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Abstract

A graded new algebra related to a non-standard R-matrix is presented.
Its nontrivial Hopf algebraic structures for both quantum R-matrix and
quantum enveloping algebra are investigated.
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Recent years the quantum Yang-Baxter equation (QYBE) [1] has attracted
more attention of mathematicians and physicists [2][3] as the QYBE is tightly re-
lated to exactly solvable models and the corresponding algebraic structures. For a
given non-trivial solution of QYBE one can generally find a neither commutative
nor co-commutative Hopf algebra, which is interesting in mathematics. The stan-
dard method to construct a new algebra from a solution of QYBE was initiated
by Faddeev et al {4]. With this method we have discussed the new algebra related

to a non-standard R-matrix with one-parameter [5].

In this letter we investigate the algebra with some supersymmetric properties.
It is from a non-standard and one parameter solution of QYBE obtained by using

Wau-Elimination [6}.

The R-matrix we consider here is

70 0 0

014¢-1 0
R= (1)

600 ¢ 0

00 0 -1

R satisfies the quantum Yang-Baxter equation [1]
RyyRigRas = RygRyaRyg (2)

For a given solution of QYBE one can define a new R matrix
which satisfies the graded Yang-Baxter equation

Rnfszn = fzzaémﬁn ’ (4)

where
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and
n= Z("‘l)Pmpmcﬁ Bej; -
i

P(i) denotes the parity of the ith basic vector. In our case the matrix 1 is simply

100 0
001 0
"lo10 0
000 -1

First we study the algebra related to the matrix R, which is generated by the
Yang-Baxter equation [4]
kT2Tx=TzT2Ra (5)

a b
T=(fii)=(c d)'

Ty =TI, Iis the 2 x 2 identity and

where

abdb 0 O

cd 0 0
T; =

00 a -b

00 — d

Equation (5) gives rise to the relations of the algebra elements a.b,c and d
ab=qba, [d, =0, la, =0, ¥==0,
be=—q~tcb, bd=g¢7'db, [a,d]=(1-gq)bc.

(6)

This quantum matrix T can be considered as a linear transformation of plane
A,(1,1) with coordinates (z;) = (£,z) satisfying z{ = ¢z and €2 = 0. The
proof is straightforward. Considering the coordinates (¢',z') deduced from the T

(£)-(22)(5)-

transformation

one can easily find that z'¢’ = q£'z’ and €'? = 0 by using the following relations
tiyay = (—=1)FPEI
where
P(a)=P(d)=0, P@B)=P(c)=1, P(z)=0, P =1.
The dual space A;(1,1) of A,(1,1) with coordinates (1, y) satisfy
m=aqy, n°=0.

Hence it is clear that the quantum plane is different from the one used in definition
of GL,(1,1). And obviously the algebra here defined by (6) is also different to the
usual algebra SU,(1,1).

Let a~! and d~! be the inverses of the elements a and b respectively. The center

element of the algebra T is then
§=nad™' —qd'bd "¢ . (mn

and the inverse of § is
§ ' =da~' —enha! . 8)

" The element § is the analogue of the quantum determinant of T and has the

following property
S(TT') = §(T)&(T') .

which can be proved directly by using the commutative relations between elements
of T and T,

fy = (P

tijts;

i

In terms of §~! we have the inverse of T'

- d-! —d-1bd-! 51
T\ —dtedt ad ? = (1 4+ q)d-'hd e '



And the complete Hopf algebra structure related to T' are given by
Ala)=a®a+b®c, A(d)=d®@d+c®b,

AB)=a@b+b®d Alc)=d®c+c®a,

S(a)=d-t61, S(b) = —d-1bd-1 67, 9)
S(c)=~dled 1§, S(d)=[ad'd! —(1+q)d ' bd '],
e(a) =¢(d) =1, eb) =¢(c) =0,

where A is the coproduct, S the antipode and ¢ the counit. The operators A and
¢ defined by (9) are algebraic homomorphism and S is graded antihomomorphism,
S(tij tw) = (=1)PUIPEIS(1,)S(8,;) -

They satisfy the axioms of Hopf algebra such as [7]

(ARiId)A=(d®A)A,

{(e®id)A =(id®e)A |

m(S@id)A =m(id® 5)A .
Hence the algebra given by (6) and (9) is a Hopf algebra. Moreover one can show
that

A(S)=506, SE)=6", eb)=1.

Now we study the quantum enveloping algebra related to the R matrix (1). It
is determined by the following Yang-Baxter relations [4],
RIF¥LE=I¥L*R,
D - -1+ (ll)
RLYL;=L; Lt R,

where Lf =L*®I,

and
kz 0 O m 0 0 0
0l 00 y n 0 O
L; = L; = 3
00 k —z 00 m 0
000 | 0 0 -y n

From (1) and (11) we have the following algebraic relations

kx =qzk, ky=q'yk, Iz =gqzk, (12)
ly=q7'yl, 22 =y"=0, qzy+yz =(1-q)(Ilm—nk).

Here we have omitted all the commutative relations. It is clear that the algebra
element m and n are the centers. Generally not all the elements are independent.

We can assume that

and
1
Xt=
Vgt —gHa -

Then the algebraic relations become

1
X° =
Vit e Ha-a)

V2 k3.

[H, X¥|=+X*, [K,¢]=0,
WK _ 2K (13)

{X* X"} = "—q% =[2K] .

The corresponding Hopf structures of algebra (13) can be defined by
AH)=HQI+I®H,
AMK)=K2I+IQK,

MXH) =¥+ g X+ 4 X+ ¥

MY )= QX+ X" g1, (1)
(H)=eK)=eX¥*)=0, €1)=1,
S(Hy=-H, S(K)=-K, S(X¥) =-¢i(q)¥*¥x*.

1t is straightforward to show that above definition of Hopf operations satisfies the

axioms of the Hopf algebra (10).

So far we have presented the whole algebra structures, the algebra of quantum

matrix and the quantnm enveloping algebra, related to the solntion (1) of QYBE.



With neither commutative nor co-commutative Hopf algebraic structures, this
algebra is different to the usual q-deformed algebra GL,(1,1). As the algebra (13)
gives rise to GL(1,1) algebra at ¢ approaches one, this algebra is another kind
q-deformation of GL(1,1). In addition we would like to indicate that, different
to the case of new q-deformation of GL(2) in [5], both the matrices (1) and (3)
give rise to no Temperley-Lieb algebra representations. This can be understood
as these R-matrices have two different non-zero eigenvalues satisfying a quadratic

equation respectively.
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