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Abstract 

From the basic 4 x 4 R matrix associated to quantum Lorentz group 
SLq(2, C) and its \"afious fusion matrices, the cO\"afiant differential 
calculus on the quantum Millkowski space and the R commutation 
relation for the covariant generators of quantum Lorentz group are 
presented. 
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1. Introduction 

Recently much attention has been payed to the investigation on the quantum 
groupsll.?.3) and the Yang-Baxter equations (4). In this talk we will report some 
recent progress in the research of quantum Minkowski space and quantum Lorentz 
group. 

After giving some preliminary results on 4 x 4 Rmatrix associated to S L,,(2, C) 
and related quantities, we describe the properties of ,-arious matrices fusion from 
if. in the next section. The covariant differential calculus on quantum Minkowski 
space M, and the Rcommutation relation for the covariant generators of quantum 
Lorentz group are discussed in Sec. 3 and 4 respectively. 

We start from the quantum k. matrix associated with the quantum group 
SL,,(2.C) 

IIkll ~ (R(q)OO... ) ~ q-'/2 rq -/-' 0 J (1.1) 

which satisfies the Yang-Baxter equation (YBE) 

R12R?3Rn = R23Rn R?3 (1.2) 

and the reduction equation 

(R -It.)(R -I'?) =0 .1'1(q) =q1/2, 1'2(q) = _q-3/2. (1.3} 

The left-acting eigenvectors tm (q )O'd and s(q)oJ, as well as the right·actin~ ones 
f"'( q)crO and s{q)00 are defined by the eigenval,lC equations (51 

R(q)~{J'Y' tm(qP' = 1'2 tm(q)oO, R(q)O'O..6 3(q)"'" =1'1 8(q)00 , 
(1.4) 

[m(q)O'pR(q)O',J.., = 1'2 ["'(q)"I'6, S(q)O'OR(q)OO')6 =1'1 S(q).., . 

Since Rmatrix is symmetric under the transposition! the components of left and 
right eigenvectors can be chosen as the same 

t+(q)O'O = (~ ~) = [+(q)O'o, t3(q)O'O = (_q~l/2 _~1/2) [21- 1/2 =P(q)oo , 

0 -t/2)
L(q)OO = (~ 

-1
o ) =[-(q)~o, s(q)O'o = ( _ql/2 q 0 (21-1/2 = J(q)oiJ, 

(1.5) 
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In this choice t's are q-symmetric and s q-anti-symmetric, i.e., 

t",(q)Pcr = tm(q-l)QP, s(q)Pcr =_8(q-1 )QP . (1.6) 

The 2-wm Levi-Civita symbols are related to the singlet eigenvectors 

f(q)QIJ = _[21'/2S(q)Qp, f(q)QP = [21'/2~(q)QP (1.7a) 

and then 
f(q)crPf(q)Jh =SOl"( = f(qpPe(q)pOI . (1.7b) 

For latter use we group t's and 8 into a matrix-valued four vector 

tp.(q) =(to(q), tm(q» , to(q)OIP = q 8(q)QP ; 
(1.8) 

jp.(q) =(tu(q), fm(q» , tD(q)Qp =q-1 s(q)Qp . 

They satisfy the orthogonality condition 

f"(q)o{1 t~(q)OIP = 6"'", , (l.Oll ) 

and the completeness relation 

t,..(q)Qp fP.(q)'l& = fJQ'lf/J& == EQ(J'l& , (1.9b) 

Define the projection operators 

Q(2)(q)Q(J 'l& = tm(q)aJfm(q)'l& Q(1)(q)oJ'ls = .s(q)ol1j'(q)'l& (1.10)I 

then 
Q(i'qti' = 6iiQIj) , QU» T QI2» = E . (1.11) 

Now since Rcan be expressed as the linear combination of Q(I'(q) and Q(21(q) 

R(q) =IllQ(2)(q) + IlIQ(l)(q), (1.12) 

we can obtain 
Q(2) = R- IlIE I Q(I) = R - ll'lE , (1.13) 

Jl2 - III III - 112 

from which follow the llseful relations 

Q~~R23Rn = R23li.12Q~1, RnR23Qi1 = Q~~RI2R13 . (1.14) 

3 

.. tJ 

Quantum group S L(2, C) characterized by quantum matrices kl and M = 
(M+)-I. Both of them satisfy the Yang-Baxter relations 

RnA1lA12 =l"II.\12RI2. R12I.W,.~12 = fl1.f:l'lR12 (1.15a) 

and another mixed one (Ill 

R12M1i12 = MI .;.\12R12 • p.15b) 

For quantum group 5Uq(2), M= .\1, then three relations coincide into single one. 
Eq(1.13) allows one to get a relation similar to (1.14) 

Q~~AI1lv/2 =M1M2Q1~, Qi~J>(flM2 = Al1MlQ1~ . (1.16) 

All these relations given above can be represented diagrammatically. 

2. Ii. Matrices From Fusion 

Various higher dim R matrices can be obtained from fusion of R in (1.1). The one 
associated with the quantum Lorentz group 5°9(3,1) [6,11 is 

• •• • --I '011.,.,& -(h
'R.(12)(34) =R23R12R3..R23 ' 'R. "(l/iJ'd6' =R 

And another one 

- - - n· - op ..,6 ­
R(12)(34) = R23R12IL3.. R23, R 'c.'fJ'.,.,'&' = R 

- 6 -1:6 --I 6'e'
bc~ Q,llR c'&,R (q) J'..,' i2.1) 

11 • b ' cl - 0' ,
"heRo .:x'b,R c'6,R C J',.,' (2.2) 

represents a reducible R matrix [51, The reduction can be shown by multiplying 
[1'( q )atO etc to convert the bispinor indices into four vector ones 

- "''' - t-"'(") -"'(") R-ad.'l6 ( )Q'3'+ ( ")""05'R /C,\ = q (lilt q..,.; a',J',-,',s,t" q '.\ q 
(2.3) 

= Iioooo 1:9 IimOOI e IiOn;.o ffi Iim"kl . 

Correspondingly the tensor product of two quantum matrices n(l'l) ="MI ® JJ2 is 
converted into 

nil." = f"'( q)...,.\1°).1[76tll(q )11& =n°0 til nm n • ',2.4:) 

The reduction comes from (1.14) and (1.16). 
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It is easy to show that R and nsatisfy their own YBR and YBE 

R(l2)(34)n(l2)n(34) = n(12,O(34)~11)(34" 

R(11)(34)R(34)(56)R(1')(34) = Rc34)(S6,R(11)(34,R(34)(S6" (2.5) 

Or equivalently, their reduction form (m, n,'" = +,3, -) 

R"'''k,n'\n'j =nmkO",Rk'jj, 

R"'''""",it'''',,''kR''''''''i; = R"'"",R"''''in"it,,''t'jk . (2.6) 

Comparing to the standard form (l), one can see that (5) it"'''kt is nothing but the 
Rmatrix associa.ted with the quantum deformation of SO(3) with parameter ql. 
Similar to the eigenequation (1.4), it"''',.t has a singlet eigenvector 

g(q')",n =(g(q')+- ,g(q')OO,g(q2t+) = (q-1, 1, q) = g(q2)kt (2.7) 

with the property 

g(q')",,,fl"\n", = g(q')"h fl"'kfl"lg(q2)k' = g(q2)"\" . (2.8) 

Therefore g(q2)"," can be identified as the deformed Euclidean metric in 3-dim 
quantum orthogonal space. 

In n similar manner R(12)(34) in (2.1) and the product An = .vII @ }.il, satisfy 
the YDR and YBE exactly the srune as those in (2.5). They can be converted to 
the vectorial form as in Eqs (2.3) and (2.4). The 16 x 16 matrix R"" ,,>. has three 
different eigenvalues 

A:l(q) = q, Al(q) = _q-l, Ao(q) = q-3, (2.0) 

corresponding to a nonet, n sextet and a singlet respectively. The singlet eigen­
vector 

a(qjIJ" = (g+-, g33, gJO~ g03, gOO, g-+) =(_q-l, -1, a~ 0.1. -1']) = g( q)"11 (2.10) 

satisfy (71 

·g(tJ)jl.>'g(qh" = 6"11 =g(q).,..\g(q)'\jl. (2.11) 

g{q)""A";<.\".\ = g{q)/C;" ;\jl.".\II.,g(qr>' = g(q)llll. (2.12) 

This implies t.hat .V'" is the q-deformed Lorentz transformation and g(q)j.w t.he q­
analogue of the )"Iinkowski metric. The sextet eigenvector u"'$( q)"" (m = +,3, -, S = 

L, R) and nonet w",,,(q)"" (m, n = +,3, -) can also be constructed from the con­
crete form R""Ill. U"''' is q-antisymmetric, and the metric q-symmetric 

um,,(qt" = _u",,,(q-l)"II, g(qt" = g(q-l)"11 . (2.13) 

Now since R is not symmetric under the transformation, its right eigenvectors 
um"(q)"., and w"'n(q),.., have components different to their left counterparts. But 
still we can choose them all as orthonormal and complete set. Projection operators 
can be defined (1) 

Q(O'(q)""III = g(q)""g(q)/C,\[2J-2, 

Q(l)(q)"" III = u",..(q)""U"'''(q)d, (2.14) 

Q("(q)"11 d = w",,,(q)""w"'''(q),,.\ 


with 
Q(i'Q(;' = 6iiQ(i) , Q(O, +Q(I, + Q(2) = E . (2.15) 

As a. matter of fact, we can construct various different ufusion" matrices from 
quartic product of basic R( q). Let us define 

... - -(0) ...(~, -Ie, -Cd)
lL(ll)(34,tN) = R(a, b, c, d) = R(23,lLll R:w RZ3 (2.16) 

with a.b,c.d =:!:, RC+) = R,R(-) = R- l • There are totally 16 of them, N = 1 to 
16. 

R(l) = R(+ + ++), R(2) = R(+ + +-), 
R(3) = R( + + -+), R(4) = R(+ +--), 
R(S) = R(+ - ++), R(6) = R(+ - +-), 
R(7) = R(+- -+), R(8) = R(+ - --), 

(2.17)
R(9) = R(- + ++), R(10) = R(- + +-), 
R(ll) = R(- + -+), R(12) = R(- + --), 
R(13) = R( - - ++), R(14) = R(- - +-), 
R(IS) = R(- - -+), R( 16) = R( - - -- j 

\Ve see immediately tha.t R(12)(34) = R(I), RcI3)(24) = R(2). Pairs of these matrices 
are inverse of each other 

R(I)-l = R(16), R(2)-l =R(S), R(3)-t = R(14), R(4)-1 =R(6), 
R(S)-l = R(12), R(tt l = R(tO), R(9)-1 = R(15), R(11rl = R(13), 

(2.18) 
and some of them are connected by transposition 

R(2)' = R(9}, R(4)' = R(ll), R(6)' = R(l3), R(S)' = R(15) (2.10) 
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and others are symmetrical. These 16 matrices fall into six groups, namely 

(1,16); (3,14); (5,12); (7,10); (2,8,9,15); (4,6,11,13). 

A further look shows that some of the matrices have same topology, e.g., R(2), 
R(14), R(9) and R(12) have same twine but different direction diagrammatically. 
They may represent relevant processes, processes with cross symmetry. We have 
already noticed that R(1) and R(16) describe SO"a(3) quantum group, and R(2) 
and R(8) quantum group SO,,(3,1). One may imagine that the relevant matrices 
{R(9),R(15)}, .{R(3),R(14)} and {R(5),R(12)} also have something to do with 
quantum Lorentz group. 

Of all these 16 matrices, R(7) and R(10) are special. All others but these two 
satisfy their own YBE, i.e., for N :f: 7, 10 

Rt12)(34)(N)R(34)(56)( N)R(ll)(34)(N) =R(34)(56)( N)R(ll)(34)(N)R(34)(156)(N) (2.20) 

We have another kind of generalized YBE for N =/: N', Le., 

R( 11)(34)( N)R(34)(156)(N)R(12)(34)( N') = R(34)(156)( N')R(12)(3'U( N)R(34)(56)( N) 
(2.21a) 

R(12)(34)( N)R(34)(156)( N')R(12)(34)(N') = R(34)(56)( N')R(12)(34)( N')R(34)(156)( N) 
(2.21b) 

Various combinations of N and N' are allowed. And the ones with N, N' 
=2,4,6,8 play an important role in discussing the quantum Lorentz group. 

It can be easily shown that R( 4), as well as R(2) = 'R., satisfy the same YDR 
with the quantum Lorentz matrix A12 = J\-/l ® ~ii2 

R(N)(11)(34)A(12)'\(34) = '\(lW\(34)R(l2)(3'1)(N), for .V = 2,4,6,8 (2.22) 

The 16x 16 mah·ix R(4)/"'''A has three different eigem-alues, _q1, 1 and _q-l. 
It can be shown that the eigenvectors g, u and w appearing iu (2.10) and (2.13) 
are also the eigenvectors of R(4) . 

R(4 )'''' ,,).g(q)/lA :::= g(q)"., 
R(4)"""AUm dq)"). = -q2um dq)"" (2.23)
R(4)""""UmR(q)"" = -q-1u",n(q)Jl." 
R(4J"" ICAWI'J'In{q)"). = w",,,(q)"" 
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So if we decompose the q-antisymmetric projection operator Q(1)(q) into two parts 

Q(l)(q) = Q(lL)(q) + Q(lR)(q) 

Q(lL)(q)"" /lA = UmL(q)""ijmL(q),,)., Q(lR)(q)"" ,,). = UmR(q)""iimR(q)"" , (2.2-1) 

we have 
fl(4) = 12(0)_ qlQ(lL) _ q-1Q(lR) + 12(2) (2.25a) 

whereas 
R(2) = q-3Q(0) _ q-lQ(lL) _ q-lQ(lR) +qQ(2) (2.25b) 

All these eigenvectors can also be constructed by the basic R matrix (1.1) and 
basic eigenvectors t,,(q)QIJ and s(q)o/f. The results are 

g(q)"11 = i(q)o~ l(q).,A ql/2 R(q~'Y;J"r e(q)oOe(q)iS, 


g(q)"" = e(q)"o e(q)':'6 q-t/2 tt-1(q)t3'Y p-r t,,(q)oJ t,,(qr6, 


ukLCq)"''' = l(q)oo l(q).,s ql/2 R(ql'l;3i t,,(q)oJ ,;(q)':'i, (2.2G) 


Ukn(q)"" = l('J)"o [(11).,6 IJI/2 Rlq)ihp'Y s(q)QJ tlt(q)""S, 


wm,,(q)"''' = f(q)o;) [(q)..,A q1/2 R(q),3'YJ'Y tm(qr.lJ tn(qf'r~. 


Various properties of g, Uk, and Wmn can be obtained by these basic relations. 

3. Covariant Differential Calculus on U t 

The covariant differential calculus on the quantum plane was first discussed by 
Wess anu Zumino (for the A t)1)e case) (8) and then generalized to 'he cases of 
quantum orthogonal plane (B.D type) ;9.10) or quantum symplectic plane (C type) 

110). For quantum spinor u'\ their components are noncommutative. The same is 
true for their derivatives ao = a:.. 

l 2 t u u 2 =q u u , OtO:z = q-la"a1 • (3,1 ) 

Raising the indices by the Levi·Civita symbol aa = e(q)Ooa[J, these two relations 
can be written as the vanishing of their q-anii-symmetric combination, i.e., 

e(q)"puOu
p =e(q)OtiJ(raP =0 . (:],2) 

8 
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The cross commutation relations between the coordinates ua and derivatives ~ 
determined by the consistency [8) can be put into the form 

fruP+J.'l(q)R(q)aP..,su"'i1 = f(qY'P (3.3) 

or, equivalently 
P"(q)aO[aouP+J.'1(q)P2(q)uaat'1 =0, 

f(q)aP[aouP+J.'l(q)uaat'l = f(q)aPf(q)OP = -[2) . (3.4) 

And from the relation of q-antisymmetric projection operator in (1.13), (3.2) turn 
out to be 

[E - P2(q)R(q)!aO..,6 u"'us = [E - P2(q)R(q)JaO..,s ff'fI = O. (3.5) 

In a similar way for quantum Minkowski coordinates xl' and their derivatives 
ap = a!,., we define ajl. = g(q)jI.*' a*,. Again their q-antisymmetric combination 
should vanish. 

um'(q),,*,x"x*' = ilm'(q)jI.*'tJI'O*' = 0 . (3.6) 

The consistency condition yields relations between coordinates and derivati,'cs !ij 

g(q)p*,[a"x*' +>'j"l(q)>'ot(q)x"a*'J = g(q)l'*,g(q)ll*' = [2J2 , 
ilm·(q)",,[ajl.x*' +>'12(q)xI'O*'J = 0 (3.7) 
wmn(q)~",[a"x*' + >'11(q).\;1 (q)xjl.a*'J = 0 

which can be put into the form similar to (3.3) 

a"x" +>'i 1 (q)7?-1(q)jl.1I rc).x"'a>. =g(q)jl.1I . (3,8) 

But now the relations in Eq(3.6) (':tn not be put into the form similar to (3.5) with 
linear dependence on the matrix ft = R(2), since the q-antisymmetric projection 
operator for Lorentz group is quadratic but not linear in n. However they can be 
put into the form 

[EI'*' "',\ - R(4,q)1'1I rc).jxlCx'\ = 0, [EjI.*' "'). - R(4,q)PIIIC).J8'"O·\ = 0 (3.n) 

from (2.25a). The consistency among (3.9) and (3.8) can be checked by making 
use of (2.21) relations for ..v =2.4,6,8. The details of the differential calculu~ ('nn 
be found in our recent paper (il. 

4. Covariant Generators of Quantum Lorentz Group 

Now similar to the classical case we can define the generators of the 5Lq(2. C) in 
the quantum spinor space as [11) 

LaP =uofiJ .. (4.1) 

Using the commutation relations given in (3.4) and (3.5), we can obtain 

LaoL"'s q-l.naP • ..,s L"a'fJ'L"t's' 
- I"\. o'P' • ..,'6' 

(4.2) 
= ql/2 R-l(q)a,Jat,p,t(q)Pt""R-l(q)",s1't6tRO'6t..~L"~ + e(q)O"'La6 

by a tedious but straightforward derivation. Then by changing the bispinor indices 
(a, fJ) into 4-vector index P and defining 

LjI. = fjl.(q)a3 L'"a (4.3) 

we obtain 
L/JLV 

- q-lft(q)/Jv dL'" L). = r:L" 

=(2j1/2[uJ:c,(q)W +ukR(q)/J"lLk + [2rl/2(q - q-l)g(q)jl.1I LO • (4.4) 

In a similar way, the generators in the conjugate spinor space are defined as 

LaB = "loaD (4.5) 

which satisfy relations similar to those in Eq( 4.2) 

LtiP L"t6 _ -In.&O..:,J. . Lo-'iJt LJr'5' 
'I li'O'NS' 

(4.G) 
= ql/2 .k-l(q)cirPo'O,f(q)J'i'R-l(q}'r6i",RQ'6'HLH + f(q»).yLo-6 . 

Then if we introduce 
L/J = r"(q-l)PloLoB (4.7) 

we have 

LjI.L" - q-1n.,.11rc.\L'" L>' = iI'''"i/' 
(4.S)=[2jl/21ukL(q)jl.1I +UkR(q),.II]Lk + [2]-1/2(q - q-l)g(q)11II to 
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The same is true for replacing q-l1i =q-lR(2) by R(4) in Eqs. (4.2), (4.4), (4.6), 
(4.8). In above definition, the conjugate spinor Ucir == (ua )- transforms according 
to the hermitian conjugate (complex transpose) of the quantum matrix M. 

Qr M()a jJ - - M( )+/Ju 	 -- q pU ,Ucir -- u~ q Ii. (4.9)
4 

The conjugate derivative is 8:.. = cr. Raising the dotted index of Uti, we see 

uti == u/Jf(q)6" __ Ai".y u7 . (4.10) 

The commutation rela.tion among uti and 8i are fo~nd to be the same as those for 
uQr and ~ in (3.3)and (3.5): 

utiu/J = q-l/2fl:is. ,su7U6 I 

trfIJ = q-l/2 fi!'7:. tfr[j (-l.ll). • iJa .. 
trfj,P = e(q)ti/J + q-3/2R(q)Qt3';'6U-'rl)6 • 

And the relations between undotted quantities with dotted ones are 

uQrfj,Q = ql/2RQr"ppfj,JiuJ, ~fJti =ql/2RQrCr j {/)j()Jl, 
(4.12)

(jOuti = q-I/2R.ati /Ji3uJfjJ, u"'tr =ql/2itcui /JjJfiJuiJ, 

from which we obtain 
LalJl,ti/J = R.'):t3,C.J.~ "£,,,sL-rS 	 (4.13),.",,.,, 

Here notice that, the R matrix is the R = R(I) appearing in (2.4). Transfer to 
the vector index we see 

R(q)#U ",\ = Roooo e amOol E9 ao.. kO ~ :A.m"1.:1 
(4.14)=1 $ li"', $ ble"!:II R(q)m"';:1 

Rm"!:1 is the Rmatrixfor SO~2(3). 

More explicitly, (4.4) can be read as 

[LO,£m] = 0, 
q(£3 _ £O)L+ _ q-I £+(£3 _ LO) = q(2)l/2£+ , 
qL-(£3 - LO) - '1- I (L3 _ £0)£- = q[2J1/2£- I (4.1.5) 
£+ L- - £- £+ 1- (q - q-l)L3(£3 - £0) = (JI2)1/2£3 , 
_q-I£+£- -L3£3+LO£O-qL-L+ =q~(2P/2L~. 

11 

and similar for LO and Lm. And similarly, (4.13) gives 

[LO,LO) = [£",LO) = [£0,L"'1 =0 (4.16) 

L+L+ =q2L+£+, 

£+£3=£3£+, 


£+ £- = q-2£-£+ , 


L3£+ = £+£3 +(q2 _ q-2)L3L+ , 


L3£3 =_q-l(q2 _ q-2)£- £+ +£3L3 , (4.1i) 


L3L-'= £-L3, 


L- L+ = q-2 L+ £- - q-l(q2 _ q-2)L3 £3 +(1 _ q-2)(q2 - q-2)£- L+ , 


L-l,3=(q2_ q-2)l,-£3+l,3£- , 


L- l,- = q2 l,- £ - . 


It is easily seen that in the limit q -. I, l,# and LU became two sets of commutativl! 
angular momentum with £0 and LO being their Casimir operators. 

All the cross commutation relations given above are explicitly covariant and 
take the it commutation form just as those proposed by \Voronowicz [31. All the 
structure constants are comprised by the relevant R matrices and their character 
quantities. The consistency are easily to prove. 

Along the same line we can discuss the generators of quantum Poincare group. 
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