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Abstract 

The deformation maps as well as the general algebraic maps among 

algebras with three generators are systematically investigated in terms 

of symplectic geometry and geometric quantization on 2-D manifolds. 

From which the explicit Hamiltonian of Heisenberg model with SUII ( 2) 

symmetry and arbitrary spin values are given. The deformation sym

metries in differential dynamical systems and the q-deformed trans

formations of SO(3) group in usual R3 are also discussed. 
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I. Introduction 

It is well known that the Lie algebra and Lie group play very profound roles in 

physics. The representations and transformation properties of Lie algebra and Lie group 

as well as their applications have been throughly investigated. For the case of " quantum 

algebra» and " quantum group" [1-4), there also have been some significant applica

tions in exactly soluble models in statistical mechanics [5), conformal field theory [6), 

integrable model field theories (7) etc. together with a great deal of progress in under

standing their algebraic structures and geometric properties.' However, it has not been 

fully understood yet if there are more applications of them in physics, especially to the 

fundamental laws in physics. 

Recently some efforts have been made in this direction. In terms of non-commutative 

geometry approach, it has been tried to " quantize" the usual physics theories such as 

gauge theories [8), Dirac equation [9), Lorentz group [10) and quantum mechanics (11) 

etc., though the true physical implications of such a " quantization" are not manifest 

currently. On the other hand, direct observations of usual physical system with " 

quantum group " SUq(2) symmetries are also made in atomic and molecular spectra 

(12). The Hamiltonian system with SUq(2) symmetry are also constructed in the usual 

commutative differential manifolds, for examples, the q-rotator and q-top [13). A system 

of obvious SUq (2} symmetry ~r the well-known XXZ Heisenberg spin-! chain model with 

boundary terms [141(15). "Nevertheless, much attention should be paid in order to fully 

explore the roles played by the " quantum algebras" and " quantum groups" in physics. 

We have shown that the " quantum algebra n, the q-deformation of Lie algebra, 

can be realized both at physically classical and quantum levels with manifest geometric 

meanings [16J{17}. The key points of our observation are that: 1. the "quantum alge

bras" and « quantum groups" are in fact a kind of deformation symmetries to describe 

certain deformations of the well-understood systems with ordinary Lie symmetries both 

at classical and quantum levels. 2. Certain one-to-one correspondences betweeIfuie 

algebra generators and their counterparts in corresponding "quantum algebra" can be 

given by a kind of maps, which are induced by quasi-conformal deformations, both at 
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classical and quantum levels as well. These imply that there should be a lot of applica

tions to be explored for the "quantum algebras" and " quantum groups", which could 

be at least as many as that of the ordinary Lie symmetries. 

In this paper we continue the research made in [16][17J to present a more system

atic description for both Lie algebras and their q-deformed counterparts by means of 

symplectic geometry and geometric quantization, so as to show some mathematical 

structures of "quantum algebras" and " quantum groups" in the usual commutative 

manifolds and to explore some physical implications of them. For the sake of simplicity, 

we mainly concentrate on the Lie algebras with three generators, although the approach 

may be generalized to arbi trary Lie algebras by means of the symplectic geometry on 

the coadjoint orbits of Lie groups. We first systematically investigate these deformation 

maps as well as the general algebraic maps among algebras with three generators on 2-D 

manifolds. Then, based upon that the "quantum algebras" are a kind of deformation 

~ymmetries, we give the explicit Hamiltonian of Heisenberg model with S[71(2) symme

try and arbitrary spin values. We also study the deformation symmetries in differential 

dynamical systems and the properties of q-deformed transformations of SO(3) group in 

usual R3. 

The paper is arranged as follows: In section 2, we give relations between the sym

plectic geometry of smooth 2-D manifold and the algebras with three generators and 

their deformed counterparts. The classical (Poisson) algebraic maps among algebras 

and their q-deformed counterparts are analysed in detail. In section 3, we discuss the 

general maps among different algebras in Lie commutators, including the case between 

SU(2) and SUq(2) algebras presented by Curtright and Zachos (18J, by rqeans of geo

metric quantization method. In section 4, by means of the deformation maps we show 

the general expression of Hamiltonians of the Heisenberg spin chain models with SUq(2) 

symmetries for arbitrary spins. The generalizations to higher dimensional cases are also 

studied. In section 5, we investigate the deformation symmetries in the solution space 

of radial Schrodinger equation of free particles. It is shown that this space is of SU,,(2) 

algebraic symmetries in terms of the algebra maps between SU(2) and SUq(2). Section 

6 is dedicated to survey the q-deformed transformation of SO(3) group in the usual R3 

space. Some conclusion remarks are given in section 7. 

II. Symplectic Geometry and Classical Deformation Maps 

We first briefly recall some contents of symplectic geometry being used in this paper. 

The basic object is the symplectic manifold (M, w) [19) which is a smooth manifold M 

with a symplectic two form w on it. w is closed and non-degenerate, i.e. 

dw=O, x = 0 il XJw = 0, . 

where X are vector fields on M and J denotes the left inner product defined by 

(XJw)(Y) =w(X, Y) for any two vector fields X and Y on M. 

The canonical transformations are w-preserving diffeomorphisms of M onto itself. 

And a vector filed X on M corresponds to an infinitesimal canonical transformation if 

and only if the Lie derivative of w with respect to X vanishes, 

LXW =XJdw + d(XJ"-') =0 . (1) 

A vector field X satisfying (1) is said to be a Hamiltonian vector field. It can be proved 

that for a smooth function I on M there exits a unique Hamiltonian vector field X f 

satisfying 

XfJw = -dl . (2) 

The Poisson brackets of two ~mooth functions I and 9 is defined to be the function 

-w(Xf,Xg) with rela.tions 

[/,9)P.B. = -w(Xf,Xg) = w(Xg,Xf ) = -Xf9 = XgI . (3) 

In the symplectic approach we find that the algebras with three generators are 

tightly related to 2-D manifolds [17J. For example, the Poisson algebra for SU(2), also 

for SO(3), is 
3 

lSi, Sj)P.B. = L f;j"S" i,j = 1,2,3. (4) 
"=1 

From (3) we may easily write that 

3 a 
XSi =" L- fij" S·-. (5)J as" 

j" 
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By writing down a general symplectic two form and using formula (2) we immediately 

have 

SI dSl +S'1.dS'1. +S3dS3 = O. 

Hence 

S: +S~ + S~ =SJ, (6) 

where So is an integral constant. Therefore the three generators of SU(2) constitute 

a 2-D manifold, the sphere S'1. with radius So in R3. In Cact, it is well known that 

the sphere S'1. is a coadjoint orbit oC both SU(2) and SO(3). Some of other examples 

presented in the Collowing are also of this property. But this topic is beyond the scope 

of this paper. 

Similarly for the algebra SU.,(2), and also for SO.,(3), 

[S~, S!1P.B = ![?S'} sinh 2-y53' [S;, S;]P.B. = S~ 1 [S;, Sap.B. = S~ , (7)" .. '1.- 39=--:.-:::!.2sinh-y , 

q1: _ q-1: 
where [x)., = ---1- and q = e'1 is the deformation parameter, we find that the three 

q - q
elements S; of SU,,(2) constitute a 2-D q-deCormed sphere S:' 

S~'1. +S;'1. + (sin~-yS;)'1. _ ''I. (8)-ysmh-y - So , 

where S~ is a constant. In fact from the prequantization condition we have [17J S~'1. = 
(sinh '1So)' 

-ysinh")' . 

On the other hand we also find that a smooth 2-0 manifold uniquely corresponds 

to a certain algebra [17J. For a general manifold M defined by 

I(S" S'1., S3) = 0 , (9) 

the corresponding Hamiltonian vector fields of Si'S are 

3 al a 
xs, = LaEijlras. as ' (10)

iilr J" 
where a is a constant. The symplectic form can also be obtained and the Poisson alge

braic relations of Si'S are uniquely given by manifold (9) up to algebraic isomorphisms 

as a is a constant, 
al 

lSi, Sj]P.B. = a E3 
Eij. as,. . (11) 

k 

5 

For 2-D sphere S'1. defined by (6), we get the Poisson SU(2) algebra (4) by taking Q 

to be i, Hamiltonian vector fields (5) and the symplectic form 

-1 3 

W = 25'1. L fij.SidSj /\ dS•. (12) 
o ,j" 

For the q-deformed manifold S: defined by (8), we get the Poisson algebra relations (7) 

of SU.,(2) and symplectic form 

, 1 (S'dS' d5' 5'd5' dS' tanh -yS;dS' dS')w =-COI'1. t '1./\ 3+ '1. 3/\ t+ 1" '1.' (13)
uo -y 

More examples can be readily given. For the case of one sheet hyperboloid 

S~ + S~ - SJ = constant , (14) 

from formula (l1>,.taking the constant Q to be i we immediately have 

[Sb S'1.Jp.B. = -S31 [S'1.,Sa}p.B. = St, [S3,S.}P.B. = S" (15) 

which is the well known algebra SU(1, 1). The only difference between the related 

manifolds of SU(2) and SUet', 1), defined by equations (6) and (14) respectively, is the 

sign of the term with S3. The manifold related to the algebra SU.,(I, 1) is the q-deformed 

one sheet hyperboloid, which is different to the manifold (8) of SU.,(2) by a sign of the 

third term on the left hand. 

For the the case of elltptic paraboloid 

H2 +H2 - H3 = -
1 

, (16)J '1. 2 

we have 

[HbH,Jp.B. =-2'1 
[H"HaJp.B. =Ht. [H3,Htlp.B. = H, . (17) 

This is just the simple harmonic oscillator algebra 1i(4) [20J. It is easy to find that the 

following q-deformed elliptic paraboloid 

Hn HI2 sinh(2,,),H3) sinh ")'+ - ---- (18)
I 'I. 2")'cosh-y - 2-ycoshh) 
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gives rise to the q.deformed simple harmonic oscillator algebra 11,,(4) [21), 

"} cosh(2,.H;) [Il' H'} H'[Ht ,H2 P.B.= "'cosh,.' 2' 3P.B.= 11 [H~, H:}p.B. =H; . (19) 

Another example we would like to mention here is the hidden symmetry in Kepler 

problem on two dimensional sphere. This symmetry is depicted by the algebra proposed 

by Higgs [22), 

[R.,R,}P.B.= ~(~-8E)L+8~L3), [R2,L}p.B.=Rl , [L,R l }p.B.=R2 , (20) 

where ~ is the curvature of the sphere, E is the energy eigenvalue, Rt and R2 are the 

Runge-Lenz vectors, L is the angular momentum of the third direction. 

From formula (11) it is easy to find that the 2-D manifold with respect to algebra 

(20) is 

R~ + R~ + ~(A - BE)L2+ ~L" =CH , (21) 


where CH is a constant. CH is related to So in terms of the prequantization condition, 


CH =i(A - 8E)S~ + ~56 . (22) 


It should be noted that the Higgs algebra (20) is in fact isomorphic to the second

approximation of SUq(2) algebra (7). The invariant S~ in (8) becomes CH in (22) when 

it is expanded to the second order of deformation parameter,.. And the manifold (21) 

is a second order expansion of S:. 
In this way the Poisson algebraic structures for all the smooth 2-D manifolds can 

be obtained though the algebra may be not familiar to us. For example, the manifold 

torus 

( / S~ +S~ - a)2 +S~ =r2 , (23) 

where a and r are constants, gives rise to a Poisson algebra 

aS1 n.5'-z 
[SI,S2}P.B. = S3, [S2, S3)P.B. -- Sl-~--2' \;.::',\)~ +S2 

Here what we want to discuss are the maps among different algebras in terms of their 

related manifolds. As a significant example we consider the algebra SU(2) (SO(3» 

7 

and its deformed counterpart SUq(2) (SOq(3». The corresponding manifolds are S2 

and S: defined by equations (6) and (8) respectively and related by a quasi-conformal 

transformation when q is real [17). From the discussions above it is clear that~ in terms 

of symplectic geometry, the algebra and manifold have one to one corresponi!ence up to 

algebraic isomorphisms. Let Si, i=I,2,3, be the generators of SU(2) and hence satisfy 

the equation of S2. Let S: = Si(SIt S2,S3), i=I,2,3, be funCtions of S2. Then we have 

the following conclusion: 

The new" observable!" S~ =Si(S"S2,S3) constitute the SUq(2) algebra in 

Poisson brackets if and only if Si satisfy the eq. (8) of S:. 
The proof is straightforward. By using eq. (6) we rewrite the symplectic from (12) 

on S2 as 
1 

w = - S3dS, AdS2 . (25) 

. The Hamiltonian v~tor fields of S: with respect to (25) are simply 

as! a as! a 
(26)Xs: =S3( as: as. - as: as2) . 

From formula (3) and that Si constitute the SU.,(2) algebra (7) we have 

_S3(as~ as~ _ as~ as~) = sinh(2,.S;) 
aS2aSl aSt aS2 2sinh,.' 

-S3( as; as; _ as; as;) = s; (27)
aS2as. as. aS1 ' 

-5 (a:s-; as~ _ as; as~) =S' 
_,3 aS2as. aS1 aS2 '2 , 

which give rise to 


' as; 5' as; sinh(2,.S;) as; 0

S -+ -+ = , i = 1,2,3, 

1 aSj , as. 2sinh,. 8S. 

i.e. 
.i..(SI2 +SI2 + (sinh ,.S;)2 ) = 0 . 
aSj t 2 7 sinh,. 

Hence S: satisfy the eq. (8) of the deformed sphere S:. The inverse conclusion is obvious 

from formula (11) and discussions above. And similarly if S; are elements of SUq{2), 

we can pr~ve that the functions Sj = Si(S;, S;, S;) on S: constitute the SU(2) algebra 

if and only if Si satisfy the eq. (6) of $'2. 
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In fact, for arbitrary two algebras with generators (51t 5" 53) and (5~, 5~, 53) sat

isfying equations 1(51 ,5,,53 ) = 0 and g(5;, 52' 5;) = 0 respectively, there may exist 

many kinds of maps between generators 5i and 5:. 5i and 5; can be expressed mutu

ally. Namely, one algebra can be realized through another one. The only requirement is 

that both the constraint equations be satisfied. In this way the algebraic maps between 

5U(2) (50(3)) and 5Uq(2) (50.,(3», 1£(4) and 1£,,(4) as well as other algebra pairs 

such as 5U(2) and 1£(4), 5U.,(2) and 1£,(4) can be investigated similarly. Here is a kind 

of algebraic maps between 5U(2) (50(3)) and 5U,(2) (50,,(3», 

5' - 1 5 sinh7(50 T 53) s' - 5 (2S)±-~ ± 50 T 53 3- 3, 

where 5~ = 5; ± i52and 5± = 51 ± iS2• The maps (2S) are so selected that, in terms 

of (6) and (S), when 7 approaches zero 5; becomes 5i apparently. As 5±.3 and 5~.3 can 

be expressed by the complex coordinates on 5' and s: respectively, while the complex 

coordinate transformations between 52 and 5: are quasi-conformal ones when q is real, 

hence hidden in all deformation maps between 5U(2) (50(3» and 5U.,(2) (50'1(3» 

there are quasi-conformal transformations for real q. 

The classical maps between 1l{4) and 1£,(4) algebras can also be obtained from the 

related manifolds (16) and (IS). For example, 

H' =sinh7(Ha + I) H . H' = cosh7(H3 - i> H H' =H (?9)
+ (H3,7+1) + ,- h - , 3 3 , cos 7 

where H± =HI ±iH2• And from the manifolds (6) and (21) we have the algebraic maps 

between 5U(2) and the Poisson Higgs algebra (20), 

R+ = S+ (AS, - V2E -A~ - ~ ) 


R_ =5_ (~S' +V2E -~~ - i). L=S, . 
(30) 


where R± =RI ± iR2• 

Similarly, the deformation maps between 5U{1, 1) and 5U,(I, 1) can also be readily 

given. And although we only proved that 5: = 5:(5,,52,53) constitute the 5U,,(2) 

algebra in Poisson brackets if and only if 5: satisfy the equation of 5: for the algebraic 

maps between 5U(2) and 5Uq (2), the similar conclusions can be obtained for all other 

algebraic maps above. 

III. Geometric Quantization and Operator Deformation Maps 

The Poisson algebra can be realized in Lie commutators from prequantization and 

geometric quantization method [19}. The prequantization line bundle and quantum one 

exist if and only if the symplectic form, up to a dimensional constant factor, defines an 

integral de Rham cohomology class. For the cases of 5U(2) and 5Uq(2), this prequanti

zation condition requires that 50 = jIJ and 5~ = ~nh(?~) respectively [11}. Where IJ 
7 sm 7 

is a dimensional constant and j take values of integers and half integers. The discrete

ness of 50 and 5~ values are due to the topology of the manifolds (6) and (S). Only 

when IJ is taken to be the Planck constant Ti, it stands for physically quantization. The 

. prequantization operators of the 5U(2) and 5U,(2) elements can be expressed in terms 

of the complex coordinates and their derivatives on (6) and (8) respectively [17). When 

polarization is introduced, these prequantization operators become quantum ones. 

For equations (6) and (S) we have their operator versions, 

S+S_ + S~ =j(j + 1) (31) 

and 

S'S' sinh75;sinh7(S; -1) _ sinhhj)sinh(-yU + 1) 
 (32')

+ - + .7 sinh 7 - 7sinh7 ' 

where S± = 51 ± is,, S~ .~ 5~ ± i5i, Si and 5: are operator representations of 5i and 

5; respectively, and for simplicity the constant IJ has taken to be unit. 

The operators with respect to eq. (32') give rise to an algebra isomorphic to 5Uq (2). 

In order to compare with the usual results we may redefine S~ and S~ by multiplying 

JSinh 7a fa.ctor -7-' Then eq. (32') becomes 

5~S~ + [5;),,[5; - II" =[j)q[j + II, , (32) 

which corresponds to the 5U,(2) algebraic relations 

[5~, 5~1 = [2S;lq [5;, S*] =±S* (33)I 
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with co-product operations 

6(5;) s;® 1+ I®S;, 
(34) 

6(S~J = q~~ ® 5* + 5* ® q-!; . 

The equations (31) and (32) are the necessary conditions for the operators of SU(2) 

and SU'I(2) respectively. One example is the harmonic oscillator representations of 

SU(2) and SUq(2). The direct calculations show that the operators of SU(2) and 

SUq(2) in oscillator representations satisfy the eqs. (31) and (32) respectively [17}. 

The eqs. (31) and (32) are hence the guiding equations for the operator maps 

between SU(2) and SUq(2). For example, an operator map related to (28) found by 

Curtright and Zachos (IS} is 

~, (j - 531. 1 A sinh7U - 53)A

S+ = S+--~- = -:--hS+ • ,
j - S3 sm 7 j - S3 (35) 

5' - 5 li + S31q S' - 5 
- - - j + 53' a - 3, 

where the terms with operators in denominator do not exist in fact because of the sinh 

function in numerator. Hence operators 5*.3 in eq. (35) are well defined. In fact j may 

be an operator and S±, S; still constitute an SU'l(2) algebra as long as j is an invariant 

of SU(2). 

Similarly, by prequantizing and quantizing the corresponding manifolds, the guiding 

equations of maps among SU(I, 1) and SU.(I, 1),11(4) and l1q(4) can also be obtained. 

Here we discuss the maps between 11(4) and l1q( 4) algebras. The operator version of 

equations (16) and (IS) are 

A ~ I A 

H+H_ - 2(2Ha - 1) = 1 (36) 

and 
A, • I 1 [A I I (37)H+H_ - -2h 2H3 - 1 q = 1 

cos 7 

respectively. Where H± = fIt ± iH" H± = H~ + iH, and H± have been redefined 

by multiplying a constant factor ~h . H± 3 and H± 3 constitute the 11(4) and 11'1(4)
sm 7' . 

algebras in Lie brackets 

[H+,H-l = -1, [Ha,H±1 =±H± . (38) 

[H' H' J - cosh(27H;) (11' H' J - ±H' (39)+, - - cosh 7 ' 3' ± - ± . 

Let H; =H3 • From (31) we have 

H~H~ = 2sinh7(H3 + l>coSh 7(H3 - n (40)
sinh 27 

~.. .. 1 
From (36) that H+H_ = Ha + 2' we can rewrite eq. (40) as 

.. t ~ 3 
H~H: = sinh7(H~+ 2) H+H_ cosh'Y(Ha - z). (41)

sinh 7' (H3 + ;) cosh 7 

. Therefore we get a 'kind of maps between 11(4) f\.lld 11,(4) algebras, 

• .. 1 • I 

H~ = sl~h""(Ha.+ i) H+, H: = cosh-y(Ha - 1)H_, H; =Ha , (42)
(H3 + I)smh.." cosh.." 

which are related to the classical deformation map (29). It is easy to check that Hta 

satisfy relations (39) in terms of (3S). And when q approaches one H~ become H±. 

Similarly, in terms of the symplectic form on (21) and the prequantization condition, 

we find the invariant ell related to Higgs algebra (20) takes discrete values, 

eH = ~(A - 8E)P + ).i't , 

where j is an integer or half integer. This is why we say that classically eH has the 

form of (22). The manifold (21) in operator version becomes 

R+iL + ~(A - SE)L(L -1) + )'L2(L -1)' = ~(A - 8E)j(j + 1) + ).j2(j + 1)2 (43) 

with the Higgs algebra in Lie commutators, 

[L, R±I = ±~ , 
(44) 

[R+,R_I = ~[(). - SE)L + 8)'L31 , 
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where i4 =Rl ± iR'l' The multiplication o( this algebra is obviously non-commutative. 

However it is not a " quantum algebra" unless non-commutative co-multiplication and 

antipode can be constructed in its universal enveloping algebra. 

Equation (43) is the guiding equation (or algebraic maps. For instance, maps between 

Higgs algebra (20) and SU(2) algebra can be obtained from equations (31) and (43): 

R+ = S+ [v'XS3  (J2E -Aj<i +1) - V;)] 
iL =S_ [v'XS3 + (J2E - Aj(j + 1) - ~)] L= S3' 

The R±.3 in above map satisfy the equation (43) in terms o( the relation (31). 

IV. Heisenberg Spin Model with SUq(2) Symmetry 

In this section we discuss the Heisenberg spin model by using the maps (35). The 

spin-~ Heisenberg x..XZ chain model was studied in terms o( the Bethe ansatz in 1966 

[23). It is found that this model with a boundary term is o( SUq(2) symmetry [15). 

Accounting to this symmetry this model can be analytically solved [24)[26]. The spin-1 

Heisenberg XXZ chain model with SUq(2) symmetry was also constructed [27]. And in 

principle the SUq(2) invariant Hamiltonian of this model (or higher spin cases can be 

obtained from fusion rules. Nevertheless it is not easy to get the general expressions. 

Here we are going to give an SUq(2) invariant Hamiltonian for arbitrary spin values. 

Let 11 denote the left hand side o( eq. (32), 

1'1 =S~S~ + [S~]q[S~ - 1]'1 • 

From eq. (32) we know ,that Iq is an invariant under actions o( SUq(2). Hence the 

co-product, 

I! a (C - 11 ) =Cl ® 1 

- (q'lS; ® S~S~ +q~S~ ® S~q-$; + S~q$~ ® q-~S~ + S~S~ ® q-:lS; (45) 

1 ( , , , ') q + q-l )+ q-l q'lS3 ® q'lS3 + qq-'lS3 ® q-'lS3 _ 1 ® 1
(q _ q-l)'l (q _ q-I)'l 

also commutes with the co-products (34) of SUq(2) Hop( algebra elements, where C is 

an arbitrary constant. 

Now we consider a chain with N + 1 sites. Let 

'ei = 1(1) ® ... ® 1(i-l) ® I! ® 1(i+2) ® ... ® 1{N+l) • (46) 

Correspondingly we have the SUq(2) elements in N-fold co-products, 

N+l A • S! 
s~ot 6(N) (s±) =L qS; ® ... ®q"; ® S~i) ® q-S; ® ... ®q- 3 , 

i=l (47)N+l 
s~tot 6(N)(S~) = L l®· .. ®1®Sa(i)®1® ... ®1. 

.=1 
It is easy to prove that 

lei. s~totl = 0 , a = 3,+ and - . (48) 

Therefore the Hamiltonian defined by 

N 

H"=Lel (49) 
i=l 

is of SUq(2) symmetry. Where the term ei stands for the nearest interactions between 

spins at sites i and i +1. However St 3 in Hamiltonian are not the usual spin operators 

since they constitute SUq(2) algebra rather than SU(2). To make (49) a Heisenberg 

Hamiltonian S±. 3 should be e~pressed in terms of the SU(2) generators S±. 3 by using 

the "quantum" deformation maps (35). In this way we get a general expression o( 

1-D Heisenberg Hamiltonian with SU'l(2) symmetry, arbitrary spin values and nearest 

interactions. 

The SUq(2) invariant Heisenberg Hamiltonian with non-nearest interactions can be 
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similarly obtained by using co-multiplications [25]. Let 

I: 	 = 6(2,(C' - If) = (6 ® id)6(C' - If) 

5~&_ ® q-2S; ® q-d; + 5~qS; ® q-S;5~ ® q-2S; + qS;5~ ® 5~q-S; ® q-2S; 

+q2~ ® 5+5~ ® q-2S; + 5+qS; ® 1 ® q-S;S~ + q2S; ® 5+q5; ® q-S;5~ 

+qS;5~ ® 1 ® 5+q-.( +q25; ® qS~ 5~ ® 5+q-S; +q2S; ® q2S; 0 5~S~ 

+(q-t q2S; ® q2S; ® q2S; + qq-2S; ® q-2S; 0 q-2S;)( q _ q-t >-2 

-(q+q-t)(q_q-l>-210 1 0 1 , 
(50) 

where C' is an arbitrary constant. Then 
N-t 

Hnn= E Wi 	 (51) 
i=1 

is an expression ofSUq(2) invariant Hersenberg Hamiltonian with non-nearest neighbour 

interactions for general spin values in terms of maps (35). \Vhere 

Wi = 1(1' ® ... ® 1(·-1, 181 I! 181 1(1+3) 0··· 181 l(N+1, (52) 

represents three body interactions of spins at sites i, i + 1 and i + 2 and the interactions 

between spin pairs at sites {i,i + 1}1 {i + l,i + 2} and {i,i +2}. 

For the case of spin-~, the generators of SU(2) can be expressed as Pauli matrices, 

1 1(1 0) 	 . (0 0)
0'_ 053 = 20'3 =: 2 0-1 s. = u. = (: :) S- = = 1 . (53) 

Which is also a trivial expression of SUq(2) from maps (35), i.e, 

5~ =5:1:, 5; = 53. (54) 

However the co-product operators (34) and (47) are not trivial ones. They really give 

rise to an SUq(2) Hopf algebra. In order to compare with the usual results, we take C 

in (45) to be (q +q-l]. From (53), (54) tlnd (45) we have 

1 q +q-l [ q +q-t
I~U = 2) 	 -4-101- 0'+ 00'_ + 0'_ ® 0'+ + --4-0'3 ® 0'3 

_q-4
q
-

1 

( u3 01-1®0'3)] 

(55) 

This is the usual result and ej defined by (46) constitute the Temperley-Lieb-.lones alge

bra. In terms of these algebraic properties this Hamiltonian system, with Hamiltonian 

given by formula (49), can be exactly solved [241(26). 

When q approaches one, the Hamiltonian becomes the one with SU(2) symmetry, 

HnU = !) = ! - 2 t 81 • 8;+1 , 	 (56) 
2 2 ':01 

where 8=(5.,52,53) and 51 are given byeq. (53). 

For spin-~ case formula (50) becomes 

I~ (j = ~) =e'l ® 11811 - [2q(q6 - 3q<t + 3q' - 1)0'+ ® u_ ® 0'3 

+2q(qt'l - 3q4 + 3q2 -1)0'_ 00'+ 00'3 +2q(_q6 +3q4 - 3q2 + 1)0'3 ® 0'+ 00'_ 

+2q( _qt'l + 3q4 - 3q2 + 1)0'3 ® 0'_ 00'+ + 2q( _q6 + q~ +(l- 1)0'+ ® 0'_ ® 1 

+2q( _q6 + q" + q2 - 1)0'_ 00'+ ® 1 + ( _q8 +2q6 - 2q4 + 2q2 - 1)0'3 ® 0'3 0 1 

+4q'(_q4 + 2q2 - 1)0'+ ® 1 ® 0'_ +4q2( _ql + 2q2 - 1)0'_ ® 1 ® 0'+ 

+2q2( -q" +2q' - 1)0'301 ® 0'3 + 2q( _q6 + q4 +q2 -1)1 ® 0'+ ® 0'_ 

+2q( _q6 + q4 + q2 _ 1)1 00'_ 181 0'+ + (_q8 +2q6 - 2q4 +2q' - 1)1 ® 0'3 ® 0'3 

+(_q8 +2q6 _ 2q2 + 1)0'3 ® 1 ® 1 + (q8 - 2q6 +2q' -1)1 ® 1 ® 0'3 

+2( _q8 _ q6 +2q5 +2q3 _ q' - 1)1 ® 1 ® 1] (4q'(q4 - 2q2 + 1»-1 
.: (57) 

The related Hamiltonian ·given by eq. (51) is of three spin interactions as well as two 

nearest spin interactions and next-to-nearest neighbour interactions. 

It is notable that when q approaches one, (57) becomeS 

I:=lU=~) = ~101®1-[0'+®0'_®1+0'_®0'+®1 
+0'+ ® 1 ® 0'_ +0'_ 0 1 ® 0'+ + 1 ® 0'+ ® 0' _ + 1 ® 0'_'00'+ (58) 

+t ( 0'3 ® 0'3 0 1 + 0'3 ® 1 0 0'3 + 1 ® 0'3 ® 0'3)] , 

where e' in (57) has taken to be 15. The terms representing three-spin actions in (57) 
. 4 

dispear_ The corresponding Hamiltonian (51) becomes the one with SU(2) symmetry 

and ,nearest as well as next-to-nearest neighbour interactions. 
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In fact for q = 1 the interactions among spins at i, i + 1 and i + 2 are triangular 

ones. Therefore the Hamiltonian Hnn with next-to-nearest neighbour interactions in one 

dimension is in fact equivalent to the 5U(2) invariant Hamiltonian with nearest trian

gular lattice interactions of a two dimensional band. And generally for the case of q = 1 

the lower dimensional Heisenberg spin model with higher order non-nearest interactions 

corresponds to higher dimensional one with lower order non-nearest interactions 125J. 

For spin-I, the matrix representations are 

10 0) (010) (000)
53 = 0 0 0 ,5+ = v'2 0 0 1 , 5_ =v'2 1 0 0 (59) 

( 
o 0 -1 0 0 0 0 1 0 

From the maps given by (35) we have 

0 1 0 	 0 0 011

5; = S3, s~ = v'2 0 0 q+2q-

1 s~ =v'2 q +2q-
J 

0 0 . (60) 

[ [ 
000 o 1 0 

They can be simply related to 53.:!: by similarity transformations, 

S;,:!: - A-'S;.:!: A, 

where A. is the transformation matrix 

--- 0 0
q+q-Jf!i. 
010.4= 

o 0 J 2 q +q-l 

After this transformation we have another kind of expressions for 5~, 

AI 	 AI AJq ;.: q-I .. 	
(61)5:!: = -2-5-1;, 53 = 53' 

It is ea.c;y to check that S;.:!: in both equations (60) and (61) satisfy the 5U.,(2) algebraic 

relations (33). 

Substituting expressions (61) into formula (45) we get 

I!(j = 1) 	 4:3 [(q6 _ q" _ q' + 1)5~ 0 5~ - (q6 + 3q" +3q' + 1)53® 53 


+(_q6 _ q4 + q' + 1 )5~ 0 53 + (q6 + q4 - q' - 1)530 5~ 


+2q(q4 - 2q3 + 2q2 - 2q + 1)(5+53® 5_53 + 5_5305+53) 

+2q( _q3 + q' - q + 1)5_5305+ + 2q'(q3 - q' + q - 1)5+ 05_53 

+2q(q3 _ q' + q -1)5_ ® 5+53 + 2q'( _q3 + q' - q + 1)5+5305_ 

_2q(q2 + 1)5_ 0 S+ - 2q3(q' + 1)5+ 05_ 


+2(_q6 + q4 + q' -l)(S~ 01 + 10 Sn 


+2( _q6 _ q4 + q2 + 1)5301 + 2(q6 + q" - q' -1)1053 


+4q2( _2q2 +qC - 2»1 0 IJ . 

(62) 

In this way we obtain the Heisenberg spin-1 chain Hamiltoninn of 5U1(2} symmetry 

with nearest neighbour interactions, 

N 
Hn(j = 1) = E 1(1} 0·" 0 l(i-l} 01!U = 1) 0 l(i+'l} 0··· 0 I(N+J) , (63) 

i=1 

which is different to the Hamiltonian presented in (271. And when q approaches one we 

have 
2'. 4 'A 4 A A A 

1.,=1(1 = U= 10'1- (5+ ® 5_ + 5_ 05+ +253053), (64) 

The Hamiltonian (63), corresponding to (56) for the case of spin-~, simply becomes 

N 
H..(j = 1) =1 - 2 E §(i) . §(Ht), 	 (65) 

i=1 

where the constant C has taken to be 3, S = (51, S" 53) and 5 i are given by eqs. (59). 

The Hamiltonian (65) is obviously of 5U(2) symmetry as it should be. 

The Heisenberg spin-1 chain Hamiltonian Hnn(j = 1) with three spin interactt6ns 

and 5U.,(2) symmetry can be similarly obtained by substituting (61) into formula (50). 

The equivalence between the lower dimensional Heisenberg spin model with higher ord~r 
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non-nearest interactions and the higher dimensional one with lower order non-nearest 

interactions can also be similarly studied. 

V. Deformation Symmetries in Differential Dynamical Systems 

Now we discuss the "quantum group" symmetries in dynamical systems. To this 

end, we first recall the Lie symmetry cases. 

It is well known that for a linear differential equation 

6(1(Xi) = 0 , (66) 

where 6 is a linear differential operator and Xi are independent variables, the operator 

5 is said to be a Lie symmetry operator for the eq. (66) provided {28J 

[5,6} =R(Xi)6 , (67) 

where R(xj) are complex-valued functions of XiS or differential operators. 

Let F denote the solution space of differential equation (66). It is easy to see that 

a symmetry operator 5 maps solutions of (66) into solutions, i.e., if (I E F, then 

5(1 E F. The symmetries of the solution space F of eq. (66) are hence depicted by 

the independent bases, the generators of symmetry operators 5. A direct result is that 

if 5 are first order differential operators, then [5,51 C 5 constitute a Lie algebra. As 

an example we only analyse the symmetries of the radial Schroginger equation of free 

particle in this section. But the procedure can be easily applied to other differential 

dynamical systems. 

Let t be the time variable and X the radial coordinate. Then the radial'Schroginger 

equation of free particle is, 

(0" - Orr + ;2) IJf(T,X) =0, (68) 

where T = it and a is a constant. 

Let 5 be a general first order differential operator, 

5 = lo~ +go" +h . (69) 
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I, g, and h are complex-valued functions of x, T. From eq. (67) we have 

X 
"i0"R + Toh = 0 , -o"h + or,;h = 0 . 

Which give rise to three generators (28) 

~ X 1 
53 = "i0r +Ta" + 4 ' 
~ 2 T x2 (70)'
5+ =T a" +TXar + 2' + "4 ' 

5_ = -0", 

satisfying 

153 ,6) = -6, [5+,6) = -2T6, [5_,6] =0 

and 

[53 .5:1:) =±5:b (5+,5_) =253 • 

That is, 53 and 5:1: constitute the 5U(2) all!;ebra. Therefore the solution space of this 

radial Schrodinger equation (68) is of 5U(2) symmetry. The solutions of this equation 

can be throughly investigated from separation of variables and the symmetry operators 

53 and 5:1: in formulae (70). 

As the 5U(2) operators map solutions into solutions~ the universal enveloping algebra 

of 5U(2) also maps F into F. Therefore from (35) we have 

5~: =53, 5~ = 5:1: [j =F 53), (71)
Ii =F 53), ' 

where 5:1: and 53 are given by formula (70), j is a constant with respect to the solution 

space F. Obviously 5± and 5~ in (71) constitute the 5U'1(2) algebra and map solutions 

into solutions of (68). Therefore the solution space F also possesses 5Uq(2) symmetries. 

This fact may be understood in this way. The evolutions of a dynamical system are 

guided not only by the dynamical equation, but also by the initial and boundary con

ditions. Therefore which kind ma.p of the solutions gives rise to the real description of 

the dynamical system depends on the detailed physical systems. Of course, it would' be 

interesting to find such a kind of real processes with the deformation symmetries. This 

subject is under investigation. 
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VI. q-Deformed Finite Transformation of 50(3) Group 

From section I we see that the algebras (including deformed algebras) with three 

generators can be systematically analysed in symplectic geometry approach. Neverthe

less, the finite transformations related to the deformed algebras are not so manifest, 

though the infinitesimal canonical transformation deduced by 5is (5;s) in (6) and (S) 

are clear and 5' (5:) is the invariant under these transformations respectively. Here we 

would like to give some considerations on finite transformation properties related to the 

deformed algebras. 

In. view of symplectic geometry the only difference between algebra SO(3) (SU(2» 

and " quantum a.lgeb~a" 50,(3) (5U,(2» is that the former is related to sphere 52 and 

the later to ~ q-deformed sphere 5:. While 5', the coset space of 5U(2)/U(1), is invari

ant under group transformations of 50(3). That is, the 50(3) group transformation 

keeps 

5~ ::: x~ + x~ + x~ = X+X_ + x~ (72) 

invariant for coordinates Xi in R3, where X:!: ::: XI ± ix,. Therefore reasonably we would 

like to know what kind of transformation, let us call it the q-deformed transformation 

of SO(3) correspondingly, keeps the deformed sphere 

" , , (sinh"YY3)' (sinh "Y!l3 )'
So =!/I +!/, + 'nh = !I+Y- + . h (73)

"YSI "Y "Y Stn "Y 

. . Wh s''' (sinh "Y50)' .mvanant. ere 0 = . h ' Y:J:::: !/l ± ,y,.
"Y sm "Y 

Let R be the usual rotation transformation of SO(3) group, n. the deformed finite 

transformation of 50(3), Q and Q' the deformation maps related to the quaSi-conformal 

transformations be~ween $' and 5: for real q (Ii), Q,Q' : 52 - 5:. Then we have 

following diagram: 
5' ..!!. 5' 

Q ! ! Q' (74) 

5' ~ 5' 
q " 
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The q-deformed finite transformation of 50(3), R,: 5: - 5: can be deduced from 

the maps Q, Q' and 50(3) group transformation R in above diagram, i.e., 

~=Q' RQ-I. (75) 

Where Q-I maps s: to 5'. The actions of n. on R3 result in all the coordinate 

transformations that keeps 5: invariant. Let Y:J:.3, Y~,3 be the coordinates of 5: related 

by transformation R., and X:J:.3, x~,3 be the coordinates of 52 related by the rotation 

matrix R = (Re;). From (28) we have the deformation map Q' related to (72) and (73), 

, , , 1 , sinh "Y(50 =F x;)
Y3 = X3 , Y:J:= ~x:J: ' (76)

v"YStnu"Y 50 =F X3 

'Where 
X3 
, 

~(R31 - iRa,)x+ + ~(R31 + iR3,)x_ + R33X3 , 

x+ 
I 

HRl1 +R2'Z + i(R'Zl - Rn»x+ 

+HRl1 - R2'Z + i(Rn + R,I»x_ + (R13 + iR23 )X3 , (77) 

, 
x_ ~(Rl1 - R22 - i(R21 +Rn»x+ 


+HRtt + R" + i(Rn - Ru»x_ + (R13 - iR,3)X3 . 


From (72), (73) and (76) we have the map of Q-I ::: Q'-l, 


(So=FY3)~ 
X3 = Y3 • (i8)

.: X:J: ::: Y:J: sinh "Y(50 =F Y3) . 

Equations (76), (Ii) and FS) give a kind of deformed finite coordinate transformations 

of 50(3) that keep 5: invariant. 

Let Ra( t/» be the rotation matrix along the third direction with an angle t/>. 

cost/> -sint/> 

R3( t/» ::: sin 4> cos <b (79) 
[ 

o 0 :l 
Then equ.ations (76), (77) and (7S) give rise to 

, 
Y~ = (cos t/> + isin 4»y+. y~ =(cos 4> - i sin4»y_ , Y3 = Y3' 

22 



Which is the usual rotation around the third direction. And all of these transformations 

constitute a group U(l). This is because that the deformed sphere S: is symmetric along 

the third 8.."lCis. 

However for a rotation along the second direction 


cos", 


o 	si: '" )
R2(¢) = 0 	 (80) 

( 
-sin", o cos'" 

the coordinate transformations are rather complicated. For instance, 

, . ~h [ 1/3 + So tl3 - So ] . .1.
Y3 == COS1/) Y3 - y",(smn",( 'nh ( C') tI- + . h C') tI+ smyt. (81) 

SI 	 "'(!/3 +vO sm "'(Ya - vO 

It is notable that the SO(3) group transformation R can be written in form of 

matrices that t.heir elements are independent of coordinates. And the product of two 

rotation matrices is still a rotation matrix belonging to SO(3). Here from equation 

(81) it is clear that the deformed finite SO(3) transformations R, can not be simply 

expressed by matrices. That is, the coordinate transformations that keep S: invariant 

are not linear ones. Although two continuous deformed SO(3) transformations, R! = 

R:R; = Q;R2QilQ~RIQil is still a transformation of R" the associativity of group 

actions is no longer preserved. Therefore these transformations do not constitute a 

usual group. 

VII. 	Conclusions 

In the symplectic geometry approach we have found the classical deformation maps 

among algebras with three generators, especially, the ones between the Lie tllgebras and 

their q-deformed counterparts as well as the relations between the general algebras and 

2-D smooth manifolds. The prequantization and polarization in geometric quantization 

method give rise to the operator representations of the classical Poisson algebras. which 

result in the operator deformation maps among algebras. In fact, the algebras with 

more generators can also be similarly investigated by means of the symplectic structure 

on the coadjoint orbits in group theory (29). 
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The method presented in section IV can be used to construct various Hamiltonian 

systems with various algebraic symmetries such as SU,(n), 1{,(4) etc. by using their 

invariants, the Casimirs or the co-products of their Casimirs. 

In addition, the XXZ Heisenberg spin-~ chain Hamiltonian with SU,(2) symmetry 

and nearest interaction is the sum of e. which is also the representation of Temperley

Lieb-Jones algebra. When q = 1 the Hamiltonian with next-to-nearest neighbour in

teractions is the sum of Wi ~ven by formulae (52) and (58). While calculation shows 

that 

Wi = ei +ei+! + e',i+2 I 

where ei,'+2 represents the interaction between spins at site i and i + 2, 

ei,i+2 = ei + ei+! - ei e.+! - eHlej • 

Therefore Wi can be simply expressed in terms of.the Temperley-Lieb elements eis and 

constitute no new algebras. However when q is not a unit, Wi can not be expressed 

by tis. Hence it is interesting to investigate what kind algebra the element Wi. given 

by formulae (52) and (51), in the x"'XZ Hamiltonian with next-ta-nearest neighbour 

interactions constitute. The same interesting problems exist for spin-1 case as well. 

The survey of the q-deformation symmetries in dynamical systems is a way to give 

"quantum algebras)' some physical interpretations and applications in physics. In fact it 

is well known that S2 is an ~q\tal potential surface for the central symmetric forces such 

as Coulomb force. It may be naturally asked what \vill turn out if the equal potential 

surface is taken to be S:. All these problems are worthy investigating further. 

Finally, it should be mentioned that we have mainly considered in this paper the 

properties of the " quantum algebras ", almost nothing to do with the "quantum 

groups"at all. It is well known, hO\vever, that the elements of the q-deformed uni

versal enveloping algebra can be expressed in terms of the quantum Borel subalge

bras L±, which are related to the "quantum group" element T through the duality 

< L*, T >= R* [1-3}. Therefore, the approach presented in (16][17) and here may 8.I50 
be gener~lized to the entire stnlcture of the "quantum groups" as tong as the duality 

can, be realized explicitly. This subject is also under investigation. 
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