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Abstract

From the basic 4 x 4 R matrix associated to quantwin Lorentz group
SL{2,C) and its various fusion matrices, the covariant differcntial
calculus on the quantum Minkowski space and the R commutation
relation for the covariant generators of quantum Lorentz group are
presented.
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1. Introduction

Recently much attention has been payed to the investigation on the quantum
groups!3 and the Yang-Baxter equations M. In this talk we will report some
recent progress in the research of quantum Minkowski space and quantum Lorentz
group.

After giving some preliminary results on 4 x 4 R matrix associated to SL,(2,C)
and related quantities, we describe the properties of various matrices fusion from
R in the next section. The covariant differential calculus on quantum Minkowski
space M, and the R commutation relation for the covariant generators of quantum
Lorentz group are discussed in Sec. 3 and 4 respectively.

We start from the quantum R matrix associated with the quantum group
SL,(2.C)

q
B (BryaB N -1/2 g—-qt 1
IRl = (R(@)*+s) = ¢ A (1L1)
. q
which satisfies the Yang-Baxter equation (YBE)
Ry;RpsRiz = RpsRuaRos (1.2)

and the reduction equation

(R = m)(R = p2) =0 ,p(q) = "% palq) = —¢">2. (1.3)

The left-acting eigenvectors t,(¢)*? and s(q)*?, as well as the right-acting ones

t™(q)ap and 3(q),s are defined by the eigenvalue equations [
R(2)"%+5 tm(0) = p2 tm(@)*? , R(Q)™as 8(0)™ = 1 3(q)°° . (1.4)
- - - . (1.
T™(@)an ()25 = 12 T™(q)vs , 5 2)ooR(9)* 25 = g1 3(g)ns -

Since R matrix is symmetric under the transposition, the components of left and
right eigenvectors can be chosen as the same
0 __,ql/2

@ = (5 o) =B b@=(_ % T3 ) @ =

~ 7 ~1/2
t—(?)aa = (g _01) =t7(q)aa, S(Q)aa = (_:1/2 ! 0 ) [2]—‘“ = 3(q)as,
(1.3)
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In this choice ¢'s are g-symmetric and s ¢g-anti-symmetric, i.e.,

tm(9)’® = tm(g™), s(9)* = -s(g7")*". (1.6)

The 2-dim Levi-Civita symbols are related to the singlet eigenvectors
e(@)as = =[2]5(0)en » (@) =[2]7%s(0)** (17a)
and then .
€(9)ane(9)” = 8o = (9)e(9)ga - (1.70)

For latter use we group t's and s into a matrix-valued four vector

t.(q) = (to(9), tm(Q)) ’ tO(Q)"ﬁ =49 3(?)“’ )

#(q) =(P(g)y (), Pgdon=17" 5(g)as - 9
They satisfy the orthogonality condition
P(g)os tul@)* =84, . {1.94)
and the completeness relation
tu(q)*? P(q)ys = 6°%,6%5 = E*.5 (1.9b)

Define the projection operators

Q(i}(q)aﬂﬁ = tm(‘?)ajt-m(q}"ls ¥ Q(”(‘I)oa'vi = s(‘])ags‘(q)‘r& (110)

then
QUQW = Qi | QW L QW = F . (1.11)
Now since R can be expressed as the linear combination of Q©*)(q) and Q'*){q)
R(g) = 12Q(q) + 1Q"g), (1.12)
we can obtain 2 E 5 £
QM =——h=, Q= Z=B, (1.13)

from which follow the useful relations

QW Rosky = RisRi2QY) . RuaRaaQY) = QIR Rss . (1.14)

Quantum group SL(2,C) characterized by quantum matrices M and M =
(M*)~'. Both of them satisfy the Yang-Baxter relations

RuM M, = M MyRyz, RuM My = MiMoR (1.13a)
and another mixed one &
RlztlfllWQ = M}.‘Mﬁélz . (1.155)

For quantum group SU,(2), M = M, then three relations coincide into single one.
Eq(1.13) allows one to get a relation similar to (1.14)

QUM My = MMQY, QU N1 M, = 31, M.QY . (1.16)

All these relations given above can be represented diagrammatically.

2. R Matrices From Fusion

Various higher dim R matrices can be obtained from fusion of R in (1.1). The one
associated with the quantum Lorentz group SO,(3,1) 87 is

e % 1 saped 23 Bab  Bei  Belv Wi ;
Raasn = RaRuRaRy), RO g = RO R RO 0p R e 12.1)
And another one
3 B 5 padad v 75 Bb'c! y
Rz = RuaRiaRaRas, R s = REWR® iy RO o RV iy (2.2)

represents a reducible R matrix ¥l The reduction can be shown by multiplying
t4(q)ag etc to convert the bispinor indices into four vector ones

R = #(q)aat (00 R 10 pstal @)™ 2g)"™ (2.3)
= R% ®R™y®R™,0R™, .

Correspondingly the tensor product of two quantum matrices Q13 = M; @ Mz is

converted into

Q4 = PQ)ar M3 M58, (q)P = 0% & Q™. . a2

The reduction comes from (1.14) and (1.16).
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1t is easy to show that R and Q satisfy their own YBR and YBE
RozeoRa2) Q60 = QunQeoRaen,
RancoRegeeRaze0 = RensaRaneoRese: (2:5)
Or equivalently, their reduction form (m,n,--- = +,3,-)
R™ L0504 = QnRM G,
R™ o RV R = RY G R™ W R, (2.6)

Comparing to the standacd form ™, one can see that 1 R™",; is nothing but the
R matrix associated with the quantum deformation of SO(3) with parameter ¢?.
Similar to the eigenequation (1.4), R™,, has a singlet eigenvector

g(0)™ = (8(¢°)*,8(¢)*,8(¢") ") = (¢7", 1,9) = 8(¢")u (2.7
with the property
g0 ma e = (¢ )ty Q™ ig(e) = gla)™ . (2.8)

Therefore g{(q?)mn can be identified as the deformed Euclidean metric in 3-dim
quantum orthogonal space.

In a similar manner ﬁ(mm) in (2.1) and the product Ay; = My @ M, satisfy
the YBR and YBE exactly the same as those in (2.5). They can be converted to
the vectorial form as in Egs (2.3) and (2.4). The 16 x 16 matrix R** ., has three
different eigenvalues

S Aa(g) =g, Mlg) =—-¢7", Xolq) =q7, ©{2.9)
corresponding to a nonet, a sextet and a singlet respectively. The singlet eigen-
vector

algr = (47", 9%2,9%.¢%,¢%, 07" =(-¢7",-1,9.0.1, —q) = g(q)ps  (2.10)

satisfy 7
(D" 9(D)r = 8, = g(g)rg(g)™ (2.11)
H @A\ = 9(@)ene VA = glg)™. (2.12)

This implies that .\#, is the g-deformed Lorentz transformation and g(q),, the ¢-
analogue of the Minkowski metric. The sextet eigenvector up,,{¢}** (m = +,3. -,

5

L, R) and nonet wma(¢)** (m,n = +,3,~) can also be constructed from the con-
crete form R*Y,,. 4, is g-antisymmetric, and the metric q-symmetric

Ums (D)™ = —um,(a7' W, 9(9)™" =g(q7" ) . (2.13)

Now since R is not symmetric under the transformation, its right eigenvectors
@™*(q), and ©™"(q),, have components different to their left counterparts. But
still we can choose them all as orthonormal and complete set. Projection operators

can be defined Il
QO(g)* x = 9(9)*5(q)er[2]2
Q(U(q)uvm‘ = um('l)""ﬁm'(q)a.\, (2»14)
QA ()™ ax = Wima()* T™(¢)ur
with
Q) = §iiQW), QO + QN+ QM =E (2.15)

As a matter of fact, we can construct various different “fusion” matrices from
quartic product of basic (q). Let us define

R(u)(?ﬂ)(-'v) = R(av byc,d) = R?;;,RQR;’R‘:? (2.16)

with a.b,c.d = £, R = R R(=) = R~1. There are totally 16 of them, N = 1 to

16.
R(1)=R(++++), R(2)=R(+++-),
R(3)=R(++-+), R(4)=R(++--),
R(5) = R(+ — ++), R(6) = R(+ - +-),
R(T)=R(+~-+), R(8)=R(+---),
R(9) = R(-+ ++), R(10) = R(— + +-),
R(11) = R(~ + —+), R(12)=R(-+--),
R(13) = R(- = ++), R(14) = R(- - +-),
R(15) = R(- - —+), R(16) = R(~ - -~}

We see immediately that R(n)(u) = R(1), 72(13)(“) = fi{'_’). Pairs of these matrices
are inverse of each other
RO = R16), R = R(8), R(G)™ = R(14), R@4)" = R(S),
R(5)~' = R(12), R(7)™' = R(10), R(9)' = R(15), R(11)™' = R(13),
(2.18)
and some of them are connected by transposition

R = R9), R4 =R(1), RG)=R13), RE)=R13) (219
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and others are symmetrical. These 16 matrices fall into six groups, namely
(1,16); (3,14); (5,12); (7,10); (2,8,9,15); (4,6,11,13).

A further look shows that some of the matrices have same topology, e.g., R(2),
R(14), R(9) and R(12) have same twine but different direction diagrammatically.
They may represent relevant processes, processes with cross symmetry. We have
already noticed that R(1) and R(16) describe SO,(3) quantum group, and R(2)
and R(8) quantum group SO,(3,1). One may imagine that the relevant matrices
{R(9),R(15)}, {R(3),R(14)} and {R(5),R(12)} also have something to do with
quantum Lorentz group.

Of all these 16 matrices, R(7) and R(10) are special. All others but these two
satisfy their own YBE, i.e., for N # 7, 10

Ruaya(V) Riayse V) Ruaaa(N) = Ragse(N)Raze(N) Rages(N)  (2.20)
We have another kind of generalized YBE for N # N', i.e.,

Rizyao(N) Rizase(V)Raaan(N') = Riaee (V) Razyeo(N) Riasse(V)
(2.21a)

Ruaea(V) Ry ee(N) Raaea(V') = Regse(V') Ruayea(N) Raase (V)
(2.210)
Various combinations of N and .V’ are allowed. And the ones with N, N’
=24,6,8 play an important role in discussing the quantum Lorentz group.
It can be easily shown that R(4), as well as _}?(2) = R, satisfy the same YBR
with the quantum Lorentz matrix A;; = M) @ A,

R(N)anaydanden = SandanRunea(N), for ¥ =2,4,6,8 (2.22)

The 16x 16 matrix R(4)* . has three different eigenvalues, —¢%, 1 and ~¢~2.
It can be shown that the eigenvectors g, u and w appearing in (2.10) and (2.13)
are also the eigenvectors of It(4)

R(4)* iag(9)™ = g™

RA™ atmi()™ = ~gumi(0)* (2.93)
Rl‘&)“vx.\“mﬂ(q)m\ = "I‘zumn(q)‘“' . -
R(‘““y»dwmn(q‘)sl\ = wmu(qyw

-3

- true for their derivatives 8, =

So if we decompose the g-antisymmetric projection operator Q{*)(¢) into two parts
QW) = QI(g) + Q"F(q)

QU™ r = umi(@)*8™E(@)ers QPP ar = umr(g)* E™(q)an,  (2.24)

we have
R(4) = QU — g2Q00) _ g IQUR 4 Q) (2.25a)
whereas .
' R(2) = ¢7°Q — 71 QUL . g=1QUR) 4 Q1) (2.25b)

All these eigenvectors can also be constructed by the basic R matrix (1.1) and
basic eigenvectors t,(¢)*® and s(¢)*?, The results are

9(9)* = Ua)5 Ha),5 477 R(qY 34 (9)*e(9),

g(‘l)uv = E(q)aﬂ ‘(Q)»}& q“ﬁ R*l(q‘)ﬂ’?a." t»(‘])mj tv(q‘)w{)

ure(@)* = (g),5 1)y 4% R(0)7 35 tal@)™ s(¢)7, (2.26)
wer( g} = En)us Hu)ys 01 RIqPaq slq)™ tilq)?,

Wan ()" = Hg)os H9)s5 4*7* R(Q) 35 tm(9)™ taiq)™.

Various properties of g, ur, and w,, can be obtained by these basic relations.

3. Covariant Differential Calculus on Af,

The covariant differential calculus on the quantum plane was first discussed by
Wess and Zumino (for the A type case) Bl and then generalized to the cascs of
quantum orthogonal plane (B.D type) &% or quantum symplectic plane (C type)
B9l For quantum spinor u°, their components are noncommutative. The same is
Fud

wul=gulel, 8,8 =q¢718:0,. (.1)
Raising the indices by the Levi-Civita symbol 8 = ¢(q)*#9;, these two relations
can be written as the vanishing of their g-anti-symmetric combination, i.e.,

d9)agu®u’ = €(g)apd” = 0. (3.2)


http:tm(qr.lJ

The cross commutation relations between the coordinates u® and derivatives
determined by the consistency ® can be put into the form

v’ + m(q)R(g)*F5u"® = e(g)*° (3.3)
or, equivalently
T(9)a0l8 v + m(g)pa(g)u®d] = 0,
€(9)apl@v” + m(q)u®®’] = e(g)ape(g)™ = —[2] . (3.4)

And from the relation of g-antisymmetric projection operator in (1.13), (3.2) turn
out to be V

(E ~ uao( ) R(q))% s w™u’ = [E ~ pa(q)R(9)]"2s T = 0. (3.5)

In a similar way for quantum Minkowski coordinates z* and their derivatives

Oy = 3%, we define 3 = g(q)**d,. Again their g-antisymmetric combination
should vanish.

i™(q)u "z’ = i™(q), 08" =0 . (3.6)

The consistency condition yields relations between coordinates and derivatives {7
9(Duw[0”z” + A7 (9)A5'(9)240"] = 9(Dg(d)™ = (2*,

8™(q)w[0"2* + A (g)z#8*] = 0 (3.7)
™) [0z + AT (g)A7 ' (q)2#0"] = 0

which can be put into the form similar to (3.3)
2z + AT R (™ a2 = g(g)* . (3.8)

But now the relations in Eq(3.6) can not be put into the form similar to (3.5) with
linear dependence on the matrix % = R(2), since the g-antisymmetric projection
operator for Lorentz group is quadratic but not linear in R. However they can be
put into the form

[E,m&.\ - R(4' q)‘wm\]x‘z'\ = 01 [E“v‘«\ - R(‘;, q)uvm\]axa,\ =0 (3'0)

from (2.25a). The consistency among (3.9) and (3.8) can be checked by making
use of (2.21) relations for .V = 2.4,6,8. The details of the differential calculus can
be found in our recent paper [,

4. Covariant Generators of Quantum Lorentz Group

Now similar to the classical case we can define the generators of the SL,(2.C) in
the quantum spinor space as [11]

L =yod® . - (4.1)
Using the commutation relations given in (3.4) and (3.5), we can obtain

Lefrs _ q——l»Raﬂ;r:’ﬂ'ﬂw L}:'ﬂ’ L'

= i ot B = g (4'2)
= q1/2 Ral(?)aoa'ﬂ'e(qy’ T R‘l('l).'sv'G'Ra Coe Lo + C(‘I)B”L“

by a tedious but straightforward derivation. Then by changing the bispinor indices
(e, B) into 4-vector index i and defining

L* =(q)agl™ (4.3)

we obtain
DL - g R L L = f L

= (20 fure(@)* + urn()™IL* + [27/%(q — g™ )g(q) L° . (4.4)

In a similar way, the generators in the conjugate spinor space are defined as

which satisfy relations similar to those in Eq(4.2)

LoOLH _ qmigddsd  pan i

801 4781

= . 1ot = . . = Y |‘4'6)
= ql/z R"(q)"éé,g.c(q)‘} 5 R“(q)’sﬁ,;,R" § L 4 e(q)*j"L"s .
Then if we introduce .
L = (q7")p L% C)
we have »
oL — ' R R = oo, I
(4.3)

= 2 usa( ) + wenlaP*1Z* + 213 = g )ola} [0
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The same is true for replacing ¢~ R = ¢~ R(2) by R(4) in Eqs. (4.2), (4.4), (4.6),
(4.8). In above definition, the conjugate spinor @5 = (4*)" transforms according
to the hermitian conjugate (complex transpose) of the quantum matrix M.
u® — M(q)°p® s — 53M(0)* s . (4.9)
The conjugate derivative is 5?—6 = 3%, Raising the dotted index of iis, we see
= thﬁe(q)"‘i — Méat. - V (4.10)
The commautation relation among % and 3* are found to be the same as those for
u® and 8* in (3.3)and (3.5):
@8af = g~ V1RS8 avab
G = g R 5 ( (4.11)
& = e(q)* + ¢/ R(q)* ;a'D’ .
And the relations between undotted quantities with dotted ones are
uid = qI/ZRaéﬁﬂﬁB;{J, 6050 - qll‘lRuéjpg,.:?@&i, (4 1‘))
s = q-'ﬂRaf'g_,,a"aﬂ, u*d® = q’“R"‘d[,ﬁg’u", T
from which we obtain o ) .
L¥L¥ = R*P&  LYL™ (4.13)

Here notice that, the R matrix is the R = R(1) appearing in (2.4). Transfer to
the vector index we see

R(g)* o = R% 8 R™y o R™4d R™y

=196 6" 9 R(¢)™x (4.14)
R™", is the R matrix for SO,(3).
More explicitly, (4.4) can be read as
8"} =o0,
q(L3 - LO)L+ . q"L”'(La —- Lo) — q[2]1/2L+ ,
qL~(L* = L% — q~YL? - LOYL~ = ¢[2)'/*L-, (4.13)

L¥L™ = L L* + (g — ¢~ LI - L°) = 4j2}'/2L? ,
—q~'L*L~ = [3L? + [°L° - gL~ L* = g*[2]'/?L° .

11

and similar for L® and L™. And similarly, (4.13) gives
' (2%, 1% = {L~, L% = [L°, L™ =0 (4.16)
L+E+ = @L+L+,
L*I3 =L+,
L*E- =L L+,
L3t = L+I3 +(¢* - "3 IL*,
L33 = —q Y (g? — ¢ NE-L* + [313, (4.17)
LL-=L"I°%,
LoL* = ¢ L* L - g (¢* - ¢ )L+ (1 - ¢7)(¢* - ¢ )L LY,
L L3 =(g* - ¢ )L L®+ [3L-,
L-I-=¢ L-L-.

It is easily seen that in the limit ¢ — 1, L* and L* became two sets of commutative
angular momentum with L® and L° being their Casimir operators.

All the cross commutation relations given above are explicitly covariant and
take the R commutation form just as those proposed by Woronowicz 13, All the
structure constants are comprised by the relevant R matrices and their character
quantities. The consistency are easily to prove.

Along the same line we can discuss the generators of quantum Poincare group.

References

[1] V.G. Drinfeld, Quantum groups, Proccedings of ICM, 1986. Vol.1,798;
M. Jimbo, Lett. Math. Phys. 10(1986)63, 11(1986)247, Commun. Math. Phys.
102(1986)537;

[2] N.Yu. Reshetikhin, L.A. Takhtajan and L.D. Faddeev, Leningrad Math. J.
1(1990)193.

[3] S.L. Woronowicz, Publ. RIMS, Kyoto Univ.. 23(1987)117, Commun. Math.
Phys. 111(1987)613; 122(1989)129.

12

P4



{4] C.N. Yang, Phys. Rev. Lett. 19(1967)1312; R.J. Baxter, Ezactly Solved Mod-
els, Academic Press, London, 1982.

[5] X.C. Song, J. Phys. A25(1992)2929.

[6] P. Podles, S.L. Woronowicz, Commun. Math. Phys. 130(1990)381; U. Carow-
Watamura, M. Schlieker, M. Scholl and S. Watamura, Z. Phys. C48(1991)159.

{7] X.C. Song, Z. Phys. C55(1992)417.

(8] J. Wess and B. Zumino, Nucl. Phys. B(Proc. Suppl.) 18B(1990)302.

[9] U. Carow-Watamura, M. Schlicker and S. Watamura, Z. Phys. C49(1991)439;
[10] X.C. Song and L. Liao, J. Phys. A25(1992)623.

{11} X.C. Song, Proc. CCAST Workshop: Quanium Groups and Low Dimensional
Field Theory, March, 1992, Beijing, p46.

13






