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Abstract 

In this note, quantum subgroups and quantum co-set 
spaces including corresponding differential calculi are dis­
cussed. 
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1. Quantum subgroups and quantum co-set spaces 

More attentions have been paid on quantum groups and their differential calculi by 
a lot of authors{1-9J. The purpose of this note is to discuss some geometry on quantum 
groups, i.e. the methods to obtain quantum subgroups, quantum co-set spaces and 
corresponding differential calculi. 

Denote G a quantum group and Fun(G) the algebra of functions on G. The so 
called quantum subgroup H is defined in term of the algebra of functions on H, which 
is obtained by the quotient{4J: 

Fun(H) = Fun(G)/{I}, (1.1 ) 

where {I} is the Hopf ideal generated by I which I is a subset of Fun(G) satisfying: 

A(I) C {l} ® Fun(G)U Fun(G)@{l}, 
S(I) C {f}. 

Therefore (1.1) gives a projection P from Fun(G) to Fun(H). The coproduct, COltnit 
and antipode on H are induced from those operators on G in terms of the projection 
P. Then the algebra of functions on quantum co-set space G / H is given by following 
definition. 

Definition 1.1 Denote FunL(G/H) and FunR(G/H} the algebras of functions 
on left and right quantum co-set space G / H , they are defined as following, 

FunLCG/H) C Fun(G), FunR(G/H) C Fun(G), 

and for "Ix e Funr,,(G/H) 
(id® P)Ax =x ® 1, (1.2) 

for "Ix e FunR(G/H) 
(P®id)Ax=l®x. (1.3) 

Proposition 1.1 FunL(G/ll) is a left G-comodule and FunR(G/H) is a right 
G-comodule, i.e. 

AFunL(G/H) C Fun(G)® Funr,,(G/H), 
AFunR(G/H) C FunR(G/ H) ® Fun(G). 

Proof: nere we only prove the first formula, the proof of the second is similar. Let 
% e Funr,,(G/H), since 

(id® A)Ax = (A 0 id)A%. 

then by Definition 1.1, 

(id®id®P)(id®A)Ax = (id0id®P)(A0id)Ax = (A®id)(id6<)P)A% = Ax®1. (1.4) 

If we write U% = Xl,a ® Xl.a where Xl,a ",rlo. linear independent. (1.4) can be written as 

Xl.a ® «(id® P)AXl.a) = Xl.a @X'l.o ® 1. 



By the Iinea.r independence of %t,a and Definition 1.1, we know %2.a E FunL(G/ H), 
i.e. 

!:J.FunL(G/ H) c Fun(G) ® FunL(G/ H). 

Now we are going to give some examples of quantum subgroups and quantum co-set 
spaces. Since FunL( G / H) and FunR(G/ H) are similar, in the following part of this 
note,we only consider Func.(G/ H). The definitions of quantum groups GLq(N) and 
SLq(N) are given in [1] in which the R-matrix corresponding to quantum groups of 
A-series of order N is 

R., = qt/N (.f: q5iieii ® ejj +X t eii ® eii) , q E C·,X =q _ q-I. 

•..,=1 't.;} 

Example 1 	 The algebra of functions on subgroup SLq(N) of GL,(N) is 

Fun(SLq(N)) = Fun(GLq(N))/{DetqT - 1} 

Example 2 The algebras offunctions on subgroups GLq(k, N -k) and SLq(k, N­
h) of GL.,(N) and SLq(N) respectively are 

Fun(GLq(h, N - k» = Fun(GLq(N»/{II}' 
Fun(SLq(k, N - k» =Fun(SLq(N»/{It}, 

where [I ={tii Ii::;; h, j > k}. 
Example 3a Let the four generators of Funq(SLq(2» be written in 2 X 2 matrix 

as 

(: :) . 
If we take I, = {b} and 13 = {6,e}, then two subgroups G and H of SLq(2) are given 
as 

Fun(G) = Fun(SLq(2»/{I,}, Fun(H) = Fun(SL.,(2»/{I3}. 

In fact II is also a subgroup or G. Since the determinant of G and Hare 0 • d = 1, we 
have d = a-I. This implied tha.t Fun(G) is generated by three elements o,o-I,e which 
can be written in matrix form as 

TG_(a 0 )c a-I , 

and 	
~o =a@lI. 6a-1 = a-I ® II-I, !:J.c = c ® a +a-I ® e, 
e(lI) =1. e(a- I ) = 1, e(e) = 0, (1.5) 
S(o) = a-I, S(a-I)=a, S(e) = -!e. 

Here Fun(G) looks similar to the two-dimensional quantum plane with two elements 
%, y satisfying y% =q%,!/, but they are naturally different from each other since not only 
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left and right group co-actions of S L,/(2) but also coproduct, counit and antipode are 
defined on Fun(G). This point has been also noticed by some authers[5], but they did 
not know why they are different and what the main meaning of Fun(G). In the next 
example we will try to understand some of the above questions. 

Fun(H) is generated by two elements a,a- I which can be written in matrix form 
as 	

rc_(a 0)
- 0 a-I , 

and 	
6a =a® a, 6a-1 = a-I ® a-I, 
e(a) = 1, e(a- I ) =I, 
S(a) = a-I, S(a-I) = a. 

The definition of projection P from Fun(G) to Fun(H) is given by 

pea) = a, P(a-I) =a-I, 	pee) =O. (1.6) 

Now we are going to give FunL(G/H). From (1.5) and (1.6) we know that 

I6(ca- t ) =ca-t ® 1 +a-2 ® ca- , 

and 
(id® P)6(ea- t ) = ea- t ® 1. 

Further caculation shows that for all element % E Fun( G) satisfies (1.2) must be a. 
polynomial of ea- I , so we have 

FunL(G/ H) =C[ea- t , 1J. 

Example 3b Interchange a and c in Example 38 and replace the deforma.tion 
parameter q by q-I, we have 

FttnL(G/H) = C[1, ae-IJ. 

When q t, Example 3a and 3b give two local coordinate systems of projection 
space cpt, so it can be understand that Example 3a and 3b give two local coordinate 
functions of quantum projection space Cpr 

Example 4a G is a subgroup of SLq(3), FttR(G) is generated by %1, %2. %3.1/2. Y3, 
which can be written into a 3 X 3 matrix as: 

XI 0 0)
TG X2 Y2 0 , 

( 
X3 0 Y3 

and %tY2!13 = 1. The commutation relations among them are given by 

R7fTf TfTf R, 
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where R is the R-matrix of A-series of order 3[1). H is a subgroup of G, Fun(H) is 
generated by 1/1,1/1,113, which can be written into a 3 x 3 matrix as: 

!II 0 0)
TH = 0 !ll 0 ,

( o 0 113 

a.nd !It!l2U3 =1. The commuta.tion rela.tions a.mong them are given by 

RTf'Tr =TrTf' R, 

where R is the R-ma.trix of A-series of order 3. Then we have 

Func.(G/H) = C[1'%1%j'"I'%3%11). 

Example 4b Similar to Example 4a., Fun( G) is generated by %It %2, %3, 1/" 113 

which can be written into a. 3 x 3 matrix as 

111 %1 0)
yO = 0 %2 0 ,

( o %3 Y3 

a.nd YtX2U3 = 1. The commutation relations among them are given by 

RTfTf =7frfR. 

Fun(H) is same as in Example 4a and 

FundG/H) = C[%I%;I, 1,%3%;1). 

Example 4c Simila.r to Exa.mple 4a., Fun(G) is generated by %It %1, %3, y" 113 

which can be written into a 3 X 3 matrix a.s 

111 0 %t)
yO = 0 Y, %2 , 

( o 0 %3 

a.nd lit '!J2x3 :::= 1. The commuta.tion relations among them a.re given by 

RTF7f =TfrfR. 

Fun( H) is same as in Example 4a and 

Func.(G/H) = C[%I%3"I, %2%3"1, 11· 

When q ~ I, Example 4a, 4b and <lc give three local coordinate systems of pro­
jection spa.ce Cpl, so it can be understand that Example 4a. 4b and 4c give three 
local coordina.te function of quantum projection space CP;. Although one can discribe 

4 

quantum Cp2 using the deformation of continuous functions on Cp2 as well as Cpl, 
here we think it is another way to discribe the Cplc (I: = 1. 2) more geometrically. 

It is ea.sy to extend above examples of quantum projection spaces to high orders. 

2. Differential calculi on quantum subgroups and quantum co-set spaces 

Assume tha.t we have had differential calculus on qua.ntum group G, the prohlem 
is how to obtain differential calculus on H, a subgroup of G. From (1.1) we know that 
we ca.n obtain Fun(H) by letting some of the elements of Fun(G) be zero, this will 
force some of the elements of nlc( G), set of k-forms on G, be zero. Then we can obtain 
nlc(H), set ofk-forms on H by a quotient similar to (1.1). 

Taking quantum group G in Example 3a a.s an example. We know G is a subgroup 
of SL,(2), and we have already discussed differential calculus on SL,(2} in [6,7). Let 
us briefly review the way to construct differential calculus on S L,(2). 

Fun(SL,(2» is generated by a,b,c,d which can be written in to a 2 x 2 matrix 

T = (tij)iJ=I.l =(: !). 
First step, we give two sets of linear functionals it (i, i = 1,2) and arrange them into 
two 2 X 2 matrices. 

L* =(Itki=l.l' 

To describe it (i,i = 1,2) explicitly, we first define that the values of the linear 

functionals It (i,i =1,2) on the generators tt (i,i =1.2) of Fun(SL,(2» are given 
by 

it(T) = "ilrt, "i = I, (2.1 ) 

it(1) = 0." i,i = 1,2, (2.2) 

where 
{ (q _ q-' )';;' j < j,

rt = E + (q - l}eii, i = j, (2.3) 
0, j > j. 

rij = E + (q - 1)eij, i = i, (2.4)r' i < i, 

-(q - q-l)eji, i > i. 

If we denote R+ (rth~i.j~n' n- =(rij)i.j=t.2, then R+ =PR'IP, n- =n;l.where 
R, is the Ya.ng-Baxter matrix for quantum group S L'I(2). P is the permutation matrix, 

P = (ejikj:::I.2 . 
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For arbitrary element of Fun(SLq(2)) the definition of l~ is given by the following 
induction, 

. 1~(%1I) = l~(%)li=jb/)' V%,lI E Fun(SL,(2». (2.5) 

Second step, we introduced the convolution "." on no, i.e. Fun(SL,(2». For 
/ E Fun*( SL,(2», the convolution "." from no to no is defined by 

/. (x) = (id ® f)Lb, % E Fun(SLq(2», (2.6) 

where id is the identity operator on nO. Then we introduced two sets orrunctionals on 
no as follows: 1 _ 

Vij q _ q_1 (S(lilc)lti - 6iiE), 

9ijlel = S(lki)lj" 

where i,j, Ie, 1= 1,2. These functionals satisfy following proposition. 
Proposition 2.1 ForVx,lIEnO,i,j,k,l= 1,2, 

(i) Vij(1) = 0, 9iilcl(1) =60,6il, 

(ii) t1Vii = V UII ® 9ullii +E ® Vij, 

a9ij"" =9.iull ® 9ulllcl, 

(iii) Vij. (Xll) = (VUII • X)(9"lIi; ... 11) +x(Vij .,1), 

9iile'. (xy) = (9ij .. lI. X)(9..lIlcl. 11) 

ijLet n l be the left module generated by four generators w , (i,; = 1,2), and define 
the right multipJication on n l by 

ii x )wlclw . x = (9ii lel • , V% E no, i,;, Ie, 1= 1,2. 

Therefore, n 1 becomes a nO-bimodule. At fast we have 

6% =(Vii. x)wij 
, V% E nO,i,; = 1,2. (2.7) 

And furthermore 

wit = [q3(d6a - q-IMc) - (q3 - q - 1)(-qe6b +a6d»)/(q3 1), 
12w = q( -qe6a +a6e), (2.8)
211.1.1 = q(d6b - q-1b6d), 

1.1.1 22 = [q2(d6a - q- Ib6e) +q3( -qc6b +a6d)]/(q3 - 1). 

Since Fun(G) is obtained by letting b = 0 in Fun(SL.,(2», we have Vu = 0 and 
1.1.121 °for Fun(G). So we can obtain differential calculus on G by adding condition 

21V21 =0 and w =°to that of S L.,(2). 
The commutation relations of Vii (i, j 1,2) except V21 are 

VnVn - q'2Vll V I2 qV12 , 


V'22V11 VII V'22 O. 

V22V12 - V12V:Z2 +(q-2 - 1)VuV12 = q-IVU • 
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lThe equivalent relation on n 1 ® n are 

ll 12 22wlt 1\ w = w12 1\ w = w22 1\ w = 0, 

w'22 1\ w 12 = _w1'2 1\ w'22, w'22 1\ wll = _wtl 1\ w22, 

wl2 1\ wit _q-'2wll 1\ w 12 q-'2(q-2 _ 1)w12 1\ w22 . 


The quantum Maurer-Cartan formulae are 

6w1 =0, 6w4 =0, 
6w2 =q-tw1 1\ w2 +q-3w2 1\ w4• 

In what follows we will discuss how to give differetlal calculi on quantum co-set 
spaces. Assume H is a subgroup of quantum group G, and we have a bicovariant differ­
ential calculus on G. Since Fun(GIH) C Fun(G), we can directly apply the derivative 
6 corresponding to Fun(G) on FundGIH) or FunR(GIH) to obtain nHGIH) or 
nk(GIH), 0HGIH) or nMGIH) and so on. 

Take G, Hand GIH in Example 3a as an example. In the previous section we have 
obtained the differential calculus on G, and we have 

Funl-(GIH) = C(ea-t,ll· 

Let z = ea- I , It is sufficient to calculate 6z and commutation relation between 6z and 
z. Based on the differential calculus on G and by applying Proposition 2.1, we have 

ij6% = Vii. zw
= (id® Vii)t1(ea- 1)wij 

= (id® Vij)(ea- t ® 1 + a-2 ® ea-t)wij 

= !a-'2wt2 , 

by (2.8) we have 

6z = 6(ca- l ) = -qa-'2c6a + a- 16c = a- I (6c - ca- 16a), (2.9) 

and 
6z· z = !a-'2w12ea- 1 

'1 = q-3ea-l a-2w I2 

=q-2 z6z, 

6z 1\ 6z = q-'2a -4:.J12 1\ w 12 =o. 
Applying above procedure to Example :It> and let :-1 =ae- I , we have 

6(Z-I) = e-1(6a - ac-16e) _q'lz- 26z. 

6(Z-I)Z-1 =q'lz-16(z-I), 

; 



and 
6(Z-I)" 6(Z-I) = O. 

The next question is about the relation between those two different calculi on CP~, 
i.e. how to introduce the connection to connect the two differential cacuU, in other 
word to introduce the idea of gauge field. The answer wiD appear in & forthcoming 
paper. 

References 

1. 	 N. Yu. Reshetikhin, L. A. Takhtadzhyan &: L. D. Faddeev, Quantization of Lie 
groups and Lie algebras, Leningrad Moth. J. Vol. 1, 1(1990), 193-224. 

2. 	 J. Wess, &: B. Zumino, Covariant differential calculus on the hyperplanes, 

Preprint CERN-5697, April 1990. 


3. 	 S. L. Woronowicz, Differential calculus on compact matrix pseudogroups 

(quantum groups), Commun. Moth. Phys. 122(1989) 125-170. 


4. 	 B. Parshall &: .f.-P. Wang, Quantum linear groups, AMS Memoirs, Number 439, 
Published by the American Ma.thematical Society, 1991. 

5. 	 S. Majid Inter. J. of Mod. Phys. A, Vol. 5, No.l(1990)1-91. 

6. 	 K. Wu &: R. J. Zhang, Commun. Theor. Phys. 11(1992) 331. 

i. 	X. D. Sun &: S. K. Wang, Bicovariant differential calculus on the two-parameter 
quantum group GL",q(2), to appear in Journal of Moth. Phys .. 

8. 	 X. D. Sun &: S. K. Wang, Preprint CCAST-92-04, ASIAM-92-07, ASITP-92-12. 

9. 	 X. D. Sun, S. K. Wang &: K. Wu, Preprint CCAST-92-14, ASITP-92-18, ASIAM· 
92·11. 

8 




