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Abstract

In this note, quantum subgroups and quantum co-set
spaces including corresponding differential calculi are dis-
cussed.
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1. Quantum subgroups and quantum co-set spaces

More attentions have been paid on quantum groups and their differential calculi by
a lot of authors{1-9]. The purpose of this note is to discuss some geometry on quantum
groups, i.e. the methods to obtain quantum subgroups, quantum co-set spaces and
corresponding differential calculi.

Denote G a quantum group and Fun(G) the algebra of functions on G. The so
called quantum subgroup H is defined in term of the algebra of functions on H, which
is obtained by the quotient(4]:

Fun(H) = Fun(G)/{I}, (1.1)
where {I} is the Hopf ideal generated by I which I is a subset of Fun(G) satisfying:

A(I) ¢ {I}® Fun(G)U Fun(G) ® {I},
S(nc{r}.

Therefore (1.1) gives a projection P from Fun(G) to Fun(H). The coproduct, counit
and antipode on H are induced from those operators on G in terms of the projection
P. Then the algebra of functions on quantum co-set space G/H is given by following
definition.

Definition 1.1 Denote Funy(G/H) and Funr(G/H) the algebras of functions
on left and right quantum co-set space G/ H, they are defined as following,

Funy (G/H)C Fun{G), Fung(G/H)C Fun(G),

and for Vz € Funy(G/H)
(id@P)Az =281, (1.2)

for Vz € Funp(G/H)
(PRidAz =18z (1.3)

Proposition 1.1  Funp(G/H) is a left G-comodule and Funp(G/H) is a right

G-comodaule, i.e.
AFunp(G/H)C Fun(G)Q Funy(G/H),
AFunp(G/H)C Funp(G/H)® Fun(G).

Proof: Here we only prove the fitst formula, the proof of the second is similar. Let
z € Funp(G/H), since
(id® A)Az = (A ® id)Az,

then by Definition 1.1,
(1dRidOP)(idRA)Az = (idRidRP)AQid)Az = (ARId)(idRP)Az = Az®1. (1.4)
If we write Az = 74,4 ® 22, where 7,4 are linear independent, (1.4) can be written as

Z1a ® (("1® P)Az'l.a) =Z1aQ22,91.



By the linear independence of z, and Definition 1.1, we know z,, € Funi(G/H),
i.e.
) AFuni(G/H)C Fun(G)® Funy(G/H).

Now we are goixig to give some examples of quantum subgroups and quantum co-set
spaces. Since Funy(G/H) and Fungp(G/H) are similar, in the following part of this
note, we only consider Funp(G/H). The definitions of quantum groups GL(N) and
SL,(N) are given in [1] in which the R-matrix corresponding to quantum groups of
A-series of order N is

N N
Ry=q"M |3 ei®eji+x Y eii®eji|, €€ x=q~q".
1,5=1 ';‘;ljl
Example 1 The algebra of functions on subgroup SL,(N) of GL,(N) is
Fun(SL,(N)) = Fun(GLy(N))/{Det, T - 1}

Example 2 The algebras of functions on subgroups GL,(k, N —k) and SLy(k, N -
k) of GLy(N) and SL4(N) respectively are

Fun(GL,(k, N - k)) = Fun(GLy(N))/{h},
Fun(SLy(k, N - §)) = Fun(SLo(N))/{h},

where [} = {l""“ <k ji> L'}.
Example 3a Let the four generators of Fun,(SLy(2)) be written in 2 X 2 matrix

a b

c d ]
If we take I, = {§} and I3 = {b,c}, then two subgroups G and H of §L4(2) are given
as

as

Fun(G) = Fun(SL(2))/{[;}, Fun(H) = Fun(SL,(2))/{5}.

In fact H is also a subgroup of G. Since the determinant of G and H area-d = 1, we
have d = a~!, This implied that Fun(G) is generated by three elements a,a”!,c which
can be written in matrix form as

and
Aa=a®a, Aa'=a"'®a"', Ac=cQa+a'Q@c, ’
gla) =1, gla”l) =1, e(¢) =0, (1.5)
S(a)=a"', S(a')=a, S(c) = —%c.

Here Fun((G) looks similar to the two-dimensional quantum plane with two elements
z, y satisfying yz = gzy, but they are naturally different from each other since not only
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left and right group co-actions of SLy(2) but also coproduct, counit and antipode are
defined on Fun(G). This point has been also noticed by some authers[5], but they did
not know why they are different and what the main meaning of Fun(G). In the next
example we will try to understand some of the above questions.

Fun(H) is generated by two elements a,a~! which can be written in matrix form

a 0
TG=(0aq),

Aa=a®a, Aa~!'=a'®a"l,
e(a) = 1, 5(3-1) =1,
S(a)=a"', S(a')=a.

The definition of projection P from Fun(G) to Fun(H) is given by

and

P(a)=a, P(a)=a™!, P(e)=0. (1.8)
Now we are going to give Fung(G/H). From (1.5) and (1.6) we know that
Alca N =ea'®@1+a?*@ca™?,

and

(id®@ P)A(ca™ ') =ca ' ® 1.
Further caculation shows that for all element z € Fun(G) satisfies (1.2) must be a
polynomial of ca~?, so we have

Funp(G/H) = Clea™!,1].

Example 3b Interchange a and ¢ in Example 3a and replace the deformation
parameter q by ¢~!, we have

Funp(G/H) = €[1,ac™"].

When g — 1, Example 3a and 3b give two local coordinate systems of projection
space €P!, s0 it can be understand that Example 3a and 3b give two local coordinate
functions of quantum projection space CF;.

Example 4a G is a subgroup of §Ly(3), Fun(G) is generated by 21, 22, 3, y2, 3,
which can be written into a 3 x 3 matrix as:

Iy 0 0
TG = 2 0 ’
z3 0 y3

and z;y2y3 = 1. The commutation relations among them are given by

RTCTS = TETPR,



where R is the R-matrix of A-series of order 3[1]. H is a subgroup of G, Fun(H) is
generated by y1, y2, y3, which can be written into a 3 X 3 matrix as:

n 0 0
TA=10 v 0|,
0 0 y

and y1y2y3 = 1. The commutation relations among them are given by
RTATH =1F 1R,
where R is the R-matrix of A-series of order 3. Then we have
Funp(G/H) = €1, 2327}, 2327 ).

Example 4b Similar to Example 42, Fun(G) is generated by z,,z3,23,%1,¥3
which can be written into a 3 X 3 matrix as

wnw rn 0
=10 2z, 0 |,
0 z3 1

and y1zoy3 = 1. The commutation relations among therﬁ are given by
RIFTY = I TP R
Fun(H) is same as in Example 4a and
Funp(G/H) = C[z1z3",1,2327 ']

Example 4c Similar to Example 4a, Fun(G) is generated by z1,22,73,¥%2,¥
which can be written into 2 3 X 3 matrix as

n 0 z
= 0 n =2 y
0 0 =23

and y19223 = 1. The commutation relations among them are given by
| RIOTS = TETER
Fun{H) is same as in Example 4a and
Funp(G/H) = Cz 23", 2223, 1].

When ¢ — 1, Example 4a, 4b and dc give three local coordinate systems of pro-
jection space €P?, so it can be understand that Example 4a. 4b and 4c give three
local coordinate function of quantum projection space CP:. Although one can discribe

quantum € P? using the deformation of continuous functions on CP? as well as CP!,
here we think it is another way to discribe the € P* (k = 1,2) more geometrically.
Tt is easy to extend above examples of quantum projection spaces to high orders.

2. Differential calculi on quantum subgroups and quantum co-set spaces

Assume that we have had differential calculus on quantum group G, the problem
is how to obtain differential calculus on H, a subgroup of G. From (1.1) we know that
we can obtain Fun(H) by letting some of the elements of Fun(G) be zero, this will
force some of the elements of 2%(G), set of k-forms on G, be zero. Then we can obtain
Q*(H), set of k-forms on H by a quotient similar to (1.1).

Taking quantum group G in Example 3a as an example, we know G is a subgroup
of §L,(2), and we have already discussed differential calculus on §Lo(2) in [6,7]. Let
us briefly review the way to construct differential calculus on SL4(2).

Fun(SL,(2)) is generated by a,b, ¢,d which can be written in to a 2 X 2 matrix

b
T = (Ljlijmra = ( :: d ) .

First step, we give two sets of linear functionals l“?? (i, = 1,2) and arrange them into

two 2 X 2 matrices.

L* = (’;j})i.:‘ﬂ‘:-
To describe 15 (i,j = 1,2) explicitly, we first define that the values of the linear
functionals I'?E (i,7 = 1,2) on the generators tg (i,j = 1,2) of Fun(5L,(2)) are given
by

BTy =2, A=, (2.1)
Ey=4y, i,j=12, (2.2)
where ..
(q—q-l)eﬁ‘ < ),
rh={ E+(g-Dei, i=4j, (2.3)
0, i>].
0, i<,
=0 E+(qg~Ves, i=7 (2.4)

~(a=qNeji, P>
If we denote Rt = (T?;)lsi.jgm R~ = (r})ij=1.2, then R* = PR,P,R™ = R;“, where
R, is the Yang-Baxter matrix for quantum group 5 L,(2), P is the permutation matrix,

P = (eji)ij=1.2 -


http:coordina.te

For arbitrary element of Fun(SLy(2)) the definition of l is given by the following
induction,
if(zy) = B(2)IE(y), Yz,y € Fun(SLy(2)). (2:8)

Second step, we introduced the convolution “+” on Q°, ie. Fun(SLy(2)). For
f € Fun*(5L4(2)), the convolution “+” from Q20 to 10 is defined by

+(2) = (id® f)Az, z € Fun(SL,(2)), (2.6)

where id is the identity operator on 2°. Then we introduced two sets of functionals on
Q0 as follows:

1 -
V;,’ o 7= q—l(s(lik)‘tj - .','8'),
i = S,

where 1,7, k,l = 1,2. These functionals satisfy following proposition.
Proposition 2.1 For Vz,y € 0°,i,7,k, 1= 1,2,

(1) V(1) =0, Biju(1) = bixbji,
(ii) AV =V, Q@ 0uij +£® Vij,
Abiset = bijuv @ uokt,
(iii) Vi * (zy) = (Vuw ¢ 2)(0uvij * y) + 3(Vu +y),
Bijnr * (z) = (Bijuv * =W Buvkr * ¥)

Let Q! be the left module generated by four generators w', (i,§ = 1,2), and define
the right multiplication on 2! by

Wiz = (Bijua * 2w, Vzen® ijkl=1,2
Therefore, ' becomes a Q% bimodule. At last we have
br=(Viszlid, Vzea®ij=12 @7

And furthermore

w' = [¢¥(dba — g7 bbc) — (¢* — g — 1)(~qebb + aéd)|/(¢® - 1),
12 = g(~qcba + abe), (2.8)
21 = g(d6b — q~'béd), ’
22 = [q¥(déa — ¢~ 'béc) + ¢*(~qgcbb + abd)]/(¢® - 1).

Since Fun(G) is obtained by letting b = 0 in Fun(SL,(2)), we have V3; = 0 and
2! = 0 for Fun(G). So we can obtain differential calculus on G by adding condition
Va1 = 0 and w?! = 0 to that of §L,(2).
The commutation relations of Vy; (1,7 = 1,2) except Vy are

V12V - V11 Vi = q¢Via,
VuVn-VuVn =0,
V2aViz - Vi2V22 + (72 = 1)V Vi3 = 7' Vo,

The equivalent relation on Q' @ Q! are

W AW = WP AW = WAL =0,
W AW = WP AW, LR AW = A LR,
Wi Awll = =M Aw'? = g~2(g~? - 1)w!? AW,

The quantum Maurer-Cartan formulae are

Swt =0, Swt =0,
bw? = g7 W Aw? + g3 AWt

In what follows we will discuss how to give differetial calculi on quantum co-set
spaces. Assume H is a subgroup of quantum group G, and we have a bicovariant differ-
ential calculus on G. Since Fun(G/H) C Fun(G), we can directly apply the derivative
6 correspondmg to Fun(G) on Funi(G/H) or Funp(G/H) to obtain Q}(G/H) or

QL(G/H), 0} (G/H) or Qk(G/H) and so on.

Take G, H and G/H in Example 3a as an example. In the previous section we have
obtained the differential calculus on G, and we have

Funp(G/H) = Clea™',1].

Let z = ca~!, It is sufficient to calculate §z and commutation relation between 6z and
z. Based on the differential calculus on G and by applying Proposition 2.1, we have

bz =Vi» 2wt
(id ® Vi;)A(ca= ' A
(id® Vi;)ca™' @1 + 277 @ ca~')w'

It

]

1g-2,13,
by (2.8) we have
bz = §(ca”') = —qa~%cba + a'bc = a~(6c - ea”'éa), (2.9)
and
§z-z =ta" %W ?a!
= g-3ca~la-2u1?
= g 2262,

SzAbz=q"a W AW =0,

Applying above procedure to Example 3b and let z=! = ac™!, we have

5(z71) = ¢ Y(ba — ac™'6c) = —q?27 %62,

§(z7! )z’1 = ¢*z7'6(z7"),

-1



and

§(z"Y) A6z = 0.

The next question is about the relation between those two different calculi on CP,’,
i.e. how to introduce the connection to connect the two differential caculi, in other
word to introduce the idea of gauge field. The answer will appear in a forthcoming

paper.
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