3y

_ P 92-20

——

ASITP

'UTE OF THEORETICAL PHYSICS ACADEMIA SINICA

s AS-—:LT,P_:QJ:@\
LN Dec. 1992

I'® onN QUANTUM WESS-ZUMINO-DE RHAM
COMPLEX APPROACH FOR QUANTUM
GROUPS

0 kO 0022593 ¢

¥

L. N. ZHANG

P.O.Box 2735, Beijing 100080, The People’s Republic of China

Telefax : (086)-1-2562587 Telephone : 2568348

Telex ;: 22040 BAOAS CN Cable : 6158




AS-ITP-92-76

ON QUANTUM WESS-ZUMINO-DE RHAM
COMPLEX APPROACH FOR QUANTUM
GROUPS

L.N.ZHANG

Lyman Laboratory of physics, Harvard University, Cambridge, MA 02138
(On leave from the Institute of Theoretical Physics,Academia Sinica,Beijing 100030)

.

Abstract
Deformation Q, of the usual (classical) de Rham complex Q has been
considered .initiated by Wess-Zumino assumption. The two posible vari-
ants of the skew products also had discussed follows the recent Manin

formulation.
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1 Introduction .

In sinall scale, matter reveals itself as quantum and no longer as a contin-
uun.

Does geometry express her figure.in the small scale, no longer as a commu-
tative but as a non-commutative one?

It seems that the most fundamental blocks, vector space and linear groups
transform on them, probably must be replaced by the deformed or quantum ones.
This is the recently developed quantnm planes and quantum groups approach.

Alter a lot of pionent work on this aspect, Wess-Zumino!'?! and their colab-
orators , developed many important applications in particle physics. Our notes

are principally motivated by Wess-Zumino's work and Mauin's explanation and

!

extension. Therefore, we would like to follow the Wess-Zumino's notation as
whenever possible.

2 Vector space V, without product .

We consider n-dimensional vector space, mainly n=2. We use the obvious nota-
tions like

V 3 (uwv),

V* 3 l{u,v),linear functions,

C( V) 3 {(u,v),continuous functions, with natural product.

3 Vector space V, with product = plane .

Further algebraic structure is needed to describe the physical systems. For
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(z!,..2

z',..,z") € V. this set generates an associative algebra with the axioms

of products. In the foilowing, we consider mainly the n=2 case, and use (x.v)

instead of (z!,...,z").

3.1.Plane 4%/,
With the cominutative product, for (x.y) € V,

zy —yz = 0.
Then we can write monomial ; z'y™, and polynomial: P,(r,y) € K < z.y > .

3.2.Quantum plane 42°.
With the deformed commuiative product , for (z,,y,) € V. for simplicity we
omit the index q,

Ty — qyz =0,

then we can write monomial; z'y™, and polynomial; P,(z,y) € K < z,y > .
Polynomial function ring

FlA =k < z,y > [(zy — qya).

Its transformation is
FA}"] = FIGL,(2)]F[A}"],

with quantum group GL,(2).
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3.3.Super-plane 4°2,
With the anti-commutative product, for ( £, ) € V,

§n+né =0.

So we meet Grassmann algebra.

3.4.Quantum (super-) plane A3,
With the deformed anti-commutative product , for (&,,7,) € V, for simplicity
we omit the index q,

én+q '€ =0.

Polynomial function ring

FlAY) =k <&, > /(€29 En + 97" né).

Its transformation

F[A‘;”] = FIGL,(2)]F[42,

with quantum group GL,{(2).
Generally,the quantum deformation of the super-plane A%? depends on quan-
tization parameter p € (', which is irrelated with the aforementioned quantiza-

tion parameter q. So we meet the quantum super-plane :l‘;” JIn this case ,

En+ptnE =0

And the polynomial function ring becomes
FIA =k <&n> /(0% & + p~'né).

3.5.R-symmetry algebra.

On a given linear (vector) space V, we can define product ‘.’ with suitable
axioms. to make it an algebra A. Besides the above-inentioned four examples.the
simplest instances are Lie algebras.with Lie products. But in the follows we
would like to consider an more geueralized instance. the R-symmetry algebra
Sr(¥),i.e. Yang-Baxter or Zamolodchikov algebra, with R-svmmetry productii.
\We use z; denote the element of the first vector space Vi, for example et ™,

And we use rp denote the element of the second vector space 15, for exanple
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29, 2!, z°. Using the standard B or # = PR matrix operators, this R-symmetry
product can be expressed as

oY =qrisf = Bgzm(q)z"z' =q! I»i"(";nk;(q)x".r' = qris’
= qlg™'2'r] = 4B, (q7")2's* = By ule")ex' "),
or more compactly as
1T = B(x:;(‘?)flra = q'lRm)(’l)ﬁIﬁ'
Similarly,the expression
Pzt =gl = B{;,),k(q")m'x",

ik

ole* =gt

. 1k -
= Bm)“m(q Hghr™,

can be expresed as

ToXy = B(m(q"}.cg.rl.

‘Hence,

B(WWI)B(zu(q—l) =1
This means the defining equation of the R-symunetry product
(Eqzy — Bun(g))z122 = 0.

transforms to itself, under the permutation of r; with x; and q with ¢™%.
Here, E(y3) is the unity matrix operator in tensor product space V} 3.
Similarly, for the case of £, the defining equation of product

(Euzy — 7" Bua(g)aéa = 0,

transforms to itselves, under the permutation of £, with & and q with g~ .
But, contrary to this situation.the screw product expression is not invariant
under this permutation, because the “intermediary” equation

né; - Bunlg)§ie: = 0.
is not invariant. but transforms to

) — ([_ZB&:)(II)&;I[ = il
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That means the screw product has two possible variants.
On the other hand, this can be checked directly as

Byia)(9)Ban(e™') =

q 0 00\/qgl0 O 0 1too0o0
o0 a-a 1o 00 1 o, oo
01 00 0 1 (¢'=q) O 0010
60 0 ¢ 0 0 0 q! 0001

In the following, we concentrated our consideration mainly on such R-
symmetry algebra Sp(V), which is combined with its two given sub-algebras
Sr(V") and Spu(V*), here

vt @ Vet=V.

And we denote their coordinates respectively as x and ¢

4 de Rahm complexes.

4.1.(Clasical) de Rham complex (V).

Let z!,...,7" be the linear coordinats on V', and ¢'....,£" be the linear
coordinates on V™. We denote (V') = F[1"] ® F[V%]. And we say it has a de
Rham structure if there exist an “exterior differential” d (mapping);

V' 3 .1:‘ I fi c V",

such that define V" to be the algebra. generated by dz' = ¢, with an anti-
commutative product

(dr')* =0,
dridel = —deldr’. i # .
For example. the {Clasical) de Rham complex ©[{A%"°] in the book of Bott-Tul*l,
0 = Q{AHU] = F{A‘.‘JU] Ft/&ﬂf‘!}_

4.2. Quantum Wess-Zumino-de Rahm complex Q[.131].

Now. we consider the combined space

Q= (rQNRERn). -

3

Manintl, following Wess-Zumino, extended this de Rham complex to the
quantum ones with the quantization parameter q, as follows

2, = QA1) = FLAF(A")

We call this quantum Wess-Zumino-de Rham complex. Of course. some
game on the permutation of alphabet, as quantum de Rham W-Z complex.is
equally well. Because the classical de Rham complex is a well known fundamen-
tal device in algebraic geometry and related topics, it is worthwhile to research
how is its deformed ones.

In this case, we replace x for z,, € for £, and d for the co'rfesponding exterior
differential d, such that, the image d,z, of z, equals £, which are assumed
implicitly in Wess-Zumino"? | and explicitly in Manin’s paper .

1.We consider the eigen-value problems, in the tensor product space V@ V.
For the case n=2.we specified to V=1, = ([A¥],with its two subspaces V"’ =

A0 and V" = A2, That is the tensor product space V' @ V" decomposed as

( A§m® Asmv .»13’“@:&2” )
I 0 oI f012 | °
A‘,’ 2®A: ° Ag ’®A‘; 2

and the corresponding product is

rr ry, z€ I
yr yy ¥€ yn
§x &y & &y
nz qy n€ §

We shall prove that the operator A has two eigenvaues q and { —¢~' }, in
the tensor product algebra

A:lo ® A:lo.
and
AR 4212,
respectively.
For the given matrix operator £ the eigen-value problems. for eigenvalue Q
€ (, is as follows

(fl—QE)r@v =0,
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here R is related to our familiar operators R and B as follows

R=qB=PR,

P is a permutation matrix operator and we denote the unity operator matrix as
I or E;;. Now for the details. It is well known that

q 0 00}
Re 0 (g—¢" 10
1o 00|’

koo 0 q)

(q 0 0 0)

0
R= 01 0 '

0 (g—¢) L 0

00 0 ¢/
10 0 0
0 aMeg=g¢H 7t 0
1o g 0 0
00 0 1

Hence, the eigen-value problem becomes

v ®u q 0 00 ’1‘1®01
0 s Qe - 0 (¢g—q¢") L O v Quy
n®m 01 00 v @
v, @y 00 0 ¢ 1, Py

q @y

- (g~ @+ Qun
v @ vy
qu: @ vy

The equation of the second row,in the above matrix equations, gives

R-tg-a N Qv =0 Qur,

while the equation of the third row gives
vy ®1’2 =Qwy ®l’| = Q[Q - - q—l)}vx ®l‘2,
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so we get the following eigen value equation,an algebraically quadratic equation

on Q
QQ-Qg-gH-1=0.

It is easy to get their two solutions

Q=9
and
Q=~¢"
2.As for the eigen spaces,we consider its correspondingly in the following three
cases. Case 1.For Q=q, We consider the tensor product algebra 43"® @ A2?, with
the aditional requirement of some kind of the unknown deformed ( commutative)

product, in this case we denote &' in place of v'. The above-mentioned eigen-
value equation becomes

Lz qzz
ry (g—q ey +yx
Q =
gz Ty
yy ayy

The first and fourth row are satisfied automatically,without any additional re-
quirment. We notice, in this Q=q case, the equation of the third row requires
ry = qy,

that is just mean a deformed cotnmutative product.

Case 2.For Q= -q7%,

We consider the tensor product algebra A‘,:” ®.'l'1m. with the aditional re-
quirement on some kind of unknown deformed ( anti-commutativej product. In
this case we denote £ in place of v'. We notice , in this @ = —¢~' case, the
equation of the third row requires

£n=—q"'n¢.

hence

In our case that is



The above-mentioned eigen-value equation becomes

€€ ‘ 134

ol || G- Dm+nt
€ én
m am

The equation of the first row is now

—q7'E€E = g€
which requires
§=0.

While the equation of the fourth row is
~q~'nm = qm,
which requires
nm=0.

The equation of the third row requires

fn=—q""n¢.

To sum up . it means we have defined a deformed anti-commutative product
with &, variables.
Case 3. We consider the tensor product algebra A2°® A3 € 0,
As for the cross products, we have two solutions as follows.
First solution
i 2 k1t
2§ = q"Bun(q) r,
i i gl kel
i =gq B(]Q)(?)x &
Second solution
o€ = ¢ By, ()€
£ = ¢’ Bianiq) "<
We wonld like to prove these cross-commutation relations by the require-

ments abont thier transiormation invariance.in coutrast to Wess-Zumino's sym-
metry consideration.

The quantum planes A2'° trasforms as

e (0)=(7)-(22)(0)-(225) <o
¥ y c d y er 4 dy
The requirement of the invariance of the non-commutativity
zy=qyz, and <z =gqy'7,
deduce that

aczt + adry + beyz + bdyy = q(carz + cbry + dayr + dbyy),

hence
ac = qea, bd = qdb.

and
ad — da = geb — q e

While the quantum super-plane A"? transforms as

A9 3 3 - 3 =/¢ h £ = af + by \ c 4012
! " 7' e d )\ n cEtdn )57
The requirement of the invariance of the non-commutativity

— cf — clet
0 =8 =5,

deduce that
abln + bané = (ab— gha)éy =0
hence
‘ ab = gba.
Similarly, from
0=nn=n"

we deduce that
edfn + dené = (cd — qde)én,
hence we get
cd = qde.
And from

sln( = ”—'I-."’!E‘-

10
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we get

ack€ + adfn + bené + bdny = —q~"(cak€ + cbén + dané + dbny).

Hence we have
ad — da = —q~'cb + gbe,
and

be = cb.

To sum up, the quantum group

a b
s (1)

generated by even variables a,b,c,d with the following non-commutativity rela-
tions

ab = qba; ac = qea; ad = da + (q — ¢"V)eh:
be = b; bd = qdb: ed = yde.

Now , we would like utilize the (exterior) dilferential d, and admitting adi-
tional with dz = §,dy = n.Here,we consider x and £ as independeat variables
as in some cotangent bundle, and the exterior differential d is defined on this
cotangent bundle.not constrained just on the base space.

Firt of all, we differentiate the one relation we have know,i.e. (zy—qyz) =0,
and get

0 = d(zy — quz) = &y + o0 — qnz — gy& = (Ey — y€) + (9 — qm2).

Comparing dimension, we see that we must find a system of four cross- commu-

tation relations expresing r§, xn, y€, yn linear via £z, £y, yx. ny as follows

z€ cl ey oy ¢ &z
zp | | CF € Cy G|
v ||k cg et
yn ety oy 6y ny

And {rom the first differential relation ,we know

22 _ a3 3
ag=c=0=¢ =]
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and
1-¢3+3=0,~¢3+3-g=0.

Secondly, we differentiate the above matrix equation

zdf Ct G G Ci\ [ (de)r Ci&n + Ciné
Ent+zxdyp | | CF G CF CY || (dfy Ci&n + C3ng
nE+ude || €3 C3 33 || (dme || CRen+Clng |
ydn ct ¢ C3 Cf (dn)y Cén + C3né
hence we get
0 (C} = qC3)én
f | __| (G-4Cn
né (-g'C3+ Cimé |’
0 A (G —¢Cn

ie.

~C} +qck =0, -C; FqC = LTI CE =1, =0 G = 0.

We choose C} =0, then we have Cj =0.We choose ('} =0, then we have C}
=0.This can be explaned in the forthcoming paper {8, If, we require the trans-

formed cross products preserve the same non- commutativity, then we get

s\ (Clchacry (e
@ | | G} €} ¢} C} &yt
yiE o3 ocy n'r
y'yt oYy oy Gl 'yt

So , we get on one side

' = aaz§ +aban +bay +bbyn = aa(C{$z +Ciny) +ab(Ciez +C3€y + Cinz)+
ba(C3¢x + C3€y + CInz + Ciny) + B(C{€z + C3¢y + C3¢y + Cinz + Ciny),

and on the other side , we have

o' = Cluabz + abby + banz + bbny] + 0 + 0 + C{lecr + cdfy + deyr + ddnyy.

Hence, we have
Cibh = jce = C} =0 = C},

12



abC} + baCj = Club+ Cied = qC; + C3 = Clq,
abC} + baC3 = Ciba + Cyde = ¢C3 + C3 - C{ =0,
aaC} + b6C} = Clbb+ Clidd = C} = C§.

To sum up we have five unknown coefficients C}, C?,C2,C3, C3, which satisfy

four equations
~Ci+qCi=1, ¢'C~C3=1, ¢C3+C3=4qC}, ¢C3+C3-C{=0.

It is easy to get an one parameter r solution,

Cxl = (q+q‘1)1‘—1, C: = (q+q-‘ )1‘—1, C; = T‘q—l, C:f =r= Cgr Cg = qﬁlr—l'

Hence we get
=ClE=(q+q " )r=1éx; o =Cily +Cinz = (rq—1)Ey + ryx:

p=Cly+ Conr=rfy+ (¢7'r =z yn=Cy =g+ q7")r = Uny.

Using the associativity of (the product of) our algebra.
zné = r(n¢) = (zn)¢,
we get the equations
w(néi = —q{{q+q~")yr=1jr(énz), (2n)€ = [(rg=1)g™" r=1)~r{(g+q~")r~1lgl(&nz).
Hence we got the quadratic polvnomial equation on r
r—(g+qgr+1=0.

Their two solutions arer = ¢ or r = ¢~!. Corresponds to these, the net result

is First solution

€= q¥x; Tn=(¢ - Déy+qnz; y€ =qby; yn=q'ny.

The second solution

=g oy =qTlnm wE=qT iy (T = D yn =7y
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4.3. Quantum Wess-Zumino-de Rahm complex 1, ¢ = Q[AZ°, A27].
1.0f course the deformation or quantization parameter of the second space
A% need not be choose as the same of the first space A*, they may take an
independent value p in place of q. And we generalize correspondingly the above
tensor product space V@V, from V = O to V= 0, = @ (4% A2 with
its two subspace V' = AZ® and V* = A°. We use q here , just because
the different notation convention in Wess-Zumino and Manin's paper], When
¢ =q',p=q", our complex Q4 go back to 0, = N[A°] of paragraphy £.2.
This is the tensor product space

( AW QAW AW QA" )
012 @ A0 AOI2 o 4002
AP AF AT ® A7
and the corresponding product is
TptIyt TotlYge I,,lf, Loty
YqtTqt YarlUgt yv'{r Yo

fplq‘ 'Spyw‘ Ep'fp ﬁp')p

NpTqt  NplYet ';'PE? qpfp

But for simplicity ,we omit the index p as well as q'.
2.In this case , the quantum planes and quantum groups have new pattern.
For AZ°.

aos [ T) 2 z! - a b T _ ar+ by Pty
! v e c d v cr + dy d

The requirement of the invariance of the non-commutativity,

ry = q"lyr and oyt = gty

deduce that
aczzr + adzy + beyr + bdyy = ¢~ (cazz + cbry + dayz + dbyy),

hence
ac = ¢ 'ca. bii = ¢'~"db,
and

ad — da = ¢*~'cb — q'be.

14
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For AR,

oz
ans (

deduce that
hence
Similarly, from
we deduce that
hence we get

From

we get

ac§§ + adfn + beng + bdnn = —p(café + cbén + dayé + dbnn),

hence

Due to

S0

n

)= (2)-(22)(

The requirement of the invariance of the non-commutativity,

0=¢6 =%
abn + bang = (ab — p~'ba)én,
ab=p~'ba.
0=m=n"
edén + dené = (cd — p~'dc¥en,
ed = p~de.

&' = ~pn'é’,

ad — da = —pch+ p~the.
ad — da = ¢"'cb - ¢'be

be = pg'~'ch

. To sum up,the quantum group

, b
M3 | ° ,
s (24)

generated by even variables a,b,c,d with the following non-commutativity rela-
tons .

ab=p~lha; ac=g¢"'ca; ad=da+ (¢ - p)eb;
be=pgdlch; bd=q"'dh; cod=plde
3.Now, we would like utilize the (exterior) differential d .and admitting adi-
tional with dz = £, dy = 9.

First of all , we differential the one relation we have know, i.e. ry—¢~'yr =
0, and get

0=d(ey—q¢ 'yz) =Ey+an—q "9z — ¢ 'yE = (Sy — ¢ 'yE) + (xn — ¢ ).

4.Comparing dimension. we see that we must find a system of four cross-

commutation relations expresing x&, rn. y€, yn linearly via £z, &y, nx, ny as [ul-
lows

€ oI A I S £x
zn c ey &y
v |l er oy o || e
yn Cy Gy 3 V) \ny

From the above mentioned equation d(zy — ¢'~'yz) = 0. we get
Cr=Cl=Cl=C}=0.

5.Secondly, we differentiate the above matrix equation.and get

rde choey e o\ f Gdgiz Cysn +ng
En+edy || C7 CF CF CF (dSiy Cien + Cyé
neyde || e ocr oo || e | Tl s e
ydy ct ey oy oo {dn)y L&y + Ciné
So, we get
- 0 -pCy +C}
-pné | _ | -pC}+C3
e | 77| —eczecz |
0 —p(3 + )

=pCy +C3 =0, —pCy + C = p,—pC3 + C3 = =L —pl} + C5 = 0.

16



We choose '} = 0, then we have C} = 0. We choose C} = 0, then we have
Ci=0.

6.We require the transformed cross products preserve the same non-commutativity
, then we get

ot e e o A
gt | _| G €G3 G| &y
vie! o e e R RS
v G G a/ \

So, we get on one side
2'¢' = aazé + abemr+ bay€ + bbyn = aa(Ciéx + 0 4 Ciny)

+ab(0 + C3¢y + C3nz) + ba(0 + C36y + C3nz) + b(Cyéz + 0 + Clny),
and on the other side, we have

r't' = C}laalz + ably + hanz + bbny] + Cilcckx + cdby + denz + ddny].
Hence we get

Cibb=Clec=Cl=0=Cl
abC? + bdC3 = Clab+ Cled = p '+ C2 = Clp~t.
abC3 + baC3 = Clba+ Clde = (p7'C3 + C3 - C}) = 0.
aaCl +bbCY = Clbb+ Cldd = C} = C1.

To sume up we have five unknown coefficients C{,C3, C3, C3,C3. which

satisfy lour equations.
~pCR 4 Ch=p. —pCI 4 (=1,
pICI4C=p'CLpT I C - C =0,

It is easy to get an one parameter r solution. which is the same as get by Manin
using some abstract method.

Cl=Up+¢ -1, Ci=lp+a"yr—1].

(2=(rg=t=1), Cl=pgtn Cl=r Cl=(pr-d).

7.Corresponing to the case 1,case 2 and case 3 of 2}, now in our 9, .we

generalize it to the following case 1°, vase 2" and case 3",

17

Case 1’.We consider now the tensor product algebra A%® ® A3°. In this case
z,y € A:,m, and we meet

zy = ¢'yz.

Case 2".We consider now the tensor product algebra AY? @ A2 In this
case £, € AY?, and we meet

&n = —pnk.
Case 3'..We consider now the tensor product algebra 4270, & A%'2. As for

the cross products, we have
26 =[(p+q")r = 1z o0 =(rg'"' = 1)y + pg'~'ryz;
yE=réy+(pr—nz; yn=[(p+q"")r~1ny.
Using the associativity of the preduct of our algebra,
g = 2(n€) = (xn)§,

we get the equations

z(n€) == —p~'zby = —p~[(p+ ¢~ )r = 1]¢[rg"" — L)y + pg' " ryz]

= ~[(p+¢"")r = llg" rlénz),
(zn)€ = [(rg"™" = D€y + pg"'rozj€ = (rg"™" = 1)EyYE + pg'~'ry(z€)
=[rg™" = O+ pr = 1)+ (pg™ rlp + = )r = U(=p~ " WEne).

Hence,we have the quadratic polynomial equation on r

(¢ 'r = D(pr—1)=0.

rt=(p+q)r+pgt =0.

Their two solutions are r = p~! and r = ¢*. Corresponding to these, the net
result is;

First solution

x€=(pgY € o =(p~'¢ = Dey+q ey yE=p 'y yn = (pd") .

18



Second solution
=€ = (pg)ez; =y =pnz; ¥6 =€y +((pe") — Uz yn = (pd)ny-
As for the transformation on the quantum complex
Q[47] = FIGL,2)IA7"],
is extended to

A = Q‘[GL,‘(Q)]Q[A:,“’ .

A lot of consistency conditions related to differential d and 9, for example
dixr', €%, 8;8;, can be verified in the same way as in Wess-Zuminoll.
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