

M(N-l)+ 

MN-l 

MN 

... ".. 

I 

I 

2M 2M 12M 22M. 3 '" 

I 
.... 

1 2 3 "T 

M 

Fig.5.1( d). The arrow => indicates the way we relabel the sites. 

The interactions can also be similarly classified into the three items listed for even 
.\l. And the items 2 and 3 repeat after every 2,:,\/ spins, to f~rm cycles, but the first ,\1 
and last 2,\/ spins are out of the cycles. There are interaction~ of item 2:in the first .'-1 
spins and interactions of item 3 in the last"'.B-I spins. 

5.2 The Second Step 

"We are to show that for the 10 case the near neighbour interactions can be decomposed 
into nearest neighbour interactions. 

Let's go back to the 2D version of the problem, and consider a cell at the positions 
(i,j), (i,j + I), (i + l,i) and (i + l,j + 1) denoted 

ei.j+l 

I;JDI;+IJ 
e·',1. 
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Fig.5.2. 

where ei,i and Ai denote the terms of Hamiltonian (140) at these positions [5], 

(1'. +zz)ei J' = --1(%%·(1"+1' +1111 (1' • .(I"+J ' (144)(1'. '(1"+1', 2 •., I" I,J I.J I.J I ,J 

and 
t 1(z:% +lIr +zz) (145)Ji,i = (l'j,i(l'i,i+1 (l'i,i(l'i,i+1 (l'iJ(I'i,i+1 , 

so that 
M-l N-l 

H2D = G L L (eiJ +hoi) (146) 
i=1 j=1 

It is easy to find that ei,i and Ai satisfy the algebraic relations (128) and form an 
algebra. This algebra can be reduced to the TLJ algebra [1] at q = 1 since 

hJ ejJ+1 + 1i+1J + ei,i 

- {ei,i+1,/i+1J} - {/i+l,i,ej,j} - {ei.i+1,ei.j} (147) 

+ei.i+di+1Jei,i + ei,i+1 eij/i+lj + 1'+1Jei,i+l ej,i + ei,j/i+t.j ei,i+1 , 

where {a,b} ab +ba. An exchange of lij and Ii+J,i gives a similar reducing relation. 
By applying these two reducing relations, any off route interactions in Fig. 5.0 can be 
expressed by the interactions on route. In other words, an outer over brace in Fig.5.2( c) 
(or an underbrace in Fig.5.2(d) can be decomposed into a summation of products of a 
nearest inner overbrace (or a nearest inner under brace in Fig.5.2( d) and nearest neigh
bour interactions, therefore the outer brace disappears. Repeating this procedure, all 
braces disappear, Le., one can decompose all braces into summations of products of 
nearest neighbour interactions. 

5.3 The Third Step 

We relabel the indices of all the ei,; and li.i on route in the way denoted in Fig.5.2( a) or 
Fig. 5.2(e), so that the necessary algebraic elements are ei with i = L 2"" ,JfN - 1, 
and we arrive at the j\1N - 1 dimensional TLJ algebra at the special case of q = 1. 
Therefore the Hamiltonian (140) can be expressed as a polynomial of these elements. 
The remaining problem is to find eigenvalues and eigenstates for this ID Hamiltonian. 

5.4 Example: 2 x 2 Square Lattice 

The Hamiltonian reads 

H = G (el + e2 + e3 + e14) (148) 4Lr 
First, the spin 5-plet is the ferromagnetic ground state. 2 
with ~ = 0, and n = 0, where all four spins are aligned 

Fig.5.4(a).
upward. 
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When n = 1. i.e., there is one spin pointing downward in the highest weight state, 
the total angular momentum is J = 1. Upon the actions of JtO&! we get four other 
descendent states to span a solution space. To give the highest weight state(s), we 
apply the primitive ideal basis and the state(s) should be of the following form 

I{f = (atC: +a2C: +a3C:) 11) , (149) 

and the Hamiltonian equation yields 

(3 - ~)at +a2 +a3 = 0 , 
(2 - ~)a2 =0, (150) 

at +a2 +(3 - ~)a3 =0 . 

The solutions of the these coupled linear equations yields 

E 
~ = 2, G = 4, 

(151){ al +a2 +a3 = 0; { a2 = 0, 
a3 = at; 

There is degeneracy of order three for the energy E = 2. 

When n = 2, we have spin singlet states. vVe apply the basis of .pt3, .p23, and 
I{f = .p13 + .p23. vVe have the solutions 

~ = 3, ~ = 6, (152){ a23 -aJ3, { a23 = a13' 

It is easy to see that when G < 0, e.g., G =-1, we have the antiferromagnetic ground 
states with energy eigenvalue E = -6. The two basis vedors .pt3 and .p23 are explicitly 
depicted in the following figure. 

40(OJ 
1 ' 

3 

1 _ 
I 2 

Fig. 5.4(b) Fig. 5.4(c) 

Fjg.5.4(b)(c). The braces indicate that tbe pointed spin pairs are in spin-singlet 
pairs. 
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5.5 Another Example: 2 x 3 Square Lattice 

The Hamiltonian reads 	 5 6 

H = G (el + e2 + e3 + e4 + es + e14 + (36) (153) 

and the non-nearest neighbour interactions e ... and e36 can be 

reduced to nearest neighbour interactions, or the elements of 
 4 3 
T-L-J algebra AS1 according to our earlier discussions. Further 

solutions will be routine. 


According to our discussions in the first three subsections, this 

1 2

small lattice can be equivalently deformed into the following 
linear chain of six spin aligned along a line and with non- Fig.5.S(a). 

nearest neighbour interactions shown in Fig.5.5(b). 

( 3 1 6•1 •2 • • • • 
\ 4 5 ) 

Fig.5.S(b). Each overbrace denotes a nonnearest interaction between two spins. 

First, the spin 7-plet is the ferromagnetic ground state, with ~ :::; 0, and n = 0, 
where all spins are aligned upward. When n = I, i.e., in the highest weight state, 
there is one spin pointing downward, the total angular momentum is J = 2. Upon the 
actions of J\7,\, we get four other descendent states spanning a solution space. To give 
the highest weight state(s), we apply the primitive ideal basis and the state(s) should· 
be of the following form 

(1 = (alCl +a2C2 +oaCa +a4 C.. + asCs) 	 (154) 

and the Hamiltonian equation yields 

(3 - ~)al 	 +a2 +a3 +a4 =0 I 

(2 - ~)a:l -a.. =0 I 

al 	 + 2a2 +(4 - ~)a3 +2a.. +as =0, (155) 
-a2 +(2 - ~)a4 =0, 
a2 +a3 +a4 +(3 - ~)a5 =0. 

The solutions of the these coupled linear equations yields 

?= 1 , = - , 	 5, 
= 3, 

= - 2al I a2 = 0, 	 0,
0,!~ jg { a~ ja~aa = 2at , a3 = -at I 	 a3 2al, (156)

a4 = -a2, 
:::; 2al a.. 0, 	 0,a" - I = 	 a"as -at; 

as al ; as = al ; 	 as al . 

There is degeneracy of order two for the energy E = 3. 

When n = 2, we apply the basis of "13, "23, "14, "24, 4134 , 4115, 4125, 4135 and 41"5' 
let us affix same indices to coeficients aij as '1>ij, we have finally the following solutions 

§. 9:i:vTI...:.. 5.823H. = 3, ~ 5, 	 H. 6,G G G = 2 - 3.177 G 
a14 2a13 , al4 - 2a13 , 	 a14 -a13 ,:::; 

a14 0, 
::; 	 :::;au - 2013 , au 0, 	 au a13,au 0, 


a23 0, a23 0 , a23 0, 

::;: ±vTIBa23 4 a13, 

a24 = 0, a24 0, 	 a2" :::; 0 , (157) 
a2.. = 0,

a25 2a13 , a25 2a13 I 	 a25 -a13 ,
0,

a34 - 4a13 , a34 :::; 0, a25 	
a34 -a13,

a34 = 0,
:::; 	 :::;a35 = a13 I a35 -a13 , 	 a35 al3 1 

a35 = -a13 I 
a45 O·I OJ 	 a45 O.a"s 

a45 :rvTIB4 a13 . , 

When n = 3, we have fewer basis, explicitly, "1351 "1..5, 412351 41245 and 41345, and we 
give the solutions 

,

! j ~4, 6al~ al35 , a13S = 0 1 

a235 -a135 , a2a5:::; -a14S, (158) 

a245 2a135 , a245 = 0, 
a3"S -al35 , a345 = O. 

They are spin singlets. 

At last about this example, we remark that when G < 0, e.g., G = -I, we have the 
antiferromagnetic ground states with energy eigenvalue E :::; -6, which is of order two 
degeneracy, with n = 2 and n :::; 3. But generaly, it is believed that n = 2 state comes 
into AGS because of boundary effect. The spin singlet AGS is more interesting, and we 
write it explicitly 

aw= '1>1"5 - W23S , 	 (159) 

where 
41145 :::; C:C~C: = ele"e3e"ll 3 5) , 

321(1,2).(3,6).(4,5).) , 
(160) 

'1>235 :::; ClC~C: = e2eleaesl1 35) , 

:::; 321(1,4),(2,3),(5,6).), 

see Fig.5.5( c)( d). 
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5r-----. 6 5 6 
~ 

[U]

[403 4U3 

] 

1 2 I'-----J2 

Fig.5.5(e). Fig.5.5( d). 

Fig.(5.5)(c),(d) The brace indicated. spins pairs are in spin-singlet pairs. Shown in 
Fig.(e) is the solution ~145, while Fig.(d) represents ~235. 

6 Auxiliary Discrete Symmetry 

We have shown how to reduce the two dimensional lattices into chain without changing 
physical properties in that the latter are easier to manage. However, the way to reduce 
the lattice into chain is not unique. Actually any random relabelling works. Rela
bellings do not change the Hamiltonian of the system, and such relabellings are implicit 
discrete symmetries of this Hamiltonian. We will show that making use of such discrete 
symmetries will simplify the problem greatly. Let's first prove an useful theorem 

Theorem For a system with N +1 spins, the n = no eigenstates are 
exhausted in the eigenstates of any possible relabelling symmetry. 
To prove this theorem, we suppose that there is a relabelling operation f, and 

the eigenstates of Hamiltonian H are ~j with i E 5(= {I, 2, ...}). Some of ~i are 
coincidently the eigenstates of f, and we forget them. \Ve suppose 4ii with i E 5' ~ 5}) 
are not eigenstates of f, and all these states are collected in set £. Then we claim that 
f4ii E £, and we must have a Hilbert space of f, given by 4iil , 4i i " "', and 4i i ... such 
that 

f~il 4ii, , 

f~i2 4ii3 , 
(161) 

f4i i ... ~il , 

and the sign "" can be replaced by = if they are properly renormalized. This claim is 
correct because a relabelling can not change physics, and for the same reason. we claim 
that all ~i. listed abo'ye must have the same energy eigenvalue. Therefore we are alwa.ys 
able to superpose them to get the eigenstates of r-opera.tion. And it is easy to see that 
the eigenvalues of f are exp ( 1 ~). 

In the following, we show, by some definite examples. that relabellings are nothing 
but rotations, projections in most cases. 
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6.1 The Triangle with 3 Spins 

This is the example given in section 4.3 and we reconsider it in the case of n = 1 in 
view of the symmetries of relabellings. And by a simple observation, we can see that 
any relabelling is an operation of the Ds symmetric about the center of this triangle 
(assumed standard). 

It is known that its basis for n = I states are Xl and X2. We will add one more 
vector 

Xs = 1(3,1).) = I !it) -I it!) , (162) 

which is a superposition of the two basis vectors, 

Xl + X2 +XS = 0 . (163) 

The three vectors are depicted in the following graphs. 

A D 
3 

A 
3 

1 11 2 
Fig.6.1(a) Xl Fig.6.1(b) X2 Fig. 6. 1 (c) XS 

As the lattice, and therefore the Hamiltonian H, is Ds symmetric, so we have 

[ f, H 1=0, where f E Ds (164) 

which means that the operators r and H have simultaneous the same eigenstates. So 
we can begin our searching for the eigenstates of H by searching for the eigenstates of 
f. 

Suppose that 41 is an eigenstate of f, we expect that 41 is a superposition of Xi 
(i =1,2,3), or explicitly 

41 =Xl + alX2 +a2X3 , (165) 

where al and al are coefficients to be determined. As the action of f is a rotation of 
1200 anti-clockwise, the result is 

r4i = X3 + alXI +a2X2 • (166) 

From 
f~ =r~, (161) 

we have 
r3 = 1, al = r2, a2 = r , (168) 

therefore 
~l Xl + ei lfX2 +ei 3'X3 , 

(169) 
~2 Xl + ei fX2 +ei \!-X3 , 
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which are degenerated in energy eigenvalues. It is easy to see that Xl and X2 are both 
solutions with energy eigenvalue degenerated. This is just the result we obtained in 
section 4.3. 

Generaly, if the configuration of the lattice gives symmetry (discrete) group G to its 
Hamiltonian H, i.e., 

[ g, H ] =0, where 9E G, (170) 

the eigenstates of H can be found in the eigenstates of operators g. 

6.2 The Square with 4 Spins 

We reconsider the square solved in 5.4 in view of the symmetry D. of its configuration. 
As we pointed out in the basis for n = 2 states are .pt3 and ~l3 as depicted in Figs. 
5.4(b)(c). 

Now it is apparent that 

[ T, H ] =0, where TED", (171) 

so we classify the basis vectors of the Hilbert space by their D,,-symmetry properties. 
Suppose that ~ is an eigenstate of T, we expect that ~ is a superposition of ~i (i = 
13,23), or explicitly 

~ = a)~t3 +a2~l3 , (172) 

where ai are coefficients to be determined, and 

T~ = T~. (173) 

As the action of T is a rotation of 900 anti-clockwise, the result of such an action is 

T~ =al.pt +a)~l . (174) 

From eq.(173) we have 
T2 = 1, at = ±al = ±1 , (175) 

and so 

.pl.l = .pt3 ± .pl3 • (176) 

This is just the result we obtained in section 5.4. 

6.3 The Tetraploid with 4 Spins 4~r 
We consider a new example, a lattice with interactions 

2depicted in the Fig.6.3(a). 

Fig.6.3{a). 
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This is actually the simpliest 3-dimensional spin model, 
a tetraploid, as redepict in Fig.6.3(b). The Hamiltonian 3
reads 

H =fl + f2 + e3 + et,3 + fl,. +el," , (177) 

and according to our discussion in section 5.4, there are ~ two basis vectors, ~13 and ~l3' to span the Hilbert space 1 2 
and we now add one more vector X to make it clear that Fig.6.3(b) 
the three vectors span the space of the operators fED.: 

x = 1(31).(24).) =-134) + 123) + 114) -112) , (178) 

It is easy to show that 

x+ .p13 + .p23 =0 . (179) 

We depict the three vectors in Fig.6.3(c)(d)(e). 
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J1 ~. A 
1 2 1 2 1 2 
Fig.6.3(c). ~13 Fig.6.3(d). ~23 Fig. 6.3(d). X 

Fig.6.3(c)(d)(e). The spins connected by double lines are in singlets. 

Now we suppose that the eigenstates of the group operators T t D" are of the 
following form 

A I A;r. ;r. (180)~ =[ai, al, a3 = al 'e13 + al'el3 + a3X , 

where ai are coefficients to be determined. Perform the rotation operation (1200 anti
clockwise) T) we get 

~ ~ [a3,al,a21 , (181) 

and from 
fl~ =Tl.p , (182) 

we have 

T: =1, al = 1, al = TI- I
, a3 = Tl • (183) 

Hence we have the eigenstates for fl (other D,,-operations are automatically satisfied) 

~l = ~13 - fii~23 , 
(184) 

~l = elI3 - f-ii~l3 , 

which are eigenstates with different eigenvalues ei:if. These two states should be super
composed to form the eigenstates of Hamiltonian. And the result is: any superposition 
of ~1 and ~l is the eigenstate, as they have degenerated energy eigenvalues. 
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6.4 	 The Tetraploid with 6 

Spins 


We consider a circular linear chain with 
6 spins, Fig.6.4(a), with the Hamiltonian 
reads 

H =r:5 

e. + e1,6 . (185) 
i=1 

4 

1 .2 
According to the theory (see section 2), there are five higlllf.i6M(tC)t vectors, ~mlm2m3 = 

Gmt "'2 m3 1135) as depicted in Figs.( b )-( f). 

~ : 

1 -2 
Fig. 6. 4(b). Fig.6.4(c). 

1 2 

1 2 1 2 1 2 
Fig.6.4( d). Fig.6.4(e). Fig. 6. 4(f). 

4 4 5 4. . . ... 

where 

IIJIIf=! • = !, Z +1)} ,i +1 ~ 1(" ~ 

and 

• • ~I(' '±3)}i i ± 3 = I,' •. 
The eigenstates of the Hamiltonian H should be of the following form 

~ = L amlom2,m3cI>m,.1Il2.m3 I (186) 
IIlI.m"m3 
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and will be denoted as 
at3S a245 ] 

~= 
[ 

. 	 (187) 
at45 a235 a345 

And now we consider the symmetry of this lattice system, the anti-clockwise rotation 
of 60° (which can also be viewed as a relabelling of spin indices of 1 -+ 6, 6 -+ 5, "', 
5 -+ 4 and will be denoted as operator f). According to our theorem, we have 

a245 al3S ]
f~ = -	 = -T~, (188)

[ 
a345 al45 a235 

and easily we have the following solutions 

[1 -1 ] 
TI = -1, ~I = [~I ~I 0]' 

T2 = 1, ~2 = b bt b (189) 


l 	 1 

:l:il!t = '11:
T3.4 = e 3, ~3.4 . r1 e=t:'Zf0 e:l:l 3 ] 

By checking directly, we see that 4'1 is really a solution with energy eigenvalue E =6, 
while ~2 is not. ~3.4 are solutions with identical energy eigenvalues E =4. 
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. .. 

• • t t • •Figure 4:1The p~ of the s~ins indiclted by tBe over oJus are spin singlet pairs. 

(: ~ , rl 

Figure 5: Circular chain consisted of five spins in nearest neighbour interactions. 

3 2 

40 I I J 
Figure 6: Spins 192 and 3,5 arJ in singlet pajrs, and spin 4 is arbitrary. This state is a 
spin doublet. Fig.2.5 (b) 

3 2 

4f I I J 
Figure 7: Spins 1?2 and 3,5 arJ in sing;let pairs, and spin 4 is arbitrary. This state is a 
spin doublet. Fig.2.5 (c) 
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