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Abstract 

We investigate the Temperley-lieb algebraic structures in isotropic 
higher spin chain models. The Temperley-Lieb algebraic. constructions for 
spins from ~ to i are presented. Their related spin chain Hamiltonians 
with SU(2) symmetry and the corresponding solutions of Yang-Baxter 
equation are also discussed. 

t Supported in part by the National Natural Science Foundation of China and lWTZ-1298 of Chinese 
Academy of Sciences. 

:!Mailing address 

1 

The spin chllin models, such a.c; the H~is~nberg model, are of importance in 

studying the ferromagnetic and nntiferromagnetic spin chains. So tar only the 

spin-l chain models have heen extensively investigated, though experimentally 

spin chains to spin j = t can he constructed in principle with higher spin atomic 

cluster at every site of the chain. On exactly solving the spin-~ chain models there 
v 

is the well known Bethe Msatz (1 J method by using the R-matrix, the related 

solution of Yang-Baxter equation (2] that stands for the integrahility of the system. 

The Temperley-Lieh (T-L) algebraic approach is also an effective method for finite 

I'Ipin chains, i~ which the Hamiltonian equation are reduced into a set of coupled 

linear algebraic equations and the prohlem to solve the model hecomes the Ilsual 

eigenvalue problem of a matrix with finite dimensions (3). 
v 

In this letter we study the T -L nlgphraic struct.ures and the related R-matrices 

in the isotropic chain models of spin valnes from ~ t.o t. \Ve find that there is n T-L 

algebraic construction for every rhain with certain spin mlue. The correspondin~ 

spin chain Hamiltonian are of Sl.T(2) symmetry. And with respect to every T-L 
v 

algehraic representntion there are two R mntrices. 

We consider a chain of N + 1 atomic dusters with spin value j respectively. 

The spin opera.tors Si, i = 1,2,3, (or every atomic duster constitute the SU(2) 

algebra, 

(Si. fjjkSl:. i.j,k 1.2,3. (1) 

The corresponding matrix representations nre giv~n by 

(S+)mm' =< jmIS+lim' >= JU m')(j +m' + 1)6m.m'+1 • 

(S-)"..m' =< jm/S_/jm' >= ju + m')(j - m' + 1)6"...m'_1 • (2) 

(S3)m",' =< jmlS3lim' >= m6",.m' , -j $ m,m' $j 

whf"rc Sr. S, ± S2 nnd Ijm > are the Ilsnnl r('presentation of spin. The totnl 

spin operator for the !>pin ('hain is 

N+l 
J('Z = L 1(t) 01(2) ® ... 01(i-0 0 S~) ') 1(;+I)·~··· '~31 0' = 1,2,3 

'=t 
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satisfying 

[J.,Ji ] = if;;,J" i,j,k =1,2,3, 

where 1(i) is a (2j +1) x (2j +1) identity matrix at site i and ® denotes the usual 

matrix tensor. 

AN-state T-L algebra is described by the element e. satisfying the T-L alge

braic relations [4], 
e,ei::t:l e, = ei , 

(3) 
eie; = eje" if Ii - j I~ 2 , 

and 

e: = {Je, , (4) 

where P is a constant and i = 1,2"" ,N. 

The T-L algebras related to the isotropic spin chain nre of SU(2) symmetry. 

Vie find that the representation of such a T-L algebraic element ei is of the fonn 

® 1(2) ® ... ® l(i-l) ® E ® 1(i+2) ® ... ® l(N+l) ,ei = (5) 

where E is a (2j + 1)2 X (2j + 1)2 matrix satisfying 

E2 =(3E. (6) 

Let 

s@S == SI ® SI + S2 ® S2 + S3 ® S3 . 

Then the matrix representation E in (5) is uniquely given by the element S 0 S. 
Obviously such a. matrix E commutes with the coproducts of SU(2) algebraic 

generators 

[E, 6S.1 =0, i = 1,2,3, 

where 6S. 5i ® 1 + 1 ® Sj. While the T-L element ei commutes with the total 

5U(2) generators of the chain, 

[ei, J"J =0, a = 1,2,3. 
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Therefore the Hamiltoniltns of ~pin-j ("hnin moods will have SU(2) symmetry 

if it is constituted of the T-L algebraic fOlement e•• For instance, 

N 

H .J I: ej , (7)
.=1 

where J is a constant f(~ferring to the ferromagnetic or anti ferromagnetic properties 

of the chain. Obviously 

[H,J,] 0, 1,2,3. 

It can be dedllced from the T-L algebraic relations that a T-L algebra repre

sentation ahvays gh'fOS rise to solutions of the Yang-Baxter eqnation [2] 

v v v v v V 

RIl R13 RI'l=R13 RI'l R23 , (8) 


v v v v 
where R1'2=R @l and R23= 10 R. Accountin~ to the condition (6) and that the 

v v 
solution R may be m11ltiplied by an arbitrary non-zero constant, we know that R 

v 
should have the form R= E +C 10 I! where C is a constant. Substituting it into 

equation (8) and takine; the T-L algebraic relation (3) into account we have 

(C2 
- PC +1)(E 01 +10 E) == 0 . 

nrl'lIeh' . C o:!:JPL'4"'2 d husYV gIves rise to = an t 

E+P±~101 (9)2 . 

The followings are some results about the T-L all!;ebra representation for higher 

spin chains. 

For spin-~ ("hnin, i.e., j = ~, we have the T-L al~ebra element e, with 


33 31 ....... 5 .... "':1 2 ... · -:l 

E = - 1 ~ 1 + - 50S - (5 I,) S) - - (5 ® 5)' (10)32 2·1 '. 18 9 , 

where the correspondin~ spin matrix reprf"sent.at.ions of Si, i = 1,2,3 are given by 

equations (2) with j = ~. In this r:nse p = 4 nnd the relation (4) turns out to be 

e~ == 4e, . 
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From equation (9) we have the solutions of Yang-Baxter equation 

R= E - (2 ± Va) 1 0 1 . 

The related spin chain Hamiltonian (7) is integrable and can be exactly solved in 

principle. 

Similarly for the case of j = 2, we have 

E = -3~ [60S ®5 + 17(505)2 - 4(505)3 -(5®srI] 
with f3 = 5 and 

e~ =5e; . 

The R-matrix is 

R= E- 5± J2I-2- 101 . 

For the case of j = ~, we have 

E - 460
1
800 [980375 1 0 1 - 2876605 ®5 - 371872 (5 ®5)2 

-33152(5 ®5)3 + 8960(5 ®5)4 + 1024(5 ®5)5] 

While f3 = 6 and 

e~ =6e, . 

The corresponding R-matrix is 

R= E - (3 ± 2h) 1 ® 1 . 

And for the case of j = 3, we have 

E 81~0 [320761 ® 1 + 136085 ®5 - 3879(5 ®5)2 

-1464(5 ®5)3 - 38(5 @5)4 + 16(5 ®5)5 + (5 ,:~ 5Y;] 

Here f3 = 7, i.e., 
2 

ej = Ie;. 
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The related R-matrix is 
v R= E- I ±3V5-2~-101. 

For the case of j = i. we get 

E 32511~4800 [83320383511 ~ 1 + 12364158492505 

+1374000048 (5 ®5)2 - 454121280 (5 ®5r' - 74101504 (5 ®5)4 

+2150'4(5 @5)'" + 430080(505)6 + 16384(5 ®sr] 
and P = 8. That is 

e~ = 8t'; . 

The concerned R-mat.rix is 

R= E - (4 ± v'i5) 1 0 1 . 

The T-L algebra. representations can be invest.igated for general spin value j 

according to (2). In fad, for arbitrary j. the (2j + 1)2 X (2j + 1)2 matrix E is 

simply of the form 

(E)n.m = (-1)k+182j A:+l.2;/+1 ~n.2;J:+l ~,".2jl+1 k, I ~ 2.1 + 1 . (11) 

And f3 = 2j + 1. That is 

e~ = (2} + l)ej . 

The mrresponding solutions of Yang-Baxter equation are 

v 2j + 1 ± /(2j + 1)2 - -1 
R= E + 2 101 . (12) 

Hf're we would like to indicate t.hat t.he sol1ltions of YaDl~-Baxter equation gin-n 

hy (9) nre not necessary independent becanse of the uniqueness of the universal 

R-matrix [51. As a.n exa.mple we t,nke j = ~. For t.he isotropic case from equations 
v 

(11) and (9) we get only one R-ma.trix as C = O. R= -Po P is the permutation 

6 



.1 

matrix. However for the anisotropic case that the related spin chain is of the 

q-deformed algebra SU.(2) symmetry 

0 0 0 0]
E = 	 0 q-t -1 0 

o -1 q-l 0[
o 0 0 0 

and /3 = [2] = q +q-t [7]. Formula (9) gives rise to two solutions 

o 	 0 
-q 	 0 0 0] [ _q-t 

v 0 q-t - q -1 0 v 0 o -1
R.= 	 R,=

o -1 0 0 0 -1 q_q-l
[ 

o 0 0 -q 0 o 0 -1-. ] 
v 	 v 

Since E commutes with the coproducts of SU.(2) elements, both Rt and R, also 

commute with the coproducts of SU'l(2) elements. Nevertheless they are equivalent 

since kt= p. k, ·PI,_q-l. For j > l formula (9) gives rise to two different R

matrices even for the isotropic cases. The equivalence between these pairs of 

R-matrices can be similarly discussed. 

The T-L al~ebra representations concerned in this letter are related to the 

isotropic spin chain with SU(2) symmetry. The spin chain with T-L algebraic 

structure and SU,(2) symmetry can also be investigated like the case of j = 1 
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