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ABSTRACT

Based upon the intrinsic reiation Setween the divergent lower point
functions and the converjent higher point ones in the renormaiizable
quantum feid theorres, we proposs 3 new method for regularization
and renormalization in QFT. As an :zample, we renormalize the
" theory ai the ane loop order by means of this method.

PACS:02.20.+b

In the last decades, various regularization and renormalization schemes have heen
developed in the quantum field theory [1]. However, the problem is siill one of ihe
most important issues under investigation in the modera QFT.

In this letter we propose a new method for regularization and renormalization
in QFT and take the ¢' field theory at one loop order as an example to show the
spirit of the method. “The main idea is based upon some simple observations in the
renormalizable QFT. First, there are always, to a definite loop order, a limited number
of lower point correlation functions which are divergent while the higher poiat functions
are convergent and well defined if the number of points is bigger enough. Secondly,
there exist certain intrinsic relations between the lower point functions and the higher
point ones. Namely, the lower poiat functions can be reached as limiting cases of the
number of the points, or the vertices, in the higher point convergent function which
are well defined. This is in fact the crucial property we want to use in our method.

The main points of our method are as follows. In order to regularize a onc particle
irreducible (1PI) n point divergent function, we first calculate the » -+ 2g point func-
tions I™"*39)(p, ... 1y, 0, ---, 0) where the momenta of 2¢ external lines are set to

20
zsto. When q is large enough, ['**29) is convergent and weil defined. It can also be

expressed in terms of py, --+, Pn 20d g. Then we introduce ['™(py, -+, paj ¢; 4#) =
w9, ot pa, G, -+, 0) where g is a constant with the dimension of mass in
E

order that "™ (py, +++, pn; ¢; #) has the same dimension as the 1PI » poiat function.
After calculating I'®N(py, -+, Pai ¢; #), We make an analytic continuation of ¢ from
the integer to the complex aumber and it is called in our scheme the regularized a
point function. The original 1PI n-point function is recovered when ¢ — 0:

My, oo, pris) = Em D (py, ooy poi g5 4) (1)

We call this kind of regularization in our scheme the intrinsic vertex regularization.
The renormalization of the theory in this method is the same as in the usual approach.
Namely, we subtract the divergeat part of the vertices of the theory at eaca loop
order by adding the relevant counterserms to the original action. The aew action is
the renormalized one. The renormalized n point functions are then caiculated from
the renormalized action. When g — 0, we get a finite result for all the correlation
functions.

Let us aow concenizate on the divergent diagrams ia ¢* theory at the one loop
order. We first show that in the ¢* theory the divergent parts of such regularized n
point functions at the one loop order behaves as ¢=* and the convergent parts ead to
finite quaatities when ¢ — 0.

The action of the theory is

' Sigl= [ 22 (30,66% + Tmist = ToY) (2
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where A is the coupling constant. The Feynman rules for the ¢' theory are well known:

= i(p* - m?)

Propagator:

Vertex: = =iA

The superficial degree of divergence for a proper vertex with n external lines (1PI
n-point correlation function) is
§=4~n 3)

Hence the superficially divergent proper vertices at the one loop order are depicted as
the diagrams (a), (b), (¢} and (d) in Fig. 1.

In the momentum space, the amplitude of these vertices are

(a) = ,J' (ml i’:n"-?

) = G T )
(=) +p—=n+p) (&) =)o +22— 51 +p)

It is easy to see rom (4) that (a) is quadraticaily divergent and (4), (c) and (d) are
logatithmically divergent. We can also see from (3) that the diagrams with n > 4
external lines at the one loop order are superficially convergent.

Regularization and evaluation of Feynman integrals:

In order io make the integral =xpressions for (@), (b), (¢} and (d) to be meaningful,
we have to reguiarize them. The regularization procedure is as foilows:

First, we attach to the loop, say in the diag.(a), g vertices or 2q exira external
lines with the momentum of sach exteznal line being zero in order that the diag. (a)
turas o the diag.(¢) ( Fig.2) . Thea 've introduce a dimensional constaat i with the
dimension of mass in order that the dimeasion of (1) equals to the dimension of *¥(a’)
and when g = 0, p*(a’) = {a).

The amplitude 1*?(a’) can then be expressed as

nas s sl dil el .
g (a)=p '5 / (2=)t (1T = miypm (3)

For g large enough, u?(a’) is convergeat and is weil defined. Furthermore, the ampii-
tude £%(a’) can be easily integrated and expressed in terms of the Gamma functions
of q:
2q¢ 4/ ‘ Arrt P(q - 1)
W) = B A T S Tt )

3

This expression does also make sense when we take the continuation of g from the
integer to the complex number. And whea g — 0, *ve have

]E%“z'(a') = %'(%%‘)-35[';: +1+4+ ln(—éf‘:') +o(1)]. ®

where o(1) represents those terms that are regularin q.

Obviously, this mesns that z*3(a’) can be defined as the regularization of (a) and
the procedure of the regularization is completed.

Similasly, we attach to one of the internal lines of diag. (b) g vertices or 2¢ external
lines with zero momeatum and the diag. (b) turns to the diag. (¥) ( Fig. 3). The
dimension of p®(Y) is the same as that of (5) and when g = 0, s*(¥) = (b).

The amplitude of pz’(b’) is
A
s =5 / @) E—m (Gt + DF =) ®)
For q large enough, y*(¥) is convergent and is well defined.
The integration of 4**(¥) can be performed by using the Feyaman parametrization

W) = N2 o (g + 1)a? [ AL

. .
=i F(T=ainree P =ty +pr ) 77
-q
= iV B da (g + Vo gaittrgy (—m? + a(l - a)(m + 72)?) (9
= 2L fda of(-m* + a(l - a)pr + 22))
From this expression, we make the analytic continuation of ¢ from the integer to the

complex number and we regard p*?(¥) as the regularized form of (b). When ¢ — 0,
we find

lim,—o *9(8)
) . — lxu‘z-ﬂ‘ (10)
- (e o b - TR S )

\/1- LT

We can also get the regularized expressions of the diag. (c) and the diag.(d). It
is easy to see that they have the same behavior as the diag.(b) except that p; + ps
substituted by gy = py and p; — p4 tespectively.

Hence we get the divergent proper vertices at the one loop order:
IDp) = i(p? = m®) + §2E(E + L+ In(~ 2 + o(q)] ©
T p1, prs Py, 24)

= =id b 2 (2 + B+ 2a(2F) - A + 1) - Alpry + 73) - Alp + ) +olq)
(1)



where
(o1 + m)? 1= f2ereil Ly

“m=
4ms v,‘l _ fm":-" myd 1
We find that infiniteness of these divergent proper vertices resulted in poles in g. Fur-

thermore, the finite part of these proper vertices are arbitrary depending in our scheme
on the mass parameter u.

1
Alp +2) = 341

Renormalization at the one loop order:

In order to climinate these divergencies in ¢ at the one loop order, we may add some
counterterms to the original action. These counterterms, in general, can be written as

3(Z = 10,40 + 26m3¢" + LX(Za — 1" (12)

where Z,, 5m? and Z) are some constants depending on ¢, m, A and p.

Hence the renormalized action 5,(¢) is:

S.{g] = [ d'a (10,9049 + Imé® + S4*

+1(Z4 - 1)8,60¢¢ + Jm*# + kN2 - 1)¢") @
If we choose 2, §m? and 2, to be
Zy=1,
§m? = 2= L+ (1), (14)

Zy=1+ g2t +o(1),
wheze (1) represents those terms that are regular in ¢ and can be determined by the

tenormalization conditions, we find chat all the correlation functions of @' theory have
a finite small ¢ limit at :he one loop order.

If we redefine
by = V2,0, mi=Z Y (m+im®), Xo= 272
the renormalized action {13) can be rewritten 2s
o) = [ 4'2 (Fhumian + Smivd - 2245), )

where @y, mg and Ay are the so-cailed bare quantities. The physical quantities ¢, m
and A can be expressed in terms of these bare ones{2].

The bare 1PI n point function (21, -+, Bai Aoy Ma, q), telate with the renor-
malized function I¥)(py, -+, pn A, m, g, ¢) through

T8es, ooy Pai Ao Moy @) = Z5 T py, ooy pas A, my sy q) (16)

We note that the left hand side of eq. (16) is independent of 4. Based upon this
observation, it is easy to get the renormalization group equation:

a g
B"a; +)3(A) %,q)'gx +'fm(‘\!%:q)a 27¢'(’\i )q)}r( )(Pl) ’pru’\y m’l‘r Q)
(17)
where

0 a m ln Z.g
B(A, "‘1?)=i‘a sy Tl 14)" 3 5. £ 74(A, !‘1) E o
Further discussions on the renormalization group equation are the same as that in the
dimeansional regularization method.

The new method of regularization and renormalization proposed here is very simple
and useful. It wotks not only for the ¢* theory but also for the QED, chiral fermionic
theory, QCD and other field theory models. The relevant results will be presented
elsewhere [3].
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Fig. 2: The regularized diagram of (a).
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Fig. 3: The regularized diagram of (b),
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Fig. 1 : Divergent diagrams at the one loop order.

P

P4

P,

M





