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Abstract 

The prohl('m of band ('I~drom; in semiconductors under the inflnence of an electric field 

is investi!1;<tt('d wit.h the interband conpling bt'ing taken into account. Exact solutions for the 

(>ner~y spectrum and the wave functions in the three-dimensional case are obtained by Ilsing 

pprturb1l.tion theory, by which it is shown that the energy spectrum not only involves a linear 

tflrm of tltp applip.d electric field. i.e., the Stark ladder, but contains the reciprocal of the 

applipd electric. field to aU orders. This means that the Stark regime will appear sharp for 

IM~e \'alll("s of th~ ~xterna.1 ("Iectric lip.ld in semiconductors. Only in the approximation of the 

7.NO ordN of thp. pertmb1l.tion th"ory, ca.n the exact Wannier-Stark localir.ation hold. 

The Wannif'r-Stnrk loc-alhmtion for hand pteCtrons moving nnder the infl1lence of lattice po­

tentials and e\f'drir fields has heen ext,ensivdy discussed in t.he literat.nre. 1
-

4 To sllch a problem, 

the nnnlytic solntions for the ~ase of one-hancl approximation were presented decades ago,2·3.5, 

from which it was fOHnd th1.'l.t. the extended Blor..h stat.es would localize and ~he continuous energy 

bands would ('\'olve into an even]y spaced Stnrk Iaclder. Fnkuyama, Bari and Fogedby6 then stud­

ied the problem of n. two·hand th;ht-bindinf!; syst.em <l.nd concluded that the t.wo Stark ladderl'l 

existed. ~ach one hf'im~ associated with one of the hands, and they are in some way c01lpled 

to~ether. But. the precise details of the cOllplin~ were not discovered. Of late. this two-hand 

tight-hinding model has been soh'cd an1.'llytically means of the pcrtnrhat,ion theory with t.he 

help of 5U(2) ~::mtl1etry.;- :\Iore rccf'ntly, removing the tight-binding r.onfinement, this method 

has bcen extenfled to the two-hand approximation for the one-dimensional calle quit.eg;pnerally, 

and the exnct solutions for the pnergy spectrnm and t.he wave fundion have heen ohtained under 

the assumpt.ion of w('ak interhnnd ~ollpIinf!;. Howew~r, it is found that the enerp;y spectrum not 

only involves a linc<lr term in the applied electric field, i.e., the Stnrk ladder. hut contains the re­

ciprocal of the applif'd electri~ field to all orders. This means fhat the Stark r(>~ime would appeAr 

sharp for greater vnll1es of the external fielO. s For the case of N-band ;lpproximation (N ~ 3), it 

was also shown that t.he energy spectmm was that of interspa~ed Stark ladders,9 but the precise 

details of the energy structure were not given owing to th" interband coupling. 

In this paper, we investigat.e the three-dimension;:l1 Wmmier-Stark localization in semicon­

ductors with t.nkin!!; into account t.hf! int.erbnnd r.DlIpling hy m~in~ ollr previoHs techniques. The 

Schrodinger equation for an electron in a periodic potential V( r} nnd a constant electric field Eo 

is 

(L + V(r) - eEo. r) iJi(r) fw(r) (1)
2m 

For convenience, we will assume that the eledric field is in the :r direction. By expressing the 

eigenvector 'lifr) as a linear superposition of Bloc-h functions tI'nk{r), i.e., 'li( r) = Lnk Bn( k )!/'nk(r), 

one ohtains the following; equation for t.he amplitmtes Bn(k) in the nk representation 1o.11 

[cn(k) - f eEoX"n(k)­ - L eEoXnm(k)Bm(k) = 0 (2) 
mJO!n 

where £n(k) is t.he energy corresponding to the Bloch function and 

(21r)3 JJ'} • ( ). a ( ) X"m(k) = -n- (' rHnk r t Dk Umk r (3) 
r 

with !lnk(x) hein,l!; the pf'riodic part of t.he BioC'h f1lnd.ion. By int.rodlldnl!; (for Eo f= 0) 

-i lk>lJn(k) B,,(k)exp{ -- (U:~[f. - c,.(k') +f'EnX".. (k')J} (4)
eEo 0 

1tfnm(k) -E {a"m(k) + lk" dk~[:::n(k') -:m(k') 
e 0 0 15) 
-eEoX..... (k') + eEoXmm(k')]} 

with fl'nm(k) sat.isfying 

Xnm(k) =IXnm(k) I exp[ia .• m(k)/rE"J, (n f= m) (6) 

And comlidering the cnse of tW<1-bancl npproxirnntion, Eq.(2) hecomes 

; D~~/If}(k)+ I Xo1 (kl! pxp[ie.,dkW1d k ) = 0 (il 

i D~r 'll(k)+ I I exp[-iB"I(k)jho(k) 

2 

0 
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Setting 

R(k) = (ho(k») S(k) = X(k)O'% + Y(k)O'y (9)
b

1
(k) , 

X(k) - I X01(k) Icos[80l(k)], Y(k) = - I XOl(k) I sin[Bol(k)] (10) 

where 0'7: and 1"1'1 are the Pauli matrices, Eqs.( i) and (8) can be rewritten together as 

flc:;r; 
R(k) = R(ko) i 11.: ", dk1:lS(kdR(k.) 

0 

Noticinp; that from (!J) and (10), we have I S(k) 1=1 Xot(k) ,. Therefore, if the interband coupling 

is smalL Eq.( 11) can be solved by using perturbation theory, i.e., 

R(k) = L
00 

u(ml(k. ko)R(ko) 
m=O 

where 
m Ic:. )

u(m)(k, ko) = (_i)m 
( 
IT 1 dk1:1 8(k1:1 - kx:z)8(kx2 kx3 ) 
1:::1 Ic:o;r; 	 (13) 

.•. 8(k1:(m-l) - k1:m)S(kl )S(k2)'" S(km ) 

with (J( 1.: ) 1 for kx > 0 and 0 otherwise. The function Bn(k) is a.<;sumed to be periodic, i.e., r 
Bn(k) Bn{k + G), where G is the primitive reciprocal-lattice vector. For simplicity, we assume 

that the field is in the direction of the reciprocal-lattice vector. This leads to the Stark-ladder 

energy st.ructures 

:f: 2trneEo 1 JG/2
e :::: e" =-G- + ?G dk1:[c:o(k) + el(k) - eEoXoo(k) _ -G12 

-eEoXn(k)] ± e~o ¢(G/2, -G/Z) , (n = integer) 

where 
(a - 3) co 

dJ(G/2. -G/2) cos-I {cos - ..,- L u!2m)(G/2, -G/2) 
-	 m=O 

-sin (a~!1) f: u~2m)(G/2,-G/2)} 
- m=O 

-1 JGI2 (16)a = 	 -E dkr[eo(k) - eEoXoo(k)] 
e 0 -G/2 

-1 JGI211 = rl1.:r (ed k ) - eEoXI1(k)] 
-0/2 

2m GI2 )
(i~~~)(G/2.-G/2) (_I)'n nj dkrI6(kd-kT2)6(1.:x2­(

1=1 -GIl (18) 

... 8(kx(2m-t) kr2m )X(Y)(k,k2... k2m ) 
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with X(k1 k2 ••• km} and Y(k,k2... km ) satisfying following; recurrence formulas 

X(k1k:z ... km) = X(k.k2 ••• km- 1 )X(km) 
(19) 

+Y(kl k2... km-d'V(km), (m;::: 2) 

Y(k t k2... = X(klk2'" km-dY(km) 

-Y(k.k2 ... km-dX(km), (m;::: 2) 

The amplitudes Bo(ko) and Bl(ko) have also been obtained which wn have not given here for 

saving space. 

Now, let us turn to the of the perturbation condition. As examples, we consider the 

case of common semiconductors in which t,he int~rband coupling between the valence and the 

conduction bands is12 

£3/21,; 

IX01 (k)1 = 2.fii(E; ~ I:"" (21) 

where E'J and I' are, respectively, the band gap and the reduced effective mass for the pair of 

bands. Direct; calc1l1ation from this result shows t,hat 1U{lI(k, ko)j < 11'/4. Hence, at least, our 

results can be applied to semiconductors. 

It is worthy to note that the character of the spectrum in the three-dimensional case is same 

with that of the one-dimensional ca.c;e, i.e.~ the spectrum not only involves a linear term in 

the applied electric field, but contains the reciprocal of the applied electric field to all orders. 

This implies that the St.ark regime will appear for great \"alnes of the external electric 

field. Such conclusion is qualitatively consistent with Movaghar's theoretical analyses l3 and is in 

agreement with many experimental results. 14 - 18 Only in the approximation of the zero order of 

the perturbation theory, can the exact Wannier-Stark localization hold. In this case, the spectrum 

becomes 
= :f: _ 2trneEo ~ JG/2 

e - I'n G 	 + e:dk) - eEoXoo(k)- + 'JG _ 	 -1./2 

eEo 
-eEoXu(k)] ± 2C(O: 

It should also he emphasized is that also same with that of the one-dimensional CMe, the 

pf'rtnrbation condition in the three-rlimensional case ha.'l still nothing to do with the external 

electric field. This is very interesting. 

In conclusion. we shonld like to indicate t.hat since the exact results for the energy spectrnm 

nnd the wave functionl'! in t.he three-dimensional case have been obtained with interband C'ouplin~ 

bein~ taken into account, to calculate ot.her physical ([uantities of the system discussed in this 

paper up to any order of the perturbation titf'ory is. in principle. straightforward. 
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