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Abstract

The problem of band electrons in semiconductors under the inflnence of an el'ectric field
is investigated with the interband coupling being taken into account. Exact solutions for the
energy spectrum and the wave functions in the three-dimensional case are obtained by using
perturbation theory, by which it is shown that the energy spectrum not only involves a linear
term of the applied electric field, i.e., the Stark ladder, but contains the reciprocal of the
applied electric field to all orders. This means that the Stark regime will appear sharp for
large values of the external electric field in semiconductors. Only in the approximation of the
zero order of the perturbation theory, can the exact Wannier-Stark localization hold.

The Wannier-Stark localization for band electrons moving under the influence of lattice po-
tentials and electric fields has been extensively discussed in the literature.'* To such a problem,
the analytic solutions for the case of one-band approximation were presented decades ago, 2
from which it was found that the extended Bloch states would localize and the continuous energy
bands would evolve into an evenly spaced Stark ladder. Fukuyama, Bari and Fogedby?® then stud-
ied the problem of a two-band tight-binding system and concluded that the two Stark ladders
existed. #ach one being associated with one of the bands, and they are in some way coupled
together. But. the precise details of the coupling were not discovered. Of lafe. this two-band
tight-hinding model has been solved analytically by means of the perturbation theory with the
help of SU(2) symmetry.” More recently, removing the tight-binding confinement, this method
has heen extended to the two-band approximation for the one-dimensional case quite generally,

and the exact solutions for the energy spectrum and the wave function have been obtained under

the assumption of weak interhband coupling. However, it is found that the energy spectrum not
only involves a linear term in the applied electric field, i.e., the Stark ladder. but contains the re-
ciprocal of the applied electric field to all orders. This means that the Stark regime would appear
sharp for greater values of the external field.® For the case of ¥N-band approximation (N > 3}, it
was also shown that the energy spectrum was that of interspaced Stark ladders,® but the precise
details of the energy structure were not given owing to the interband coupling.

In this paper, we investigate the three-dimensional Wannier-Stark localization in semicon-
ductors with taking into account the interband coupling by using our previous techniques. The
Schrodinger equation for an electron in a periodic potential V(r) and a constant electric field E,
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p’l
( +V(r)—eEo-r) U(r) = e¥(r) (1)

2m

For convenience, we will assume that the electric field is in the z direction. By expressing the

eigenvector W(r) as a linear superposition of Bloch functions ¥, (r), i.e., T(r) = ¥ i Ba(k)hk(r),

one obtains the following equation for the amplitudes B,(k) in the nk representation!®!
. 0
[ea(k) — € = eEnX,n(k) — pEO"a‘]Bn(k) = Y eEgXpm(K)Bn(k) =0 {2)
z m#n
where £,(k) is the energy corresponding to the Bloch function and
@ r o L0
Xom(k) = 5 [ r(e)i k() @)

with () being the periodic part of the Bloch function. By introducing (for Ep # 0)

—1 ke ’ . ¢ !
b.(k) = B"(k)exP{:E—(;/o dkife — £.(K) + e Ea X (K]} (4)
1 ks
bunlk) = ——fon(K) + [ R [z(K) = 2 (K')
P,Eg n ‘5)
—-eE.;Xm.(k') + eE(}‘Ymm‘k’)]}
with e, (k) satisfying
-\'nm(k) :{ -Ynm(k) l exp ["avtm(k)/c‘En]v (n # m) (6)
and considering the case of twn-band approximation, Eq.(2) becomes
. d . .
:5}:—&,,(1(% [ Xor(k) | explif(K)]by(K) = 0 (1)
. a . .
lgk“"”i(k)’r [ Xor(k) | exp[—iflgy (k)]bn(k) = 0 (8)
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Setting (k)
0
= — 9
R(k) = (b.(k)) ' S(k) = X(k)o, + Y (ko 9)
X(k) = — | Xo(k) | cos[fu(k)], Y(k)=—| Xai(k) | sin[for(k)] (10)

where o, and ¢, are the Pauli matrices, Eqs.(7) and (8) can be rewritten together as
v K
R(K) = Rko) =i [ dkaiS(kt) R(kr) (11

Noticing that from (9) and (10), we have | S(k) |=| Xoi(k) |. Therefore. if the interband coupling
is small, Eq.(11) can be solved by using perturbation theory, i.e.,

R(k) = i U™ (k, ko) R(ko) (12)

m=0

where

mo ke
[f(m)(k. kf)) = (—;)”‘ (‘I=Il /;03 dkﬂ) 0(k,, — k,g)ﬂ(kﬂ b k,;)) (13)

oo Bk em—1) = kzm)S(k1)S(ka) ... S(kom)
with 8(k,) = 1 for k; > 0 and 0 otherwise. The function Ba(k) is assumed to be periodic, i.e.,

B, (k) = Bn(k+ G), where G is the primitive reciprocal-lattice vector. For simplicity, we assume
that the field is in the direction of the reciprocal-lattice vector. This leads to the Stark-ladder

energy structures

_ g 2meEy 1 G/2 _ X
R ]_Gndk,[eo(kue,(k) ¢ EoXoo(k) "
By Xu(K] £ SZ2H(G/2 ~G/2),  (n = integer)
where (a—d) @
H(G/2. -G 2) = cos™{cos — Z UG /2, -G/2)
. 3 "w ma=0 (15)
_sin(-c'—g—"—) . UP™N(G/2,-G/2)}
- m=0
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= k) — eEoXoo(k (16)
@ eE, /”G’zdk,[so( )~ eFaXoo(k)]
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g o ler(k) — eEnXn(K) a7
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m LGl
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Uiy) (G/2.-G/[2)=(~1) (,}:__:I’;jla/zdkﬂ)e( 1 2)8(kx2 3) (18)

o Ok s2m—r) = kaam) X (Y )(kikz .. ko)

with X(kk;... k) and Y(kk, ...k, ) satisfying following recurrence formulas

AY(klkg P km) = .‘{(k]kz e km..,l )X{km)

(19)
+Y(kika .. kot )Y (km), (m >2)

Y(kiks...kn) = X(kiks ... kn1)Y (Km)

(20)
~Y(kiks...kn-1)X(kn), (m>2)
The amplitudes Byo(ko) and B;(ko) have also been obtained which we have not given here for
saving space.
Now, let us turn to the validity of the perturbation condition. As examples, we consider the
case of common semiconductors in which the interband coupling between the valence and the

conduction bands is'?

EX%k,
2 /R(E? + K2E, )k

where E, and g are, respectively, the band gap and the reduced effective mass for the pair of

Xo(k)| = (21)

bands. Direct calculation from this result shows that |U()(k,ke)| < /4. Hence, at least. our
results can be applied to semiconductors.

It is worthy to note that the character of the spectrum in the rhree-dimensional case is same
with that of the one-dimensional case, i.e., the spectrum not only involves a linear term in
the applied efectric field, but contains the reciprocal of the applied electric field to all orders.
This implies that the Stark regime will appear sharp for great values of the external electric
field. Such ¢onclusion is qualitatively consistent with Movaghar's theoretical analyses'® and is in
agreement with many experimental results.'*-!® Only in the approximation of the zero order of
the perturbation theory, can the exact Wannier-Stark localization hold. In this case, the spectrum

becomes

n

€

s 2anek,
(=
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It should also be emphasized is that also same with that of the one-dimensional case, the
perturbation condition in the three-dimensional case has still nothing to do with the external
electric field. This is very interesting.

In conclusion, we should like to indicate that since the exact results for the energy spectrum
and the wave functions in the three-dimensional case have been obtained with interband coupling
being taken into account, to caleculate other physical quantities of the system discussed in this

paper up to any order of the perturbation theory is. in principle. straightforward.
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