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Abstract 

The Pauli master equation for the incoherent exciton motion in one-dimensional crys­

tals with a sin~le trap is solved analytically. Exact results for the probability propagator 

and the total probability are addressed with the help of analytic solution of the Volterra 

type inte~ral equation. To demonstrate the effect of the trap for the exciton motion 

dearly, the numerical calculation has been made. It is found that the role of the trap is 

only to accelerate the escape of the exciton towards infinity. This is completely different 

from the situation of the coherent exciton motion under the influence of impurities. 

1. Introduction 

In recent years much attention has been paid to the set of problems deeply connected 

with the coherence and incoherence effects for the exciton transfer in molecular aggregates. 

Considerable progress in the understanding of these problems has been achieved by Silbey (lIt 

Kenkre (2) and Reineker [3), On the other hand, to get the explicit and analytic solution of 

the probability propagator for the exciton motion, some simple models have been favoured. 

Of special interest is the one-dimensional trapping model corresponding to the sensi tized 

luminescence experiments described by the Pauli master equation for the probability P,,( t) 

to find the exciton at site n 

d
;Up" =F(P,,+l + P,,-t - 2Pn ) - cP"o"o, n =0, ±l, ±2, ... , F,c > ° (1) 

where F is the intermolecular rate constant and c is the trapping rate of the trap at site 

n = 0, This model was firstly investigated by Skala and Bilek several years ago [41. However, 

as we indicated more recently [51, the explicit expression for the probability propagator they 

obtained is incorrect, which definitely affects the correctness of their numerical calculation. 

Therefore, it is necessary to make further study on this problem. 

In the present Letter, we address the analytic solution of this problem for the incoherent 

exciton motion with the help of explicit solution of the Volterra type integral equation. The 

exact results for the probability propagator and the total probability to find the exciton in the 

one-dimensional system are presented, which provide the possibility of making the numerical 

analysis for any value of the reduced trap c/F. Finally, we illustrate the effect of the trap for 

the exciton motion numerically. 

2. 	Probability propagator 

In solving Eq. (1), we first perform the Fourier transform 

lle(t) = Le-i"IePn(t) , 	 (2) 
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where p..(t) is given by the inverse Fourier transfonn 

P,,(t) ..!.. [17r dke,,,kJ,.(t) . 
2:r 10 

The amplitude propagator /k(t) in k space satisfies following integral equation 

J,.(t) =e2F(cotk-l)tj,,(0) -..:... r dt'e2F(cod-1)(t-t') (2tt dk'flc'(t') . (4). 2~k k 

For the simplicity, we consider the situation of the exciton being located at site 0 in the initial 

time. i.e., Pn(O) =6..0 , This makes 1.(0) become 1. Thus, substituting Eq. (4) into Eq. (3), 

and by using the identity [6) 

e2:codr =L: lm(x)e'm. , (5) 
m 

where lm is the modified Bessel function, we get the rollowing integral equation for the 

probability propagator P,,(t) in real space 

P,,(t) =e-1Ft 1,,(2Ft) - c lot dt'Po(t')e-1F(t-t') 1,,(2F(t - t'» . (6) 

The self-propagator poet), i.e., the probability propagator of the initially excited site, satisfies 

the well-known Volterra integral equation of second kind [7] 

= e-2Ft lo( 2Ft) C lot dt' poe t')e -2F(t-t') lo(2F( t - t'» . (i) 

This equation can be solved analytically by performing the Laplace transform 

L{e-2Ft 10(2Ft») 
(8)L{Po(t») = 1 + cL[e-1Ft10(2Ft)J ' 

where L[ 1 is the Laplace operator. After some calculations, we have 

2 
1 ( ( ) eLR t - 1+ ---,

[ o( )1 - /3v'i+TF (8 - a)(s + b) (s - a)(s + b) 

where 

a = ../4F1. + c2 - 2F, b =../4F2 + c2 + 2F . (10) 

This gives the solution for the self-propagator 

Po(t) = e-1Ft {loC2Ft) - c sinh(tV4F2 + (2)}
V4Fl + cl 

(11) 
~ r .+ .e-1Ft 10 dt1lo(2F(t - t'»sinh(t'J"4F2 + c:l)I. _ . 

Substituting Eq. (11) into Eq. (6), to get the explicit expression for the probability propagator 

is straightforward. 

Another equivalent expression for the self-propagator can be derived directly from Eq. (11) 

by completing the integral. The result is 

R(t) = e-2Ft {L (2Ft) + c e-t~}
o 0 V4F2 + c2 

(12)2 
C _e-2FI {10(2Ft) + 2 f: l2k(2Ft)(C - V!~ + ( ) 21r} . 

1t=1 

one will find that Skala and Bilek's result Comparing this result with Eq. (20) of Ref. 

missed the last tenn of Eq. (12). 

3. Total probability 

The total probability to find the exciton in the crystal under the influence of the trap can 

be obtained by summing the both sides of Eq. (6) 

L P,,(t) = e-2Ft 1,,(2Ft) - c [t dt'Po(t')e- 2F(t-I') L 1,,(2F(t - t')) . (13) 

" " 10 " 
Using the identity 

(14)eZ = Ll,,(z) , 

" 
Eq. (13) reads 

L P,,(t)= 1 - c [' dt'Po(t') . (15) 
" 10 

By substituting Eq. into Eq. (15), and by using the identity 

loll dte-Il..(t) = ze- z [lo(.:) + + n[e-: ll)( z) - 1] 
(16) 

.. -1 

+2e-z L(n - k)lk(=) , 
k=1 

one finds that 
a 2 ~1+ (e-1t+vt+a-)r -1)L P,,(r) 

Vl + 02( 1 + VI + all 

+ --==1=""", (e -,. lo( r) - 1) (Ii) 

402 ?O lit-I 
+ 2 L (v'1+01 -0)'lIr L{2k-l)e-"I,(r),I 

vI + 0 1r=1 '=1 
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where r =: 2Ft, a =c/2F. This result is completely different from that of Ref. [41 (see Eqs. 

(24) and (25) in Ref. [41). In fact, it is easy to show that Skala and Bilek's result for the total 

probability is unacceptable in physics. To see this point, we consider the long time behavior 

for the total probability. By taking the limit t - 00 in Eqs. (24) and (25) of Ref. [4J, we find 

thac. the total probability becomes infinity since Eqs. (24) and (25) of Ref. [4) contain the 

factor te-'[lo(t)+II(t)J which will be large enough with increasing time to infinity. Obviously, 

such a result is unreasonable. 

4. Discussion and summary 

In contrast to Eq. (10) of Ref. [41, our expressions for the propagator P,,(t) presented by 

Eqs. (6) and (ll) (or (12» and the total probability L" P,,(t) presented by Eq. (11) provide 

the possibility of carrying out the numerical analysis for any value of the reduced trap c/F. 

To demonstrate the effect of the trap for the exciton motion clearly, based on the expressions 

(6), (ll), and (11) we calculated the propagators P,,(t) (n = 0,1,2) as functions of the di­

mensionless time 2Ft for different values of the reduced trap c/2F and the total probability 

L" P,,(t) as a function of the reduced trap c/2F for different instants which were presented 

in Figs. 1-3. 

In Figs. 1 and 2, the effect of the trap for the exciton motion has been exhibited through 

a plot of the propagator P,,( t) versus the dimensionless time 2Ft for different values of the 

reduced trap c/2F. From these curves it can be seen clearly that (1), the probabilities to 

find the exciton at sites n 0, 1, and 2 with the trap (c/2F =/: 0) are lower than the case 

without the trap (c/'1.F = O)i (2), there is a maximum probability to find the exciton at 

the site n( =/: 0) in some instant, however, such instant for the appearance of the maximum 

probability does not dependent on the trap. These properties mean that the role of the trap 

is only to accelerate the escape of the exciton towards infinity, which can also be seen from the 

fact that the total probability to find the exciton in the crysta.l drops rapidly with increasing 

the reduced trap c/2F as shown in Fig. 3. Such findings are completely different from the 

situa.tion of the coherent exciton motion under the influence of impurities [81 where, just the 

opposite, the role of the impurity is to decelerate the escape of the exciton towards infinity. 

5 

In Fig. 3, another evident property is shown definitely that the total probability to find 

the exciton in the crystal tends towards vanishing with increasing time as long as the tra.p is 

present. In the limit case of t - 00, it can be proved by Eq. (17) straightforwardly that the 

total probability will reach its limit value L" Pn(t - 00) = 0, as expected. 

Comparing our Figs. 1 and 2 with Fig. 1 of Ref. [41, one can find that the propagators 

P ( t) (n = 1,2) have obvious maximums in different instants and Pn ( t) show sensible varia­n 

tion with the dimensionless time 2Ft, while these features are obscure in Fig. 1 of Ref. [4/. 

In summary, we have solved analytically the Pauli master equation for the incoherent exci­

ton motion in one-dim~nsional crystals with one trap. The exact and explicit solutions for the 

probability propagator and the total probability have been obtained with the help of analytic 

solution of the Volterra type integral equation, from which the effect of the trip can be seen 

clearly. Our analytic results in this Letter will provide the basis for further investigation on 

the theory of the e.'Cciton transport since such topics arise in a number of contexts. 
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Fig. 1. The propagators Po(t) ( Fig. a ), P1(t) ( Fig. b ), and P:M) ( Fig. c ) plotted as 

functions of the dimensionless time 2Ft for different values· of the reduced trap c/2F. The 

I dotted ( c/2F =0.5 ) and solid ( c/2F =1 ) lines show the effect of the trap in comparison 

I with the case of the perfect lattice ( c/2F = 0, dashed line ). 

Fig. 2. The propagator PlItt) plotted as a function of the dimensionless time 2Ft for 

different values of the reduced trap c/2F. The curves show the cases c/2F = 0 ( Fig. a), 

0.5 ( Fig. b ), and 1 ( Fig. c ) for n = 0 ( dashed line ), 1 ( dotted line ), and 2( solid line ), 

respectively. 

Fig. 3. The total probability Ell P,,( t) plotted as a function of the reduced trap c/2F for 

different instants. The solid line shows the case 2Ft = 1 while the dotted and dashed lines 

show the cases 2Ft = 10 and 2Ft = 100 respectively. 
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