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Abstract

We investigate the Temperley-Lieb algebraic structures in isotropic
higher spin chain models. The Temperley-Lieb aigebraic constructions for
spins from 3 to ] are presented. Their related spin chain Hamiltonians
with SU(2) symmetry and the corresponding solutions of Yang-Baxter

equation are also discussed.
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The spin chain models, such as the Heisenberg model, are of importance in
studying the ferromagnetic and antiferromagnetic spin chains. So far only the
spin-1 chain models have heen extensively investigated, though experimentally
spin chains to spin j = I can be constructed in principle with higher spin atomic
cluster at every site of the chain. On exactly solving the spin-} chain models there
is the well known Bethe ansatz {1] method by using the }\"{-matrix, the related
solution of Yang-Baxter equation [2] that stands for the integrability of the system.
The Temperley-Lieb (T-L) algebraic approach is also an effective method for finite
spin chains, in which the Hamiltonian equation are reduced into a set of coupled

linear algebraic equations and the problem to solve the model becomes the usual

eigenvalue problem of a matrix with finite dimensions {3].

In this letter we study the T-L algebraic structures and the related }Iz—matﬁces
in the isotropic chain models of spin values from g to Z. We find that thereisa T-L
algebraic construction for every chain with certain spin value. The corresponding
spin chain Hamiltonian are of SU(2) symmetry. And with respect to every T-L
algebraic representation there are two }’{ matrices.

We consider a chain of .V + 1 atomic clusters with spin value j respectively.
The spin operators S;, i = 1,2,3, for every atomic cluster constitute the SU(2)
algebra,

[S.‘,S.,'] = c,-,';,Sk N i.j,k = 1.2, 3. (1)

The corresponding matrix representations are given by

(S+)mm' =< ]m§S+‘Jm, >z \/(J - m’)(] +"n‘ + 1)'5m.m'+l ]

(8 mm =< JmlS_[jm’ >= /(G +m )i —m' + )b, v _, (2
(S3)mm =< jm|Saljm’ >=mé_ -, —j<mm <j
where Sy = Sy £ S, and |[jm > are the nsnal representation of spin. The total
spin operator for the spin chain is
N+1

=3 1"21%g... 010250 n g .. 91" ¢ =123

i=1

[



satisfying

U Jil =dands, i,5,k=1,2,3,
where 11 is a (27 +1) x (27 + 1) identity matrix at site { and ® denotes the usual
matrix tensor.

A N-state T-L algebra is described by the element e; satisfying the T-L alge-

braic relations [4],
CiCid16i = &,

e @)
€;¢; = e5€; , if lt—ﬂzz,
and
C‘? = ﬂei [} (4)
where 3 is a constant and i = 1,2,.-- N,
The T-L algebras related to the isotropic spin chain are of SU(2) symmetry.
We find that the representation of such a T-L algebraic element e; is of the form

e = 1) 1@ R 1-"9 F® 1+2) R ® 1(N+1) , ()
where E is a (2j + 1)? x (2j + 1)* matrix satisfying
E*=BE. (6)

Let

S@5=505+5®5:1+ 585 .
Then the matrix representation E in (5) is uniquely given by the element §eS.
Obviously such a matrix £ commutes with the coproducts of SU(2) algebraic
generators

[E, AS]=0, i=1,23,

where AS; = S;® 1+ 1® S;. While the T-L element e; commutes with the total
SU(2) generators of the chain,

leis Jul =0, a=12,3.

Therefore the Hamiltonians of spin-j chain models will have SU(2) symmetry
if it is constituted of the T-L algebraic element e;. For instance,
N
H=J Z €, )
f=1
where J is a constant referring to the ferromagnetic or antiferromagnetic properties

of the chain. Obviously

[HJ]=0, i=123.

It can be deduced from the T-L algebraic relations that a T-L algebra repre-

sentation always gives rise to solutions of the Yang-Baxter equation [2]
v v v v 4 v
Rz Raa Ria=Ra3 Ria Ras (8)

v v v v |
where Rj2=R @1 and Ry3= 1® R. Acconnting to the condition (6) and that the
v
solution } may be mmltiplied by an arbitrary non-zero constant, we know that IVZ
should have the form ;{: E+4+C1®1, where C is a constant. Substituting it into

equation (8) and taking the T-L algebraic relation (3) into account we have
(C*-BC+1INEQ1L+10QE)=0.
Which gives rise to C = &éﬁ—: and thus

}’3=E+~—-—-—ﬂi"2ﬂ 401, (9)

The followings are some results about the T-L algebra representation for higher

spin chains.

For spin-% chain, ie., j = %, we have the T-L algebra element e; with

33 31

§05-2(508r-2(505) (10)
4 18 - 9 ) ’

where the corresponding spin matrix representations of S;, ¢t = 1,2,3 are given by

equations (2) with j = % In this case 3 = 4 and the relation (4) turns out to be

E? =4e,~ .



From equation (9) we have the solutions of Yang-Baxter equation
R=E-2:V3)101.

The related spin chain Hamiltonian (7) is integrable and can be exactly solved in
principle.
Similarly for the case of j = 2, we have
1 P - o= - o= - o
E=-3 [605® §+115 05 -458 57 (56 5)‘]
with # =5 and
e} = 5e; .

The R-matrix is

v 5+ 21
2

R=FE-— 1®1.

For the case of j = £, we have

1
7460800

-33152(5 @ 5)° + 8960 (S @ §)* +1024(5 ® 5)5] )

[980375 1912876605 @ § - 371872(§ @ §)°

While 8 = 6 and

2 -
e; = Be; .

The corresponding R-matrix is

R=E-(3t2V2)101.

And for the case of j = 3, we have
E = 811% [320761@ 1+136085 @ § - 3879(S ® §)?
—1464(S & 5P -80S +16(50 5 +(§2 5”)6] .

Here 8 =17, i.e.,

The related R-matrix is

n
;I=E-7—i2:—,£l®l.

For the case of j = %, we get

1
T 73251404800 [83
+1374000048 (5 @ 5)? — 454121280 (5 ® §)° — 74101504 (§ @ §)*

320383511 ® 1 + 123641584925 9 §

+21504(§ ® 5)° + 430080 (5 @ §)* + 16384 (S ® §)

» and § = 8. That is

e? = 8e; .

The concerned R-matrix is

R=E-(4+Vi5)101.

The T-L algebra representations can be investigated for general spin value j
according to (2). In fact, for arbitrary j, the (2j + 1)? x (25 + 1)? matrix F is
simply of the form

(E)nm = (=1 60041251401 n2jbnr Smajinn E <2 +1. (11)
And 8 =25 + 1. That is
ef = (2 + De; .

The corresponding solutions of Yang-Baxter equation are

% +1+ /2 +1)7 -4
h=£+” (,,J et (12)

Here we would like to indicate that the solutions of Yang-Baxter equation given
by (9) are not necessary independent becanse of the uniqueness of the universal
R-matrix [5]. As an example we take j = 1. For the isotropic case from equations

(11) and (9) we get only one R-matrix as C' = 0. R= —P. Pis the permutation



matrix. However for the anisotropic case that the related spin chain is of the
q-deformed algebra SU,(2) symmetry [6],

00 0 0
0 gt -1 0
E=| !
0 -1 ¢ 0
00 0 0

and B = [2] = ¢ + ¢~! [7]. Formula (9) gives rise to two solutions

—q 0 0 o —-q' 0 0 0
v 0 g'—q -1 0 v 0 0 -1 0
1= ] R‘I:
0 -1 0 0 0 ~1 g¢g—q¢' 0
0 0 0 —g 0 0 0 -q~!

Since £ commutes with the coproducts of SU,(2} elements, both ;Z; and ;2, also
commute with the coproducts of SU,(2) elements. Nevertheless they are equivalent
since Ri= P+ R -Plqmq-1- For j > } formula (9) gives rise to two different R-
matrices even for the isotropic cases. The equivalence between these pairs of

R-matrices can be similarly discussed.

The T-L algebra representations concerned in this letter are related to the
isotropic spin chain with SU(2) symmetry. The spin chain with T-L algebraic
structure and SU,(2) symmetry can also be investigated like the case of j =1 [8].
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