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Abstract

New inflation in generalized Jordan-Brans-Dicke theory is investigated. We
estimate the roliover time which gives a limit oa the coupling constant in the

generaiized JBD theory.

PASC nunbers: 04.30.th, 11.10.Kk, 98.30.Dr

1. This project is in part supported by National Nawural Foundation of China.

2. Permanent address.

Recently the reinterpretation of Jordan-Brans~Dicke (JBD) theory [1] was
proposed by Cho 2}, in which the Pauli metric is.identified as physical space-
time metric. The reason is that only the Pauli metric can represent the massless
spin-two graviton and thus can correctly describe Einstein theory of gravitation.
We refer this theory as generalized JBD theory. The generalized JBD theory |
is a new version of scalar-tensor theory of gravitation and hence the coupling
constant in it should be a new parameter to be determined by re-analyses of
observations. It is shown {3} that the linearized field equation predicts the sanie
effects with the linearized Einstein’s field equation. Although motion of a test
particle deviates from geodesic motion because of existence of an additional
force exerted by the dilaton field, however, there is no way to distinguish the
new force from that exerted by metric field in Newtonian limit. This implies
that the effects of strong fields and posi-Newtonian terms should be considered
in order to determine :he coupling constant in generalized JBD theory. In fact.
some authors {3.4] has used the Pauli metric to construct inflation models which
seems to resolve cosmological puzzles. However some ambiguities exist in the
literature as shown in /3!, In this paper we consider an inflation model in the
generalized JBD theory and provide a limit on the coupling constant in the

theory.

In original JBD theory Lagrangian is given by
:'“VaxFaL-f +V(r) N

where v,, is the Jordan metric, ¥ = det(v.), R= ﬁ(*{), ® is a scalar field
and w is the JBD parameter, 7 is a matter (scalar) field.
Introduce the Brans-Dicke dilaton field o and conforinal transformation (i.e.

the Weyl scaling of metric),

1
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with a? = 2x?/(2w + 3), the Lagrangian (1) becomes '
L= Vg [-5aR ~ 308000 - 360" Buslp - V()] ()

where R = R(g), ¢, is the Pauli metric. It is shown by Cho [2} that only
the Pauli metric can represent the massless spin-two, and thus identify it as
physical. Lagrangian (4) yields the following field equations:
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Uo = 5“‘ Timy, (6)
Cy = ag" 9,70, + ¢ V'(¢) (M
where . ‘
oy = 00,5 — ;’-gu,,g“aaaagd. ()
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Tim) = 3" Timpur = =9 0urOsp — 17V (2) (10)

and C = 7%_?6,\/—@9“"8,,. V() = dV'(¢)/de. Eq. (7) may be obtained by
making use of Bianchi identity and Egs. (5) and (6). For a perfect fluid

Timyur = PIuy + (P + Flam o - (11}
with ¢*U, 07, = —1, pis energy density and p is pressure. For this case Eq.

(7) should be replaced by covariant conservation law,

(T + e T = 0. (12)

(o) (m)

The dynamical system (3)-(7) is called the generalized JBD theory. In this
theory (5] the coupling constant a = 3x. «? = 8zG, G is Newtonian gravita-
tional constant and J is an arbitrary constant to be independent of the JBD
parameter w. Thus we should make different analyses of observations in order

to determine 3. In this paper we discuss the new inflation and give a limit to

[Cv

the constant 3.

Let us consider the Robertson-Walker universe with the line element

i 2
d.gz = --dtz + R(t)’ ld% + 7“2(192 + )‘2 sinz Gd,ﬁz .
—kr
Egs. (5)-(7) become
k? _&
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o +3Hs = ;ae™(p - 3p)
. 1.
p+3H(p+p) = 5a5(p + 3p)
where the overdot = d/d¢. H = R/R is Hubble “constant”. and

1, —a0y " 1. —ac vy
p=s+e V() p=3t - V()

(13)

Inflationary epoch of universe is the potential-dominated inflationary phase

[6], i.e. p~ —p. and Eqs. (14)~(16) reduce to

o1,
H’+i§=§(;0'+6 7o)

o +3H¢ = 2ae™*

pv
p=—adp.
Solution to Eq. (20) is given by
p=Voe™*.
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Comparing Eq. (21) to (17) in case of p = —p, we know that Vg is just the
potential V() = constant. for a flat universe (k = 0), Eqs. (18) and (19) with

(21) have the following power-law solution

3
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R(t) = (t/ta)i# . (23)

where f; is an arbitrary constant.

We consider the new inflation model (7] in which the standard SU(3) model
with Coleman-Weinberg (C'¥) effective potential [§] is taken as the matter
sector. We take the inflation potential to be

Vi) = Vo - P (24)

where the adjoint Higgs field is re—expressed as ¢ = pzdiag(1.1,1, —§,—§),
A~ %, Vo/* ~ 2 x 10"Gev, and the finite temperature corrections to the effec-
tive potential is neglected. This is a good approximate for 1C potential [7).

In the original JBD theory the energy density 7 and pressure 5 for > are
given by 9]

p=7r +Vieh P=

3

RG]

e

|5

S = V()

where the loss of energy through radiation is ignored, and the overdot is the

derivative with respect to the time coordinate f in Jordan frame. Using the
. T i . e » -

transformation. d/dt = e2*d/dt, to change the “Jordan time” ¢ to the Einstein

conformal time ¢, one arrives at
—ar caex 10 .3

15 ., e . .
p=eTp= ot ke Y (g), p=eTVh= 2TV (p) (26)

where the overdot corresponds to the Einstein conformal time. i.e. the physical
time.

During the inflationary epoch,

p=—p=—eV(y)= —e*715. (27)

Now we consider the time evolution of the Higgs field ;. Substituting (26)
into (16) we obtain the evolution equation of the Higgs field

15 . 15 .15, P .
3 HBH(T5) -~ as(d) + e V() = 0. (28]
We shall estimate the time required after the tunnelling event for the Higgs
field to roll down from g = 9{0) ~ 3 x 108Gev  to the global minimum at
@ = p(t,) = 4 x 10"Gev. In this range, ¢ can be ignored since the potential

is very flat. Using Eqs. (22), (23) and (24), Eq. (28) becomes
t)
o7 = 223 - 2Vl (29)

Solution to Eq. (29) is

r \ -1/2
Lol 4\ ] | (50,
0 1513 = 2%
The rollover time is
13¢/(3 = 23%)s°Vy 13
t,z(-lx— ,1.2) 2V ALY opﬁf»‘“u (31)
76 wlte) 44 EATH

for small 3? and g << #(t,). Therefore the amount of inflation of the universe
after the formation of a bubble from Eq. (23) is

Ri(t.) w1732
Z = = (4, /1) (32)
Rit) (t,/ta) {
In order to resolve the cosmological puzzles, we should have Z > 10°. This

gives a limit for the coupling constant 3 as follows
(t /1) > 10%%, (33)
Substituting Eq. (31) into (33) one arrives at

15y/67G 1y
2z

#F<in { } /38In10. (34)



Using the GUT's values for the parameters: @o ~ 3 x 10%Gev, to ~ 10-13
Gev™!, Vol“ ~ 2 x 10"Gev and \ ~ 0.3, we obtain 3% < 0.3. Eq. (34) shows
that the value of 32 is not sensitive to the values of the parameters.
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